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ABSTRACT

In this paper, we offer a new method to induce interest-
ing knowledge from the relevant sets of data in databases
for supervised learning. Thus, in this work, ELLIPSES is
presented as a new method oriented to discover knowledge
according to the expert’s needs, by the detection of the most
significant regions. The method essence is found in an evolu-
tionary algorithm that finds these regions one after another.
The expert decides which regions are significant and deter-
mines the stop criterion. The extracted knowledge is offered
through two types of rules: Quantitative and Qualitative.
The tool also offers a visualization of ¢ach rule by parallel
coordinate systems. The ELLIPSES results are compared
with C4.5 on UCI Repository datasets.
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1. INTRODUCTION

Nowadays, generally, the Knowledge Discovery in Data-
bases (KDD) and, particularly, Data Mining (DM) have
spurred a tremendous interest in the researchers commu-
nity [1]. News algorithms and tools have been developed to
Data Analysis (DA). Classification is an useful technique for
discovering interesting rules in databases.

Classification systems are supervised learning methods
that analyze a database or training set to build a classifica-
tion model. The training set contains a feature collection,
or object attributes whose class labels are known. The clas-
sification model is a set of rules for each class based on the
data characteristics. Such rules are used to classify future
objects according to the value of their attributes.

These methods are very useful and features have been jus-
tified with tools that have shown excellent results. But these
techniques have some problems: they do not allow expert’s
intervention for learning process. So, classification systems
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normally generate a big number of rules whose interpreta-
tions are difficult. In these cases, the results are useless
for an human-expert. Thus, it is necessary to include other
techniques because the DA system main feature is to offer
an easy interpretation of induced knowledge.

This paper presents ELLIPSES, a tool that permits to in-
duce a set of classification rules in numerical attribute space
[9][2]. These rules determine the most significant regions of
the search space, they are a easy interpretation and the ex-
pert can also control the learning process, establishing when
a region is interesting and the stop criterion.

Regions searching process is made by an evolutionary al-
gorithm whose result interpretation is given by ELLIPSES
through two rule models: quantitative and qualitative. It
also offers a view of them using parallel coordinate systems
so the relationship among attributes is shown by an image
for each rule.

The rest of the paper is organized as follow. The mathe-
matical preliminaries are presented in section 2. Then, sec-
tion 3 describes ELLIPSES algorithm. And, in section 4 is
shown the performance of our tool. This section offers the
experimental results on Iris dataset and a comparison with
C4.5 [13] on UCI Repository datasets [12]. The objective of
this comparison is to offer a nexus between the classification
systems and our tool, since our tool is not really a classifica-
tion system. Finally, section 5 offers the conclusions about
this method.

2. PRELIMINARIES

Our method uses conical regions to find the most signifi-
cant rules. These regions contain the features of each class.
This section offers the basic definitions of the models of rules
used in our tool.

Definition 1. Let be an hyperellipse the natural exten-
sion of an ellipse in a d-dimensional space R%.

Definition 2. Let be an hyperellipsoide the volume that
is inside of an hyperellipse.

An hyperellipse (the wrapper) is equal to an ellipses or
circumference in a two-dimensional space R%. An hyper-
ellipsoide (the wrapped volume) is equal to an ellipsoid or
circle in a two-dimensional space R2. Figure 1 offers a graph-
ical representation of these concepts. Figure 1a) represents
an ellipse of center (c1,cz), greater axis o; and smaller axis
a; to two attributes z, and z, (two-dimensional space R?)
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a)

Figure 1: Graphical representation of an ellipse.

and figure 1b) shows an hyperellipse to three attributes z;,
z3 and r3 (three-dimensional space R?).
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The equation of the ellipse in R? is shown in 1. The equa-
tion of an ellipsoide is shown in 2. This equation is obtained
changing = by < in the equation of the associated ellipses.
Generalizing, in R?, the equation of an hyperellipsoide is
shown in 3.

If z1(c1,a1) and ... and za(ca, ad) = C; (4)
Large if a; > 40% Az
MLarge if 20%A: < a; < 0% Az
h(zi,a;) = { Medium if 15%A; < a; < 25%Az (5)

MShort if 5% Az < a; < 15%A:
Short if a; < 5%A.

