View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by idUS. Depésito de Investigacion Universidad de Sevilla

AI P The Journal of
Chemical Physics
Liquid-gas separation in colloidal electrolytes
José B. Caballero, Antonio M. Puertas, Antonio Fernandez-Barbero, F. Javier de las Nieves, J. M. Romero-

Enrique, and L. F. Rull

Citation: The Journal of Chemical Physics 124, 054909 (2006); doi: 10.1063/1.2159481
View online: http://dx.doi.org/10.1063/1.2159481

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/124/5?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Fluid-solid coexistence from two-phase simulations: Binary colloidal mixtures and square well systems
J. Chem. Phys. 142, 054501 (2015); 10.1063/1.4906424

Surface-induced liquid-gas transition in salt-free solutions of model charged colloids
J. Chem. Phys. 139, 194901 (2013); 10.1063/1.4828435

Statics and dynamics of colloid-polymer mixtures near their critical point of phase separation: A computer
simulation study of a continuous Asakura—Oosawa model
J. Chem. Phys. 130, 064906 (2009); 10.1063/1.3071197

Gas-liquid phase separation in oppositely charged colloids: Stability and interfacial tension
J. Chem. Phys. 125, 094502 (2006); 10.1063/1.2335453

Thermodynamics and phase separation of a de-ionized colloidal system in the symmetric Poisson—-Boltzmann
and mean spherical approximation theories
J. Chem. Phys. 116, 2650 (2002); 10.1063/1.1433665

—

pic Sections

sl Applied Physics
Lithium Niobate Properties and Applications: ;
Reviews of Emerging Trends AlP Reviews



https://core.ac.uk/display/51402008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1765179907/x01/AIP-PT/JCP_ArticleDL_011316/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Jos�+B.+Caballero&option1=author
http://scitation.aip.org/search?value1=Antonio+M.+Puertas&option1=author
http://scitation.aip.org/search?value1=Antonio+Fern�ndez-Barbero&option1=author
http://scitation.aip.org/search?value1=F.+Javier+de+las+Nieves&option1=author
http://scitation.aip.org/search?value1=J.+M.+Romero-Enrique&option1=author
http://scitation.aip.org/search?value1=J.+M.+Romero-Enrique&option1=author
http://scitation.aip.org/search?value1=L.+F.+Rull&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.2159481
http://scitation.aip.org/content/aip/journal/jcp/124/5?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/142/5/10.1063/1.4906424?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/139/19/10.1063/1.4828435?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/130/6/10.1063/1.3071197?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/130/6/10.1063/1.3071197?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/125/9/10.1063/1.2335453?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/116/6/10.1063/1.1433665?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/116/6/10.1063/1.1433665?ver=pdfcov

THE JOURNAL OF CHEMICAL PHYSICS 124, 054909 (2006)
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The liquid-gas transition of an electroneutral mixture of oppositely charged colloids, studied by
Monte Carlo simulations, is found in the low-temperature—low-density region. The critical
temperature shows a nonmonotonous behavior as a function of the interaction range, «~', with a
maximum at ko= 10, implying an island of coexistence in the x-p plane. The system is arranged in
such a way that each particle is surrounded by shells of particles with alternating charge. In contrast
with the electrolyte primitive model, both neutral and charged clusters are obtained in the vapor
phase. © 2006 American Institute of Physics. [DOIL: 10.1063/1.2159481]

I. INTRODUCTION

Electrostatic correlations play an important role in
model, biological, and applied systems,I their comprehension
being a huge challenge for the liquid state researchers. While
progress has been made in understanding the influence of
those correlations in simpler ionic systems, only recently the
importance of macromolecular correlations has been ac-
knowledged. Furthermore, for charged colloidal systems, the
interaction depends not only on the charge density and dis-
tribution, but also on the solvent properties; the interactions
are thus tunable by acting on it (added salt, temperature,
etc.). This is the reason why phase diagrams are, in general,
richer in colloidal systems.2

