
Mining Interesting Regions using 
an Evolutionary Algorithm 

J.L. Alvarez 
D.I.E.S.I.A. 

Universidad de Huelva 
Huelva, Spain 

alvarez@uhu.es 

J. Mata 
D.I.E.S.I.A. 

Universidad de Fiuelva 
Huelva, Spain 

mata@uhu.es 

Universidad de Sevilla 
Sevilla, Spain 

riquelme@tsi.us.es 

ABSTRACT 
In  this  paper ,  we offer a new m e t h o d  to induce  in teres t -  
ing knowledge from the  re levant  sets of d a t a  in  da tabases  
for superv ised  learning.  Thus ,  in  this  work, ELLIPSES  is 
presented  as a new m e t h o d  or iented  to discover knowledge 
according to the exper t ' s  needs, by the  de tec t ion  of the  mos t  
s ignif icant  regions. T h e  m e t h o d  essence is found  in  an  evolu- 
t i ona ry  a lgor i thm t h a t  f inds these  regions one after another .  
T h e  exper t  decides which regions are signif icant  and  deter-  
mines  the  stop cr i ter ion.  T h e  ex t rac ted  knowledge is offered 
th rough  two types of rules: Q u a n t i t a t i v e  and  Qual i ta t ive .  
T h e  tool  also offers a v isua l iza t ion  of each rule  by paral lel  
coord ina te  systems.  T h e  ELLIPSES  resul ts  are compared  
wi th  C4.5 on UCI  Repos i to ry  datasets .  

Keywords 
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1. I N T R O D U C T I O N  
Nowadays,  generally, the  Knowledge  Discovery in Da ta -  

bases (KDD)  and,  par t icular ly ,  D a t a  Min ing  (DM) have 
spur red  a t r e m e n d o u s  in teres t  in  the  researchers c o m m u -  
n i ty  [1]. News a lgor i thms and  tools have been  developed to 
D a t a  Analysis  (DA).  Classification is an useful t echn ique  for 
discovering in te res t ing  rules in  databases .  

Classif icat ion sys tems are superv ised  learn ing  me thods  
tha t  analyze a da t abase  or t r a in ing  set to bui ld  a classifica- 
t ion model.  The  t r a i n i n g  set conta ins  a feature  collection, 
or object  a t t r i bu t e s  whose class labels are known.  The  clas- 
sification model  is a set  of rules for each class based on the  
d a t a  characteris t ics .  Such rules axe used to classify fu ture  
objects  according to the  value of their  a t t r ibu tes .  

T h e s e  methods  are very useful  and  features  have been  jus-  
tiffed wi th  tools t ha t  have shown excellent  results.  Bu t  these 
techniques  have some problems:  they  do not  allow exper t ' s  
i n t e rven t ion  for l ea rn ing  process. So, classification sys tems 
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no rma l ly  genera te  a big n u m b e r  of rules  whose in t e rp re ta -  
t ions  are difficult. I n  these  cases, the  resul ts  are useless 
for an  huma n- e xpe r t .  Thus ,  it  is necessary to inc lude  other  
techniques  because  the  DA sys t em m a i n  fea ture  is to offer 
an  easy i n t e rp re t a t i on  of i nduc e d  knowledge.  

Th i s  paper  presents  ELLIPSES ,  a tool  t h a t  pe rmi t s  to in- 
duce a set of classification rules in  numer i ca l  a t t r i b u t e  space 
{9][2]. These  rules de t e rmine  the  mos t  s ignif icant  regions of 
the  search space, they  are a easy i n t e r p r e t a t i o n  and  the  ex- 
pe r t  can also control  the l ea rn ing  process, es tabl i sh ing when  
a region is in te res t ing  a n d  the  stop cri ter ion.  

Regions searching process is m a d e  by  an evo lu t iona ry  al- 
go r i thm whose resul t  i n t e r p r e t a t i o n  is g iven by E L L I P S E S  
t h r o u g h  two rule models:  q u a n t i t a t i v e  and  qual i ta t ive .  I t  
also offers a view of t h e m  us ing paral lel  coord ina te  sys tems  
so the  re la t ionsh ip  a mong  a t t r i bu t e s  is shown by  an image 
for each rule. 