If z1(c1) width Ey and ... and z4(cq) width E, = C; (6)

The models of the rules (quantitative and qualitative)
used in our tool are based on 1, 2 and 3. Thus, the quan-
titative model is obtained directly by the equation of the
ellipse. This model is shown in 4 and it offers the central c;
value and the extent (width) a; for each attribute, and the
associated class C;. The qualitative model uses five labels
to specify the extent. For each attribute z;, a E; label is
generated by h(z:,a;) function, according to 5, where A is
TiM — Tim, Tism 18 the maximum and z;,, the minimum for
z; attribute. The qualitative model is shown in 6, The in-
terpretation of these models of rule is very intuitive because
the rule does not differ from the typical classification rules.
Thus, let be ¢ : (y1,¥2, -.; Yn), if yi € [Z: — a4, T: + a:]Vi then
the item ¢ is associated with the class C:, according to 4.
In the qualitative model, the label establishes the difference
between y; and z;.

The method used to obtain the class C; of an hyperellip-
soide will be presented in the next sections, but this section
offers the basic idea. Let be t : (z1, za, ..., za, C;) item, if i
satisfies the equation 3 then the item is within the volume
of the hyperellipsoide. Thus, the majority class within the
hyperellipses is the associated class to it.
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ELLIPSES Algorithm

1. T ¢« Read Training set

2.  Repeat

3. iter < iter 4+ 1

4. P; « Inicialice population on T

5. Repeat

6. Evaluate P; on T

7. Select the best in P; to Py

8. Select 10% in P; to Piy,

9. Crossover P; individuals to P4
10. Mutate Piyi

11. Py, is P;

12. Until number generations

13. r + Select the best of P;

14. if alpha(r)>ALPHA THEN add(R, r)
15.  Until (iter=ITER or beta(R)>BETA)

16. Show R rules

17.  Visualization R. by Parallel Coordinates
END.

Figure 2: ELLIPSES Algorithm

3. ELLIPSES ALGORITHM

The main objective of our tool is to induce the search
space regions with a greater number of the items belonging
to the same class and to permit the human-expert interac-
tion in order to establish some criteria for the search process.
The final result shows a reduced and easily interpretable set
of rules. ELLIPSES is a DA tool based on Evolutionary
Algorithm (EA) [5][6][11]. EAs are a heuristic search tech-
nique that has demonstrated to be robust for a variety of
complex search space [4](14].

The technique maintains a population of individuals where
each individual encodes a feasible solution to the problem.
Iteratively, a new population is generated by replacing the
previous population, according to Darwin's survival prin-
ciple. So, each individual is evaluated to give its relative
merit (fitness) as a solution. The new populations result
from selection, crossover and mutation of previous popula-
tions. The evolutionary process is iterated by a predefined
number of generations. The best individual of the evolu-
tionary process is the solution of the algorithm

The EA has been used with excellent results [3](8]{10]. In
our method, a region is a conical surface. An EA is used
to obtain the best regions. Figure 2 shows the ELLIPSES
algorithm.

Iteratively, the EA finds the best hyperellipse r based
on the number of positive and negative iterns in the hy-
perellipsoide. Let be alpha(r) the percentage of the same
class items in r, if alpha(r) is greater than the predefined
human-expert percentage ALPH A, then region r is consid-
ered. This process is repeated until reaching a predefined
human-expert number of rules or predefined human-expert
percentage BET A. Finally, the rules are shown according
to 4 and 6 (quantitative and qualitative models), and they
are shown by parallel coordinate systems.

3.1 Data structure of the individuals

An individual (a feasible solution) is a set I ={c,...,ca,
ai,...,az} where d is the number of attributes and ci,a; €
R are the center and extent of the z; attribute and they
represent the equation of an hyperellipsoide according to 3.
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Figure 3: Representation of an individual.

Figure 3 shows a graphical representation of the individuals.

In practice, an individual represents a search space region.
Each region will be associated to a class that will be deduced
by the majority class of the data items in the hyperellipsoide.

3.2 Initial and next population

The process to generate the initial population consists in
selecting, in a random way, each center c; from the attributes
range =i ([Tim,Zim]) and each extent a; between 5% and
30% of the attributes range z;.