The restricted primitive model (RPM) for ionic fluids is
the simplest mixture showing strong effects due to charge
correlations.” This model undergoes a liquid-gas transition at
low temperature and density due to the strength of the
correlations™* with Ising-type behavior,’ despite the long
range of the interactions. This model has been also extended
to tackle size or charge asymmetriesf"9 as an approach to
charged colloids. The phase diagram of dipolar systems has
been also studied, where a vapor-liquid coexistence island is
found as a function of the dipolar strength.10

In this work, we study the liquid-gas transition in the
colloidal analog of the RPM, using a mixture of oppositely
charged colloids by means of computer simulations. We will
focus on the case in which the concentrations of both colloi-
dal species are the same, even though electroneutrality can
be obeyed when the solution is not equimolar due to the
electrolyte in the medium. Nevertheless this is the case
where the correlation effects between unlike colloidal par-
ticles will be more significant. To date, the experimental
works have focused on the crystal phases,”’12 where super-
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lattice crystals were reported, and recent simulations concen-
trated in the clustering of the particles.13 In a previous work,
the liquid-gas transition was indeed found for this system in
the low-density—low-temperature region,14 and we concen-
trate here in the effect of the range of the electrical interac-
tion among particles, experimentally controlled by the elec-
trolyte concentration in the medium.

We find an unexpected nonmonotonous behavior for the
critical temperature with the range of interaction, with a
maximum at xo= 10, thus showing a reentrance phenom-
enon (fluid-phase separation-fluid) by increasing the salt con-
centration. This is a collective effect since a third term in the
virial expansion of the pressure is necessary to describe the
nonmonotonous critical temperature curve. This fact is then
rationalized from the strong correlation between oppositely
charged particles, leading in both phases to particles sur-
rounded by shells of alternating charges and clusters growing
in the dilute phase. Under this configuration, repulsive and
attractive interactions are screened in a different way, pro-
voking a maximum in the critical temperature. Finally, we
show that an increase of the amount of clusters is not a
signature of the proximity to the phase transition that is ac-
tually driven by the energy gain in the dense phase to over-
come the entropy lost in forming a liquid.

The paper is organized as follows. Section II describes
the details of the model and the simulation techniques. Sec-
tion III is devoted to present and discuss the results of this
work. Finally, the main conclusions can be found in Sec. IV.

Il. MODEL AND SIMULATIONS

We simulate a 1:1 binary mixture of N spherical colloi-
dal particles, N/2 bearing a surface potential +¢, and N/2
with —¢. The interaction between colloids is modeled by the
effective DLVO electrostatic interaction,15 plus a hard-core
repulsion,

© 2006 American Institute of Physics


http://dx.doi.org/10.1063/1.2159481
http://dx.doi.org/10.1063/1.2159481

054909-2 Caballero et al.

V(ryj) = Vus(ry) + ¢y exp{= k(r;; — o)}, (1)

where Vg is the hard-sphere potential for a particle of diam-
eter, o, ¢; and ¢, are the surface potentials of the interacting
particles (in appropriate units), and « is the inverse Debye
length. This is obviously an approximation to the real prob-
lem, where the ions are not simulated, but an effective inter-
action between the colloids is used. This method, however,
allows to study phase separation with large systems, as com-
pared to those where the ions are explicitly included.” We
shall use in this work reduced units: o=1, U'=U/¢?, T"
=kgT/ ¢, and the density p"=No>/V, where N is the number
of particles and V the volume of the system.

Monte Carlo simulations have been used to compute the
gas-liquid coexistence curve. First, Gibbs ensemble Monte
Carlo (GEMC) simulations with N=432 particles were run
for different xo values. Equilibration of the system takes
very long times [(1-5) X 10° cycles]; however, contrary to
the RPM, multiparticle moves do not speed up the equilibra-
tion rate due to the high density of the liquid phase. Produc-
tion runs comprised at least 10° cycles, taken at equilibrium.

