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Abstract. This article describes a new system for learning rules using
rotated hyperboxes as individuals of a genetic algorithm (GA). Our
method attempts to find out hyperboxes at any orientation by
combining deterministic hill-climbing with GA. Standard techniques,
such as C4.5, use hyperboxes that are aligned with the coordinate axes.
The system uses the decision queue (DQ) as method of representing the
rule set. It means that the obtained rules must be applied in specific order,
that is, an example will be classify by the i-rule only if it doesn’t satisfy
the condition part of the i-1 previous rules. With this policy, the number
of rules is less because the rules could be one inside of another one. We
have tested our system on real data from UCI repository. Moreover, we
have designed some two-dimensional artificial databases to show
graphically the experiments. The results are summarized in the last
section.

1   Introduction

Supervised learning (SL) is used when the data samples have known outcomes that
the user wants to predict. This type of learning is the more common form because
data are usually collected with some outcome in mind. Human problem solving is
normally an exercise in studying input conditions to predict a result based upon
previous experience with similar situations. SL algorithms tend to emulate that sort of
human behavior.

Decision trees (DT) are a particularly useful tool in the context of machine learning
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techniques because they perform classification by a sequence of simple, easy-to-
understand tests whose semantics is intuitively clear to domain experts. Some
techniques, like C4.5, construct decision trees selecting the best attribute by using a
statistical test to determine how well it alone classifies the training examples [9]. This
class of DTs may be called axis-parallel, because the tests at each node are equivalent
to axis-parallel hyperplanes in the space. Others techniques build oblique decision
trees (ODT), as OC1[7], that tests a linear combination of the internal attributes at
each node, for that, these tests are equivalent to hyperplanes at an oblique orientation
to the axes.

At this point, we must remember that, in a domain with N training examples, each

described using a k real-valued attributes, there are at most 2 k N
k







 distinct k-

dimensional oblique splits; however, for axis-parallel splits, there are only
N k× distinct possibilities, for that reason, it could exhaustively search the best split

at each node.
Anyway, to find out the smallest DT (axis-parallel or oblique) is a NP-hard problem

[2]. Both methods use hill-climbing, that is, the algorithm never backtracks; therefore,
it could be converging to locally optimal solutions that are not globally optimal.

Simpson [12] introduced the idea of using hyperboxes to cluster or classify spatial
data. Each hyperbox is viewed as a fuzzy cluster, a fuzzy set in which all of the
elements within the hyperbox have membership 1.0 for being in that set, and elements
outside the hyperbox can have a positive membership in the set depending on a fuzzy
membership rule for that set. Simpson used a deterministic procedure to place and
appropriately size hyperboxes to describe data. Hyperboxes were created and sized by
considering the data in an ordered sequence. A hyperbox was placed around
preliminary data. As subsequent data was added, either the present hyperbox was
grown to include the new data, or a new hyperbox was added and the process
continued. This procedure was of limited efficacy because it required trial-and-error
setting of operator parameters and the final solution depended on the order of
presentation of the data, even when the data possessed only spatial an not sequential
characteristics. Fogel and Simpson used evolutionary programming to optimize the
position of hyperboxes to cluster data in light of a minimum description length
criterion (MDL). First, the experiments were restricted to evolving hyperboxes that
were aligned with coordinate axes; and afterwards, they included the capability to
rotate the hyperboxes. At this point, it is important to note that Fogel's method try to
solve the clustering problem, that is, unsupervised learning.

Genetic algorithms (GA) employ a randomized search method to seed a maximally
fit hypothesis [3, 4]. This search is quite different from other learning methods, like
mentioned above. The GA search can move much more abruptly, replacing a parent
hypothesis by an offspring less likely to fall into the same kind of local minima that
can happen with the other methods.

In previous works, we presented a system to classify databases by using hyperboxes
(axis-parallel). This system used a GA to search the best solutions and produced a
hierarchical set of rules. The hierarchy means that an example will be classify by the
i-rule if it does not satisfy the conditions of the i-1 precedent rules. The rules are
sequentially obtained until the space is totally covered. The behavior is similar to a
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queue, for that reason we have called decision queue (DQ) to the produced rule set.
This concept is based on the k-DL, the set of decision lists with conjuntive clauses of
size at most k at each decision [11]. A decision list is a list L of pairs where each fj is
a term in n

kC , each vi is a value in {0,1}, and the last function fr is the constant
function true.

),(),...,,( 11 rr vfvf     (1)

A decision list L defines a boolean function as follows: for any assignment x∈ Xn,
L(x) is defined to be equal to vj where j is the least index such that fj(x)=1 (such an
item always exists, since the last function is always true).

DQ is based on DL. Really, DQ is a DL-generalization because it permits
codifying functions fi of continuous attributes and the values vi can belong to any set.

Futhermore, DQ does not have the last constant function true. However, we could
interpret that last function as unknown function, that is, we do not know to which
class the example belongs to. Therefore, it may be advisable to say "unknown class"
instead of taking an erroneous decision.