T h e  rest  of the  paper  is organized as follow. T h e  m a t h e -  
mat ica l  pre l iminar ies  are presen ted  in section 2. Then ,  sec- 
t ion  3 describes E L L I P S E S  a lgor i thm.  And,  in  sect ion 4 is 
shown the  pe r fo rmance  of our  tool. Th i s  sect ion offers the 
exper imen ta l  resul ts  on  Iris da ta se t  a n d  a compar i son  wi th  
C4.5 [13] on U C I  Repos i to ry  da tase t s  [12]. T h e  object ive  of 
this  compar i son  is to offer a nexus  be tween  the  classification 
sys tems a nd  our tool, since our  tool is no t  real ly a classifica- 
t ion system.  Final ly ,  sect ion 5 offers the  conclusions abou t  
this me thod .  

2. PRELIMINARIES 
Our  m e t h o d  uses conical  regions to f ind  the  mos t  signifi- 

cant  rules. These  regions con ta in  the  features  of each class. 
This  section offers the basic  def ini t ions  of the  models  of rules 
used in  our  tool. 

Definition 1. Let be  an  hyperelllpse t h e  n a t u r a l  exten-  
sion of an ellipse in a d -d imens iona l  space R d. 

Defir~ition 2. Let be  an  hyperellipsoide the  vo lume  tha t  
is inside of an  h~perellipse. 

An hyperel l ipse ( the wrapper )  is equal  to an  ellipses or 
c i rcumference in  a two-d imens iona l  space R 2. A n  hyper -  
eUipsoide ( the w r a p p e d  vo lume)  is equal  to an ell ipsoid or 
circle in  a 2 two-d imens iona l  space R . F igure  1 offers a graph-  
ical r ep resen ta t ion  of these  concepts.  F igure  l a )  represents  
an  ellipse of center  (cl,  c2), greater  axis ~1 and  smaller  axis 
~2 to two a t t r ibu te s  Zl a nd  z2 ( two-d imens iona l  space R 2) 
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F i g u r e  1: G r a p h i c a l  r e p r e s e n t a t i o n  of  a n  e l l ipse .  

and figure lb )  shows an hyperellipse to three at t r ibutes z t ,  
xa and ~a (three-dimensional space Rs). 

( ~ - c i )  ~ ( ~ - c 2 )  2 
a~ + a] = 1  (1) 

( z ~ - C l )  2 ( ~ 2 - c 2 ) 2  < 1  (2) 
al + a~ - 

(Z1  - -  C l )  7" (Z~t - -  C2)  "j ( Z d  - -  P--d) 2 ¢: 1 ( 3 )  
al + a~ + " + u~ - 

The equation of the ellipse in R 2 is shown in 1. The equa- 
t ion of an ellipsoide is shown in 2. This equation is obtained 
changing = by < in the equation of the associated ellipses. 
Generalizing, in R a, the equation of an hyperellipsoide is 
shown iu 3. 

I !  ~ (c~ ,  al) and ... ~ d  ~(~d,  ad) ~ C~ (4) 

h(~,a,) = { 
Large i f  ai > 40%A~ 
M L a r g e  i f  25%A~ < al < 40%A= 
M e d i u m  i f  15%A= < al _< 25%A~ 
M S h o r t  i f  5%A= < ~i _< 15%A~ 
Shor t  i f  al <_ 5~oA~ 

(5) 

I f  xl(el) width E1 and ... and xd(Cd) width E~ =~ C~ (6) 

The models of the rules (quanti tat ive and qualitative) 
used in our tool axe based on 1, 2 and 3. Thus, the quan- 
t i tat ive model is obtained directly by the equation of the 
ellipse. This model is shown in 4 and it offers the central c¢ 
value and the extent (width) ai for each at tr ibute,  and the 
associated class Ci. The qualitative model uses five labels 
to specify the extent. For each a t t r ibute  z:,  a Ej label is 
generated by h(zl ,  ai) function, according to 5, where A~ is 
~iM -- xlm, ~iM is the max imum artd xim the min imum for 
zi at tr ibute.  The quali tative model is shown in 6. The in- 
terpretat ion of these models of rule is very intuit ive because 
the rule does not  differ from the typical classification rules. 
Thus, let be t : (Yl, Y2, ..., yn), i f y l  E [z~ - ai, zl  +al]Vi then 
the i tem ~ is associated with the class Ci, according to 4. 
In the quali tative model, the label establishes the  difference 
between yl and xl. 