Grand canonical Monte Carlo (GCMC) simulations
aided with reweighting techniquesm’17 were used to verify
the results from GEMC. Owing to the long range of the
correlations, the coexistence curve depends strongly on the
system size in the neighborhood of the critical point. This
fact can be used to locate the critical point using the mixed-
field finite-size scaling analysis developed by Bruce and
Wilding.18 This method is based on the asymmetry of the
density distribution, reflecting the absence of particle-hole
symmetry in off-lattice models. Thus, the order parameter of
the transition is not the density, but a mixture between the
density and the energy: M~ p+su (where s is a system-
dependent field mixing parameter). Precisely at criticality,
the distribution of M in a large enough system, with box size
L, takes on the universal form,

P (M) =a, P (a;[M - (M))), (2)

where P*(x) is a universal distribution function for each uni-
versality class, {---) is the average evaluated at critical con-
ditions, and a; ~ L. Thus, using GCMC simulations, criti-
cal parameters for different box sizes are calculated, and
applying the corresponding scaling laws, the critical param-
eters for an infinite system can be obtained,

T(L) = T(0) ~ L7 "7, 3)

pelL) = po(oe) ~ L71=v, (4)

where v and « are the critical exponents associated to the
correlation length and heat capacity divergence, respectively,
and 6 is the correction-to-scaling exponent. For the three-
dimensional (3D) Ising universality class, a=0.11, v
~0.629, and §~0.54."° Some remarks are pertinent at this
point. First of all, the Bruce-Wilding method does not iden-
tify the universality class of the system but provides the criti-
cal parameters assuming certain universality class. Since our
model presents a short-range interaction, 3D Ising criticality
is expected. On the other hand, the Bruce-Wilding method is
not consistent with the Yang-Yang anomaly. This method can
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FIG. 1. Gas-liquid coexistence points for different values of «: k=3.9
(circles), k=6, open squares, k=10, upward triangles, k=15, downward
triangles, and «=20, diamonds. The points without error bars mark the
critical points, estimated with the law of rectilinear diameters.

be improved including the pressure as a scaling field, but for
Ising-type systems this contribution is usually negligible.20
Therefore, we follow the Bruce-Wilding method.

To carry out this analysis, we have used GCMC simula-
tions with L=8, 9, 10, and 12 system sizes. Runs comprised
25X 10% configurations for L=8 and L=9 and 75X 10° con-
figurations for L=10 and L=12, configurations are spaced by
2(N) attempts to insert or remove a random particle. Statis-
tical errors were taken from three independent simulations
runs.

lll. RESULTS AND DISCUSSION

The liquid-gas transition, studied by means of Gibbs En-
semble Monte Carlo and grand Canonical simulations, is
found in the low-7-low-p region, where strong correlations
between oppositely charged particles emerge, producing a
thermodynamic instability.l’14 We find liquids and vapors
composed of the same number of positive and negative par-
ticles on average. The GEMC results for different « are pre-
sented in Fig. 1. In contrast to monocomponent attractive
systems,zl the critical temperature evolves nonmonotoni-
cally. At low «, demixing occurs at higher temperatures, the
shorter the interaction range, and only at high «, the critical
temperature moves to lower values as « increases. Notewor-
thily, this behavior implies a closed region of phase separa-
tion in the constant 7, k-p plane, which is experimentally
more accessible than the 7-p one for colloids. A reentrance
phenomenon is thus predicted by increasing the salt concen-
tration, from fluid to phase separation and to fluid again,
similarly to the dipolar systems.10

To verify the dependence of the critical temperature with
the salt concentration, we have also used GCMC simulations
which are more precise than the GEMC ones. Figure 2 (up-
per panel) shows P;(M) matched to the universal 3D Ising
distribution for ko=6 with different box sizes: L=8,9, 10,
and 12. This matching gives us a critical temperature for
each system size that can be used to obtain 7, in an infinite
system as the linear fit to the suitable scaling law'® (results
presented in the lower panel of Fig. 2). Note the small de-
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FIG. 2. Upper panel: order-parameter probability distribution P;(x) for
ko=6 and several box sizes: L=8 (black circles), L=9 (red squares), L
=10 (green diamonds), and L=12 (blue triangles); solid line for 3D-Ising
model. Lower panel: variation of the critical temperature with the box sizes
for ko=6 (black squares), ko=10 (red squares), and ko=15 (green dia-
monds). The lines are linear fits to the numerical results.

pendence of the critical temperature with the size of the
simulation boxes; the critical density also depends slightly
on L (not shown). These simulations confirm the behavior of
the critical temperature with the salt concentration: 7. in-
creases when k increases at low « [T.(ko=6)<T.(ko
=10)] and decreases at high enough salt concentration
[T.(ko=15)<T.(ko=10)].