The evolutionary process includes elitist: the best individ-
ual of every generation is replicated to the next one. Indi-
viduals are obtained through the copies of the previous pop-
ulation. These individuals are randomly and proportionally
selected to their relative merit as a solution (fitness). The
population remaining is formed through crossovers. After-
wards, mutation is applied depending on a probability.

3.3 Fitness function

The fitness (or merit as a solution) of an individual is
obtained by training set item analysis. An item can be in
or out of the hyperellipse. The out items are ignored. The
different classes of the items in the hyperellipse are counted
and the associated class to the individual is the majority
class. Thus, the items with the same class are positive cases
and the items with different classes are negative cases.

Furthermore, next iteration must direct the evolutionary
process to other regions. Thus, the positive cases covered by
discovered rules are considered covered cases. Finally, our
method needs to obtain the greatest region. Thus, the am-
plitude of the hyperellipse is the hyperellipse volume divide
by search spaces volume.

f(i) = Pos(i) — Neg(i) — Cover(i) * FC + Ampl(i) (7)

Our algorithm maximizes the fitness function f for each
individual 7. The fitness function is given in 7, where Pos(i)
and Neg(i) are the positive and negative cases in the hyper-
elipsoide that represent the individual i, Cover(z) are the
covered cases by previous hyperellipses, FC is the coverture
factor and Ampl () is the hyperellipse amplitude. Coverture
factor (F'C) is a value in the interval [0..1], and it offers the
possibility of relaxing the covered cases, so, if F'C is closed
to 1, then the covered cases are considered negative cases,
and if FC is closed to 0, then the covered cases are ignored.

3.4 Genetic operators

There are tree genetic operators: selection, crossover and
mutation. To form a new population (the next generation),
the individuals are selected according to their fitness by the

‘selection operator. Many selection procedures are currently
in use, our algorithm uses roulette wheel procedure, where
individuals are selected with a proportional probability to
their relative fitness. This ensures that an individual is cho-
sen in a expected number of times approximately propor-
tional to its relative performance in the population. Thus,
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Figure 5: The uniform crossover operator.
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high-fitness (good) individuals stand a better chance of se-
lecting, while low-fitness individuals are more likely to dis-
appear.

Selection cannot introduce any new individuals into the
population. These individuals are generated through cross-
over and mutation operators. Crossover operator is per-
formed by selecting two individuals called parents, and gen-
erating new individuals called offspring. In our algorithm,
the crossover operator has two components: the middle point
crossover and the uniform crossover. They are performed
with a probability p.ross that chooses between the middle
point crossover and the uniform crossover. The middle point
crossover randomly splits the individuals in two parts. Then
the fragments are exchanged generating two new individu-
als. Figure 4 graphically shows this process. The uniform
crossover decides , independently for each coefficient of an
individual, whether it contribute or not to the new individ-
unal. An example of this procedure is shown in figure 5.

(8)

Finally, the mutation operator is introduced to prevent
premature convergence to local optimum by randomly sam-
pling new points in the search space. Three variants are
implemented: center mutation, amplitude mutation and ex-
treme mutation. Mutation is performed with probability
Pmut on an individual. When an individual must be mu-
tated, a probability chooses between the different operators.
The center and amplitude mutation operators alter the cen-
ter (c1,...,cqs) and the extent (ai, ..., @as) of the hyperellipse,
respectively, according to 8, where v;; is the factor to alter,
Quant and PerMut take their values from [0..1], Quant is
the random quantity that v;; is altered and PerMut is the
percentage of mutation that determines how the mutation
influence on v;;. The extreme mutation operator alters both
center (c;) and extent (a;) of an attribute (z:). Thus, the
mutation let the middle value of z;»m — Tim to ¢; and let
HM-Zim to a;. The objective of this operator is to caver
the attribute.

Vij; = vi; £ Quant * PerMut * v;;

3.5 Parallel coordinate systems

Although our tool offers two models of rules and the qual-
itative model is easily interpreted, sometimes it is necessary
to provide the information using another philosophy. Thus,
a visualization of the relationships among the attributes of-
fers a good support to the expert. The visualization tech-
nique used in our algorithm is shown in this section. This
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Figure 6: Parallel Coordinate Systems.

technique offers the relationships among attributes by par-
allel coordinates [7).