The method used to obtain the class Ci of an hyperellip- 
soide will be presented in the next  sections, but  this section 
offers the basic idea. Let be t : (xl ,  x2, ..., Zd, Ci) item, if i 
satisfies the equation 3 then the item is within the volume 
of the hyperellipsoide. Thus, the major i ty  class within the 
hyperellipses is the associated class to it. 

ELLIPSES Algorithm 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
1,5. 
16. 
17. 
END. 

T +-- Read Training set 
Repeat  

iter ~-- iter + 1 
Pi ~- Inicialice populat ion on T 
Repeat  

Evaluate P~ on T 
Select the best in Pl to P~+I 
Select 10~ in Pi to Pi+l 
Crossover Pi individuals to Pi+l 

Mutate  P~+x 
P~+I is P~ 

Unti l  number  generations 
r +-- Select the best  of Pi 
if a lpha ( r )>ALPHA T H E N  add(R, r) 

Unti l  ( i t e r = I T E R  or b e t a ( R ) > B E T A )  
Show R rules 
Visualization R by Parallel Coordinates 

F i g u r e  2: E L L I P S E S  A l g o r i t h m  

3.  E L L I P S E S  A L G O R I T H M  
The main  objective of our tool is to induce the search 

space regions with a greater number  of the items belonging 
to the same class and to permit  the human-exper t  interac- 
tion in order to establish some criteria for the search process. 
The final result shows a reduced and easily interpretable set 
of rules. ELLIPSES is a DA tool based on Evolut ionary 
Algorithm (EA) [5][6][11]. EAs axe a heuristic search tech- 
nique that  has demonstrated to be robust  for a variety of 
complex search space [4][14 ]. 

The technique mainta ins  a populat ion of individuals where 
each individual encodes a feasible solution to the problem. 
Iteratively, a new populat ion is generated by replacing the 
previous population,  according to Darwin's  survival prin- 
ciple. So, each individual is evaluated to give its relative 
merit  (fitness) as a solution. The new populat ions result 
from selection, crossover and muta t ion  of previous popula- 
tions. The evolutionary process is i terated by a predefined 
number  of generations. The best individual  of the evolu- 
t ionary process is the solution of the algorithm 

The EA has been used with excellent results [3][8][10]. In  
our method, a region is a conical surface. An EA is used 
to obtain the best regions. Figure 2 shows the ELLIPSES 
algorithm. 

Iteratively, the EA finds the best hyperellipse r based 
on the number  of positive and negative items in the hy- 
perellipsoide. Let be alpha(r) the percentage of the same 
class items in r, if alpha(r) is greater than  the predefmed 
human-exper t  percentage A L P H A ,  then region r is consid- 
ered. This process is repeated unti l  reaching a predefined 
human-exper t  number  of rules or predefined human-exper t  
percentage B E T A .  Finally, the rules are shown according 
to 4 and 6 (quanti tat ive and quali tative models), and they 
are shown by parallel coordinate systems. 

3 .1  D a t a  s t r u c t u r e  o f  t h e  i n d i v i d u a l s  
An individual (a feasible solution) is a set I ={Cl,...,Cd, 

al,...,a~} where d is the number  of a t t r ibutes  and ci,ai E 
axe the center and extent  of the zl a t t r ibute  and they 

represent the equation of an hyperellipsoide according to 3. 
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F i g u r e  3: R e p r e s e n t a t i o n  o f  a n  i n d i v i d u a l .  

Figure 3 shows a graphical  r epresen ta t ion  of the  individuals .  
In  practice,  an  ind iv idua l  represents  a search space region. 

Each region will be  associated to a class t h a t  will be  deduced 
by  the  ma jo r i ty  class of the  d a t a  i tems in the  hyperell ipsoide.  

3.2 Initial and next  populat ion 
The  process to  genera te  the  ini t ia l  popu la t i on  consists in 

selecting, in a r a n d o m  way, eaf_.h center  ci from the  a t t r ibu te s  
range  xl ([xi , , ,  ziM]) and  each extent  ai be tween 5% and  
30% of the  a t t r ibu te s  range  xl. 

The  evolu t ionary  process includes elitist: the best  individ-  
ual of every genera t ion  is repl icated to the  next  one. Indi-  
viduals  are ob ta ined  th rough  the copies of the previous pop- 
u la t ion .  These  ind iv idua ls  are r a n d o m l y  and  propor t iona l ly  
selected to their relat ive mer i t  as a solut ion (fitness). The  
popu la t ion  r ema in ing  is formed th rough  crossovers. After- 
wards, m u t a t i o n  is applied depending  on a probabil i ty.  