The size dependence of the nonuniversal parameter a;
~LP" (not shown) permits an estimation of the ratio B/v.
The values obtained are similar to those of the Ising model
(B/v=0.518) for the three ranges studied: pB/v
=0.523(14),0.509(23), and 0.503(20) for ko=6, 10, and 15,
respectively. The collapse of the data onto the 3D-Ising curve
(solid line) in Fig. 2, the agreement of numerical values for
the ratios /v, and the analysis of a;, support the compat-
ibility with 3D-Ising criticality, as expected for short-range
potentials.

The critical temperature and density from both GEMC
and GCMC simulations are presented in Fig. 3 as a function
of k. The agreement between both simulation results con-
firms the non-monotonic behavior of T, described above; on
the other hand, the critical density, which is better estimated
with the GCMC simulations, increases with . The critical
parameters have been calculated using the virial expansion
of the pressure up to second and third orders (continuous and
dashed lines in Fig. 3, respectively): BP(p):BPﬁg(p)
+B,p*+Bsp’, where PG3(p) is the Carnahan-Starling expres-
sion for the pressure of hard spheres.zz’23 The second-order
expansion produces a liquid-gas transition, driven by the at-
tractions between oppositely charged particles, which be-
haves monotonically with xo (solid lines). On the other

J. Chem. Phys. 124, 054909 (2006)
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FIG. 3. Critical temperature and density (inset) as a function of o solid
squares from GEMC and open red diamonds from GCMC simulations. The
black lines are the results using the virial expansion for the pressure up to
second (solid line) and third orders (broken line) in density. The green lines
are results from MSA on a Yukawa mixture (Ref. 24).

hand, the expansion up to third order correctly reproduces
the maximum in 7. vs o (dashed lines). Because Bj is
needed to reproduce qualitatively the results, the increasing
trend of 7. vs ko at long interaction ranges comes from the
interaction between, at least, three particles, mainly the re-
pulsion between two particles with similar charge attracted to
a third one. This repulsion is more important for lower «,
whereas the attraction energy is not greatly increased. The
origin of the maximum is, thus, similar to that of the dipolar
system.lo These results also agree qualitatively with previous
calculations for an attractive-repulsive mixture of Yukawa
potentials using an expansion of the internal energy and the
equation of state, based on the mean-spherical approximation
(MSA).**

As in the ionic fluids, the demixing in a dense and a
dilute phase is driven by the strong correlations between op-
positely charged particles.l’14 We have investigated the inter-
nal correlations in two supercritical (7°=0.18) states, p"
=0.6 and p“=0.05, marked in Fig. 1 as asterisks. Figure 4
plots the opposite sign, g, (r), and same sign (inset),

FIG. 4. Partial pair distribution functions for 7=0.18 and p=0.6 with «
=2 (black curve), k=6 (red curve) and k=15 (green curve); opposite sign
(main figure) and same sign (inset).
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FIG. 5. Upper panel: partial pair distribution functions for 7°=0.18 and p
=0.05 with k=2 (black curve), k=6 (red curve), k=15 (green curve), and
k=30 (blue curve); opposite sign (main figure) and same sign (inset). Lower
panel: fraction of particles in a cluster with n particles for the same state and
different « as labeled. x, is normalized as Zx,=1.

g++(r)=g__(r), contributions to the pair distribution function
for the dense state (with ko=2,6, and 15). The system is
composed of layers with alternating sign particles surround-
ing every particle; first layer of particles of opposite sign,
second one of the same sign, etc. This structure extends to
distances of several radii, much larger than the interaction
range. As observed in the figure, the peaks shift to shorter
distances as « increases. Qualitatively similar features have
been predicted using the MSA for the partial structure
factors.”