A parallel coordinate system is composed by a set of paral-
lel axes separated by a fixed distance. Each axis corresponds
with an attribute and they are escalated on the range of the
attribute. Thus, d axes are necessary to represent d at-
tributes. In this system, a line represents each data item.
This line intersects with each axis on the value of the item
for that attribute. Figure 6a) shows the traditional parallel
coordinate system.

In our method, each region is represented on a parallel
coordinate system. But, all data items in a region are not
represented on parallel coordinate system. Thus, only the
minimal value and the maximal value, for each attribute, are
represented on each axis and these values are joined by filled
polygonal. Figure 6b) offers an example of this method. The
internal lines are eliminated. The objective of this variant
is to offer a clearer and compact vision of the relationships
between the attributes.

4. RESULTS

In order to evaluate the performance of our tool this sec-
tion offers the results on UCI Repository datasets [12]. Thus,
it shows the obtained rules and their visualization on parallel
coordinate systems on the tradicinal Iris dataset in section

4.1. Furthermore, section 4.2 offers a comparison between
ELLISPES and C4.5.

4.1 Iris dataset
To illustrate the results induced by ELLIPSES, this sec-

tion offers the results that has been discovered on Iris dataset.

If pw(0.3,0.67) = Set.(50/0/0)(33%)
If pw(2.5,0.73) = Vir.(45/1/0)(30%) @)
IF pl(3.9,0.94) = Ver.(46/3/0)(31%)

If pw(0.3) width MLARGE = Set.(50/0/0)
If pw(2.5) width MLARGE = Vir.(45/1/0)  (10)
If pI(3.9) width MEDIUM = Ver.(46/3/0)

The quantitative model of the rules is shown in 9. The
interpretation is very intuitive although this is the quanti-
tative model. So, for example, the first rule shows that if
the pw (petal width) attribute is round of 0.3 with an ex-
tent of & 0.67 then the obtained class is Iris-Setosa. The
qualitative model is shown in 9. This model uses a label to
represent the amplitude. This label offers qualitative infor-
mation of the amplitude of the rule on an attribute respect
to the range of the attribute, according to 5. The rules show
the number of positive, negative and covered cases and the
percentage of positive cases.

g8 sw pl pw 8 sw pl pw E sw pl pw

Setosa Virginica

Versicolor

Figure 7: Iris Dataset Visualization.

The visualization of this rules by paralle] coordinate sys-
tems is shown in figure 7. This representation offers a graph-
ical description of the previous rules. For example, it shows
the following: if pw takes short values the class is Iris-setosa,
if pw takes high values then the class is Iris-Virginica and,
in other case, if pl takes middle values then the class is Iris-
Versicolor. This visualization offers a very intuitive and easy
interpretation of the rules.

4,2 ELLIPSES vs C4.5: A comparison

This section offers a comparison of the results of EL-
LIPSES versus C4.5. Though ELLIPSES is not a classi-
fication system, a method is presented in order to evaluate
our tool. This method compares the results obtained by EL-
LIPSES with the results obtained by C4.5 on six UCI Repos-
itory datasets. The features of these datasets are shown in
table 1.

For this, it offers a comparison based on the number of
rules obtained by ELLIPSES. Thus, table 2 shows the per-
centage of positive cases of each class (column %cls), the
percentage of positive cases on the total (column %ttal) and
the percentage of negative cases or error rate (column %er).
As C4.5 is a classification system, it finds more rules than
our tool thus the most meaningful rules (column r) are only
used in the comparison. The rules that more items collect
are the most meaningful rules.

To clarify the content of table 2, we offer an explanation
of the results on PIMA dataset. This dataset has 768 items,
8 attributes and two class denoted with 0 and 1, as table 1
shows. ELLIPSES induces two rules for the class 0. These
rules cover 52.2% of the items of the 0 class, this is 33.9%
on all items and the percentage of error is 2.8%.