3.3 Fitness funct ion 
The fitness (or mer i t  as a solut ion)  of an ind iv idua l  is 

ob ta ined  by t r a in ing  set i t em analysis.  A n  i tem can  be in 
or out  of the hyperellipse. The  out  i tems are ignored. The  
different classes of the  i t ems  in the  hyperell ipse are counted  
and  the  associated class to the  ind iv idua l  is the  ma jo r i ty  
class. Thus ,  the i tems wi th  the  same class axe posit ive cases 
and  the  i tems wi th  different classes axe negat ive  cases. 

Fur thermore ,  nex t  i t e ra t ion  mus t  direct the  evolu t ionary  
process to other  regions. Thus ,  the posit ive cases covered by 
discovered rules axe considered covered cases, Finally,  our  
m e t h o d  needs to ob ta in  the  greatest  region. Thus ,  the  am- 
p l i tude  of the  hyperel l ipse is the  hyperell ipse volume divide 
by search spaces volume. 

fg) = P o s ( ~ )  - i V e g ( ~ )  - C o ,  e r (~ )  * F C  + A , . p l ( ~ )  (7) 

Our  a lgor i thm maximizes  the  fitness func t ion  f for each 
ind iv idua l  i. The  fitness func t ion  is given in 7, where P o s ( i )  
and N e g ( i )  are the  posi t ive and  negat ive  cases in the  hyper-  
elipsoide t h a t  represent  the  ind iv idua l  i, C o v e r ( i )  axe the 
covered cases by previous  hypereUipses, F C  is the  coverture 
factor and  Acnpl( i )  is the  hyperell ipse ampl i tude .  Cover ture  
factor ( F C )  is a value in the  in terval  [0..1], and  it  offers the  
possibi l i ty of re laxing the  covered cases, so, if F C  is closed 
to 1, t hen  the  covered cases are considered negat ive  cases, 
and  if F C  is closed to 0, then  the covered cases are ignored. 

3.4 Genet ic  operators 
There  are tree genetic operators:  selection, crossover a nd  

mu ta t i on .  To form a new popu la t i on  ( the next  generat ion) ,  
the indiv iduals  are selected according to their  fitness by the  

' selection operator .  M a n y  selection procedures  are cur ren t ly  
in  use, our a lgor i thm uses rou le t te  wheel procedure,  where 
individuals  are selected with a propor t ional  p robabi l i ty  to 
their  relat ive fitness. This  ensures t h a t  an ind iv idua l  is cho- 
sen in a expected  n u m b e r  of t imes approximate ly  propor-  
t ional  to its relat ive pe r fo rmance  in the  popula t ion .  Thus ,  

I¢,1 ..-I ' Icdl ' I" 1 

' " /   Ell  lmlmw 4 

F i g u r e  4: T h e  m i d d l e  p o i n t  c r o s s o v e r  o p e r a t o r .  

.-. N 

F i g u r e  5: T h e  u n i f o r m  c r o s s o v e r  o p e r a t o r .  

high-fi tness (good) ind iv idua ls  s t a n d  a b e t t e r  chance of se- 
lecting, while low-fitness ind iv idua l s  are more  likely to dis- 
appear.  

Selection canno t  in t roduce  any  new ind iv idua l s  into the  
popula t ion .  These  ind iv idua ls  are genera ted  th rough  cross- 
over and  m u t a t i o n  operators .  Crossover opera tor  is per-  
formed by selecting two ind iv idua l s  called parents ,  and  gen- 
e ra t ing  new indiv iduals  called offspring. In  our  a lgor i thm,  
the crossover opera tor  has two componen t s :  the  middle  point  
crossover and  the  un i fo rm crossover. T h e y  are performed 
wi th  a probabi l i ty  p . . . . .  t h a t  chooses be tween the midd le  
po in t  crossover mad ~.he un i fo rm crossover. T h e  midd le  po in t  
crossover r a n d o m l y  splits the  ind iv idua l s  in  two parts .  T h e n  
the  f ragments  are exchanged genera t ing  two new ind iv idu-  
als. F igure  4 graphical ly  shows this  process. The  un i fo rm 
crossover decides , i n d e p e n d e n t l y  for each coefficient of an 
indiv idual ,  whether  it con t r ibu te  or no t  to the  new individ-  
ual. An  example  of this  p rocedure  is shown in figure 5. 

vii = v~ j  4- Quant * PerMut * vii (8) 