Second neighbors of one particle comprise the first shell
of particles with the same sign, which moves to larger dis-
tances as « decreases. This is due to the repulsion between
similarly charged particles and correlations through unlike
particles. The first neighbor layer, thus, drive the gas-liquid
transition, whereas the second one impedes it, resulting in a
maximum of the critical temperature. A peak at r=20 marks
the presence of linear arrangements (three particles long) at
all ranges studied. This peak is not caused by the repulsion of
the central particle (because the repulsion range is too short),
but due to the repulsion of the particles in the second layer,
first peak in g,,(r). Visual inspection of the system shows
that these strings are distributed randomly (thus cannot be
attributed to crystallites) and are only three particles long [no
peak at r=30 in g(r)].

Now we move to the dilute supercritical state 7" =0.18
and p"=0.05, presented in Fig. 5 for different interaction
ranges (upper panel). The system is composed of clusters of
particles,l4 and the fraction of particles in every cluster, x,,, is
presented in the lower panel of the figure for different values

J. Chem. Phys. 124, 054909 (2006)
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FIG. 6. Electrostatic energy (squares) and contributions from repulsions
(upwards triangles) and attractions (downwards triangles) for two states as
labeled.

of k. Again the layering of particles inside the clusters is
observed although only two or three layers are seen due to
the finite size of the clusters. The layers move closer as «
increases, the effect being more dramatic than in the dense
state due to the lower density of the system. Notably, the
absence of the peak at r=20 confirms the collective origin of
the linear structures found in the dense phase (Fig. 4).

Different from the RPM,26’27 the distribution of clusters
is monotonous, containing both neutral and charged clusters,
no matter how close to the transition. However, this distribu-
tion shows also a nonmonotonic behavior with «; for long
ranges the number of large clusters increases when x in-
creases, whereas the opposite trend is observed at high «, the
maximum number of big clusters found for ko=6.0 (for not-
too-big clusters, the maximum is at ko=3.9). These values
do not agree with the maximum of T:, which indicates that
maximal proximity to the transition does not imply maximal
tendency to form large clusters in dilute systems.

Finally, to complete the understanding of the phase tran-
sition and its driving mechanism, Fig. 6 depicts the internal
(electrostatic) energy with its contributions from attractions
and repulsions. The same supercritical states are presented
[T°=0.18, p"=0.6 (upper panel), and p =0.05 (lower panel)].
At low «, the total energy comprises repulsive and attractive
contributions. For larger «, however, the energy contains
only the attractive contributions due to the different distances
between similar sign and opposite sign pairs (see Fig. 4).
Therefore, the behavior at high « is similar to that of a mono-
component system. For the dilute state, the clustering implies
a low number of bonds, as compared to the dense state, re-
sulting in a lower energy (in absolute value). The minimum
in the energy can be rationalized using simple small clusters,
i.e., trimers and tetramers. >
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Comparison of the energy curves with the behavior of
critical temperature shows that the driving mechanism for
liquid-gas separation in this system is the energy gain in
forming a dense (liquid) phase, and not the ability to form
large clusters in dilute phases (see Fig. 6), as proposed for
the asymmetric ionic fluids.”® The effect arises from the dif-
ference in the number of interacting pairs of similarly
charged colloids in the dilute and dense phases. The internal
energy calculated using the MSA for a mixture of Yukawa
potentials shows similar trends, with minima moving to
higher « as the density increases.”*

IV. CONCLUSIONS

In conclusion, we have studied the liquid-gas transition
in a system which can be considered as the colloidal analog
of the ionic fluid, i.e., a 1:1 mixture of oppositely charged
colloids. The coexistence region is found in the low-density—
low-temperature region, with 3D-Ising criticality. The critical
temperature shows a nonmonotonic behavior with the range
of the interaction, «; increasing in low values of « and de-
creasing for the higher ones. This prediction implies a closed
region of liquid-gas demixing at constant temperature in the
k-p plane. The condensed phases are arranged in such a way
that each particle is surrounded by shells of particles with
alternating charge. The internal energy shows that the overall
trend of the critical temperature is led by the energy gain in
forming a dense phase. Liquid-gas separation at long ranges
is hindered by the repulsion between similarly charged par-
ticles bonded to a third one (of opposite sign), whereas at
high « this repulsion is negligible.
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