C4.5 induces 15 rules for class 0. In this comparison the
two rules that cover more items are considered. The two
most meaningful rules cover 54.8% of the items of the 0
class, 35.6% of all items and the percentage of error is 2.9%.
In a same way, ELLIPSES induces a rule for class 1 that
covers 20.5% of the class, 7.2% of all items and 0.6% error.
C4.5 induce 7 rules where the most meaningful rule covers
29.8% of the class, 10.4% of all items and 1.5% error.

The previous results show that the accuracy of the classi-
fication in both methods is very similar, although the most
significant rules are only used. Furthermore, the rate of
error is lightly inferior in ELLIPSES. These results deter-
mine that ELLIPSES is a good tool to obtain interesting
rules (regions). Furthermore, ELLIPSES has other advan-
tage: "human expert’s interaction”. Thus, human experts
can determine the number, the support and the confidence
of the rules. That is to say, they determine the importance
of the regions.
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Table 1: UCI Repository Datasets

Datasets F#Items FAtt. F#H#Class Class
BCW 699 10 2 2,4
BUPA 345 6 2 1,2
GLASS 214 9 7 1,2,3,5,6,7
HAYES 132 5 3 1,2,3
IRIS 150 4 3 s,v,i
PIMA 768 8 2 0,1

Table 2: ELLIPSES vs. C4.5: A Comparison

ELLIPSES C4.5
c r %%cls %ttal %er Ycls %ttal Yeer
BCW 2 1 90.1 59.1 0.2 81.0 53.0 01
4 1 71.4 24.6 0.4 67.6 233 0.3
BUPA 1 3 32.4 13.6 11 36.5 15.3 14
2 5 40.0 23.1 0.2 74.5 43.1 11.8
GLASS 1 3 81.4 26.6 04 78.5 25.7 04
2 3 64.4 22.8 2.8 64.4 22.8 3.2
3 2 64.7 5.1 0.4 47.0 3.7 0.0
5 1 76.9 4.6 0.4 92.3 5.6 0.4
6 1 66.6 2.8 0.0 100.0 4.0 0.0
7 1 82.7 11.2 0.0 93.1 12.6 0.4
HAYES 1 3 68.6 26.5 0.0 64.7 25.0 0.0
2 3 64.7 25.0 1.5 62.7 24.2 0.7
J 3 1000 22.7 0.0 100.0 22.7 0.G
IRIS s 1 100.0 33.3 0.0 100.0 33.3 0.0
v 1 94.0 31.3 0.0 94.0 31.3 0.1
i 1 88.0 29.3 0.0 90.0 30.0 0.1
PIMA 0 2 52.2 33.9 28 54.8 35.6 2.9
1 1 20.5 7.2 0.6 29.8 10.4 15

As disadvantages, our tool has the handicap of the evolu-
tionary computation: high computational cost. However, in
this case the results show that in relatively few generations,
the found regions are sufficiently valid. It is necessary to
koow that the final purpose of our tool is not a classification
system that optimizes the error rate, since the purpose is to
find qualitatively interesting regions.

Table 3 shows the fundamental parameters and their de-
faults values used to induce the previous results.

5. CONCLUSION

In this paper, we present a new supervised learning tool
into DM field. The main objective is to induce a set of
rules (knowledge) about qualitative interesting regions on a
database. These rules are easier to interpret for a human
expert because they are shown via three formats: quantita-
tive, qualitative and parallel coordinate systems. Further-
more, this tool permits humans experts interaction by the
definition of parameters in the learning process.

Analyzing the previous section, it can be deduced that
ELLIPSES is not a classification system, since their main
objective is not to optimize the error rate. Thus, the ob-
tained results are not the same that the results of a classifi-
cation system, as C4.5. But, without any doubt, analyzing
also the results in table 2, we can conclude that ELLIPSES
acts as a classification system when the objective is to find
the most interesting regions, rather the rules that determine
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Table 3: Parameters and default values

Parameter Default value
ALPHA 10.0%
BETA 90.0%
ITER 10

num Generations 200
num Individuals 200

% selected individuals 10%
Probability of crossover 50%
Probability of mutations 3%
Percentage of mutation 70%

regions with an interesting volume of items.

Summarizing, our tool offers the human interaction in the
learning process, two models of rules: quantitative and qual-
itative, and a visualization by parallel coordinate systems,
so we can conclude that it is an excellent tool in data mining
field.
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