Finally, the mutation operator is introduced to prevent 
premature convergence to local optimum by randomly sam- 
pling new points in the search space. Three variants are 
implemented: center mutation, amplitude mutation and ex- 
treme mutation. Mutation is performed with probability 
p , ~ t  on an  individual .  W h e n  an ind iv idua l  m u s t  be mu- 
ta ted ,  a p robabi l i ty  chooses be tween the  different operators .  
The  center  and  ampl i t ude  m u t a t i o n  operators  alter the  cen- 
ter  (cl ,  ..., Cd) and  the  ex ten t  (a l , . . . ,  ad) of the  hypereUipse, 
respectively, according to 8, where  v~j is the  factor to alter, 
Q ~ a n t  and  P e r M u t  take  their  values f rom [0..1], QuarL~ is 
the  r a n d o m  q u a n t i t y  t h a t  vii is a l tered and  P e r M u t  is the  
percentage  of m u t a t i o n  t h a t  de te rmines  how the  m u t a t i o n  
influence on vii .  The  ex t reme  m u t a t i o n  opera tor  alters bo th  
center  (ci) and  ex ten t  (ai)  of an a t t r i b u t e  (z l ) .  Thus ,  the  
m u t a t i o n  let the  middle  value of XiM -- z i , ,  to cl and  let 
=~M-=~ to al.  The  object ive  of this  opera to r  is to cover z 
the a t t r ibu te .  

3.5 Parallel  coordinate  systems 
Al though  our tool offers two models  of rules and  the  qual- 

i ta t ive  model  is easily in te rpre ted ,  somet imes  it is necessary 
to provide the  in fo rmat ion  using a~aother philosophy. Thus ,  
a v isual izat ion of the re la t ionships  a m o n g  the  a t t r i bu t e s  of- 
fers a good suppor t  to the  expert .  T h e  v isua l iza t ion  tech- 
n ique  used in  our a lgor i thm is shown in  this  section. This  
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x~ x2 x~ x,, x~ x2 x3 x,, 
a) b) 

F i g u r e  6: P a r a l l e l  C o o r d i n a t e  S y s t e m s .  

technique offers the relationships among at tr ibutes by par- 
allel coordinates [7]. 

A parallel coordinate system is composed by a set of paral- 
lel axes separated by a fixed distance. Each axis corresponds 
with an at t r ibute and they are escalated on the range of the 
attribute. Thus, d axes are necessary to represent d at- 
tributes. In this system, a line represents each data  item. 
This line intersects with each axis on the value of the i tem 
for that  attribute.  Figure 6a) shows the traditional parallel 
coordinate system. 

In our method, each region is represented on a parallel 
coordinate system. But, all data  items in a region axe not 
represented on parallel coordinate system. Thus, only the 
minimal value and the maximal value, for each attr ibute,  are 
represented on each axis and these values are joined by filled 
polygonal. Figure 6b) offers an example of this method. The 
internal lines are eliminated. The objective of this variant 
is to offer a clearer and compact vision of the relationships 
between the attributes.  

4. RESULTS 
In order to evaluate the performance of our tool this sec- 

tion offers the results on UCI Repository datasets [12]. Thus, 
it shows the obtained rules and their visualization on parallel 
coordinate systems on the tradicinal Iris dataset in section 
4.1. Furthermore, section 4.2 offers a comparison between 
ELLISPES and C4.5. 

4.1 Iris dataset 
To illustrate the results induced by ELLIPSES, this sec- 

tion offers the results tha t  has been discovered on Iris dataset. 

x/p~(o.3, 0.67) ~ Set.(5o/o/o)(.~%) 
I f  ~mv(2.5, 0.73) =~ Vir.(45/l /O)(30%) (9) 
I1 prO.9, 0.94) ~ Ver.(4e/3/o)Ca1%) 

I.f pw(0.3) ~gdth MLARGE =#...%t.(50/0/0) 
I.f p,,,(~..5) ,,,~dth MZ,  A e G E  ~ Vi,- . (45/1/0) 00 )  
I f  p/(3.9) width M E D I U M  ::~ Ver.(46/3/O) 

The quanti ta t ive model of the rules is shown in 9. The 
interpretation is very intuitive although this is the quanti- 
tative model. So, for example, the first rule shows that  if 
the  pw (petal width) a t t r ibute  is round of 0.3 with am ex- 
tent of 4- 0.67 then the obtained class is Iris-Setosa. The 
qualitative model is shown in 9. This model uses a label to 
represent the amplitude. This label offers qualitative infor- 
mation of the ampli tude of the rule on an at t r ibute  respect 
to the range of the at tr ibute,  according to 5. The rules show 
the number  of positive, negative and covered cases and the 
percentage of positive cases. 

m 
el Bw pl pw 

Setosa 

gl mw pl pw mL sw pl pw 

V'n~dca V~color 

F i g u r e  7: I r i s  D a t n s e t  V i s u a l i z a t i o n .  

The visualization of this rules by parallel coordinate sys- 
tems is shown in figure 7. This representation offers a graph- 
ical description of the previous rules. For example, it shows 
the following: i fpw takes short values the class is Iris-setosa, 
if pw takes high values then the class is Iris-Virginica and, 
in other case, if pl takes middle values then the class is Iris- 
Versicolor. This visualization offers a very intuit ive and easy 
interpretat ion of the rules. 

4.2 ELLIPSES vs C4.5: A comparison 
This section offers a comparison of the results of EL- 

LIPSES versue C4.5. Though ELLIPSES is not a classi- 
fication system, a method is presented in order to evaluate 
our tool. This method compares the results obtained by EL- 
LIPSES with the results obtained by C4.5 on six UCI Repos- 
itory datasets. The features of these datasets are shown in 
table 1. 

For this, it offers a comparison based on the number  of 
rules obtained by ELLIPSES. Thus, table 2 shows the per- 
centage of positive cases of each class (column %c/s), the 
percentage of positive cases on the total (column %ttal) and 
the percentage of negative cases or error rate (column %er). 
As C4.5 is a classification system, it finds more rules than 
our tool thus the most meaningful rules (column r) axe only 
used in the comparison. The rules that  more items collect 
are the most meaningful rules. 

To clarify the content of table 2, we offer an explanation 
of the results on PIMA dataset. This dataset ham 768 items, 
8 at tr ibutes and two class denoted with 0 and 1, as table 1 
shows. ELLIPSES induces two rules for the class 0. These 
rules cover 52.2% of the items of the 0 class, this is 33.9% 
on all items and the percentage of error is 2.8%. 

C4.5 induces 15 rules for class 0. In this comparison the 
two rules tha t  cover more items are considered. The two 
most meaningful rules cover 54.8% of the items of the 0 
class, 35.6% of all items aa-td the percentage of error is 2.9%. 
In a same way, ELLIPSES induces a rule for class 1 that 
covers 20.5% of the class, 7.2% of all items and 0.6% error. 
C4.5 induce 7 rules where the most meaningful rule covers 
29.8% of the class, 10.4% of all items and 1.5~ error. 

The previous results show that  the accuracy of the classi- 
fication in both methods is very similar, although the most 
significant rules are only used. Furthermore, the rate of 
error is lightly inferior in ELLIPSES. These results deter- 
mine that  ELLIPSES is a good tool to obtain interesting 
rules (regions). Furthermore, ELLIPSES has other advan- 
tage: "human expert 's interaction". Thus, human  experts 
can determine the number,  the support  and the confidence 
of the rules. That  is to say, they determine the importance 
of the regions. 
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T a b l e  I :  U C I  R e p o s i t o r y  D a t a s e t s  ~ a b l e  3"- P a r a m e t e r s  a n d  d e f a u l t  v a l u e s  

D a t a s e t s  # I t e m s  # A r t .  # C l a s s  Class  
BCW 699 I0 2 2,4 
BUPA 345 6 2 1,2 
GLASS 214 9 7 1,2,3,5,6,7 
H A Y E S  132 5 3 1,2,3 
IRIS  150 4 3 s , v j  
PIMA 768 8 2 0,I 

T a b l e  9.: E L L I P S E S  v s .  C 4 . 5 :  A C o m p a r i s o n  

E L L I P S E S  C4.5 
c r %cls %ttal %er ~/ocls °Tottal %er  

BCW 2 1 90.1 59.1 0.2 81.0 53.0 0.1 
4 1 71.4 24.6 0.4 67.6 23.3 0.3 

BUPA 1 3 32.4 13.6 1.1 36.5 15.3 1.4 
2 5 40.0 23.1 0.2 74.5 43.1 11.8 

G L A S S  1 3 81.4 26.6 0.4 78.5 25.7 0 4 
2 3 64.4 22.8 2.8 64.4 22.8 3,2 
3 2 64.7 5.1 0.4 47.0 3.7 0.0 
5 1 76.9 4.6 0.4 92.3 5.6 0.4 
6 1 66,6 2.8 0.0 100.0 4.0 0.0 
7 1 82.7 11.2 0.0 93.1 12.6 0.4 

H A Y E S  1 3 68.6 26.5 0.0 64.7 25.0 0.0 
2 3 64.7 25.0 1.5 62.7 24.2 0.7 
3 3 100.0 22.7 0.0 100.0 22.7 0.0 

IRIS  s 1 100.0 33.3 0.0 100.0 33.3 0.0 
v 1 94.0 31.3 0.0 94.0 31.3 0.1 
i 1 88.0 29.3 0.0 90.0 30.0 0.1 

PIMA 0 2 52.2 33.9 2.8 54.8 35.6 2.9 
1 1 20.5 7.2 0.6 29.8 10.4 1.5 

As d i s a d v a n t a g e s ,  our  too l  has  t h e  h a n d i c a p  of  t h e  evolu-  
t i o n a r y  c o m p u t a t i o n :  h igh  c o m p u t a t i o n a l  cost .  However ,  in  
th i s  case t h e  r e su l t s  show t h a t  in r e l a t i ve ly  few genera t ions ,  
t h e  found  reg ions  a re  suf f ic ient ly  val id .  I t  is neces sa ry  to  
know t h a t  t h e  f inal  p u r p o s e  of our  tool  is no t  a c lass i f ica t ion  
s y s t e m  t h a t  o p t i m i z e s  t h e  e r ror  r a t e ,  s ince  t h e  p u r p o s e  is to  
f ind q u a l i t a t i v e l y  i n t e r e s t i n g  regions .  

Tab le  3 shows t h e  f u n d a m e n t a l  p a r a m e t e r s  a n d  t h e i r  de-  
fau l t s  va lues  u sed  to  i n d u c e  the  p rev ious  resu l t s .  

5. C O N C L U S I O N  
In this paper, we present a new supervised learning tool 

into DM field. The main objective is to induce a set of 
rules (knowledge) about qualitative interesting regions on a 
database. These rules are easier to interpret for a human 
expert because they are shown via three formats: quantita- 
tive, qualitative and parallel coordinate systems. Further- 
more, this tool permits humans experts interaction by the 
definition of parameters in the learning process. 

Analyzing the previous section, it can be deduced that 
E L L I P S E S  is n o t  a c lass i f i ca t ion  sy s t em,  s ince  t h e i r  m a i n  
o b j e c t i v e  is no t  to  o p t i m i z e  t h e  er ror  r a t e .  T h u s ,  t h e  ob- 
t a i n e d  re su l t s  axe n o t  t h e  s a m e  t h a t  t h e  r e su l t s  of a classifi-  
ca t ion  s y s t e m ,  as C4.5. Bu t ,  w i t h o u t  any  d o u b t ,  ana lyz ing  
also t he  r e su l t s  in t a b l e  2, we can  conc lude  t h a t  E L L I P S E S  
ac ts  as  a c lass i f ica t ion  s y s t e m  when  t h e  o b j e c t i v e  is to  f ind  
t h e  m o s t  i n t e r e s t i n g  regions ,  r a t h e r  t h e  ru les  t h a t  d e t e r m i n e  

P a r a m e t e r  D e f a u l t  va lue  
A L P H A  10.0% 
B E T A  90.0% 
I T E R  10 
n u m  G e n e r a t i o n s  200 
h u m  I n d i v i d u a l s  200 
% selected individuMs 10% 
P r o b a b i l i t y  of  c rossover  50% 
P r o b a b i l i t y  of  m u t a t i o n s  33% 
Percentage of mutation 70% 

reg ions  w i t h  an  i n t e r e s t i n g  v o l u m e  of  i t ems .  
S u m m a r i z i n g ,  our  too l  offers t h e  h u m a n  i n t e r a c t i o n  in t h e  

l e a r n i n g  process ,  two  m o d e l s  of  ru les :  q u a n t i t a t i v e  a n d  qua l -  
i t a t i ve ,  a n d  a v i sua l i z a t i on  b y  p a r a l l e l  c o o r d i n a t e  s y s t e m s ,  
so we can  c o n c l u d e  t h a t  i t  is an  exce l l en t  t oo l  in d a t a  m i n i n g  
field.  
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