In the sense mentioned above, our system has a measure, called unknowledge, to
indicate how many test examples have not an associated class. As the number of rules
or the allowed error rate (relaxing coefficient) can be given by the domain expert,
some unnecessary mistakes could be avoided if the rule set does not assign to the test
example a class. Incrementing the relaxing coefficient the unknowledge will be less,
but the number of misclassified examples will be higher. The expert, based on
experimentation, must determine such parameter.

Fig. 1. Rotated versus axis-parallel hyperboxes.

In this paper, we propose to hold the primitive structure of our early works [1,10],
but changing the shapes that models the search space. That is to say, current work
extends these previous efforts by including the capability to rotate the hyperboxes.

We show in figure 1 an example, in which rotated hyperboxes can find out better
solutions than axis-parallel hyperboxes they do. Decision queue policy is applied in
order to reduce the number of rules.
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With this DQ-method, there is no problem if the regions are overlapped. An extreme
case is presented in the next figure.

Fig. 2. Decision queues for overlapped regions.

In the other hand, if we use axis-parallel techniques, the number of rules is very
high. When does it apply one technique or the other one? In principle, it is not
possible to know it, but it could be a good solution to explore the search space with
axis-parallel and, increasingly, to try to rotate the best solutions.

Fig. 3. Axis-parallel solution to the figure 2.

The number of rules, in figure 3, is very high. The numbers represents parts of the
regions found out by using rotated hyperboxes, as shows figure 2.

2   Description

2.1   Environment

In order to apply GAs to a learning problem, we need to select an internal
representation of the space to be searched and define an external function that assigns
fitness to candidate solutions. Both components are critical to the successful
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application of the GAs to the problem of interest. Information of the environment
comes from a data file, where each example has a class and a number of attributes.
The GA uses real codification; that is, an individual is formed by an n-tuple of real. If
k is the dimension, an individual has exactly 3 × k  values: 2 × k  for the boundaries
of each dimension; k −1  for the angles of rotations, in radians, anti-clockwise around
the hyperbox centre; and 1 for the class. The next figure shows a n-tuple:

Fig. 4. Representation of an individual.

where li and ui represent the lower and upper bounds of the individual,
respectively, for every dimension; θi is the rotation angle; and class. In 2-dimension is
possible to put an hyperbox at any orientation by using only one rotation; in k-
dimension it is necessary k-1 rotations.

We consider that an example belongs to the area determined for an individual if it
satisfies its condition part. Thus, let an example be given by Pj=(p1, p2, ..., pk, c) then
it will be into the defined region by the individual (or equivalently, a rule will be
covered by the rule) indh =(l1, u1, l2, u2, ..., lk, uk,θ1,θ2,...,θk-1, class) if rotating the
example P=(p1, p2, ... , pk) with the angles -θ1,-θ2,...,-θk-1 with relation to the centre of
the hyperbox defined by (l1, u1, l2, u2, ... , lk, uk), then the result P’ belongs to this
hyperbox.

Fig. 5. Rotation of R the angle θ is equivalent to rotate P the angle -θ around the centre of R.

For example, in three dimensions the example (p1, p2, p3, c) will be covered by the
rule (l1, u1, l2, u2, l3, u3, θ1, θ2, class) if  P’ satisfies

l p u l p u l p u1 1 1 2 2 2 3 3 3≤ ≤ ∧ ≤ ≤ ∧ ≤ ≤' ' '     (2)

where P’ is obtained as follows:

l l l1 2
u u u1 2 k k

θ 1 θ θ
2 k-1

class

P
P’

θθ
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Let (m1, m2, m3) = ((l1+ u1)/2, (l2+ u2)/2, (l3+ u3)/2) be the centre of the hyperbox
defined by the rule, then the coordinates of P’ are:
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and it will be correctly classify if its class is equal to c.

2.2   Algorithm

The algorithm is a typical sequential covering GA [6]. It chooses the best individual
of the evolutionary process, transforming it into a rule, which is used to eliminate data
from the training file [13]. In this way, the training file is reduced for the following
iteration. A termination criterion could be reached when more examples to cover do
not exist.

The method of generating the initial population consists of randomly selecting for
every individual of the population an example from the training file. After, it is
obtained an interval to which the example belongs adding and subtracting a random
quantity from the values of the example. Moreover, the angles are randomly
generated between zero and π/2. Sometimes, the examples very near to the boundaries
are hard to cover during the evolutionary process. For solving it, the search space is
increased (actually, lower bound is decreased 5%, and upper bound is increased 5%).
For example in 1-dimension, let a and b be the lower and upper bounds of the
attribute; then, the range of the attribute is b-a; now, we randomly choose an example
(x1, class) from the training file; last, a possible individual of the population could be:

),*,*( 2111 classkrangexkrangex +−     (4)

where k1 and k2 are random values belonging to [0,1], and class is the same of that
of the example.

The evolution module includes elitism: the best individual of every generation is
replicated to the next one. A set of children is obtained from copies of the parents,
randomly selecting it, but depending on their fitness values. The remainder is formed
through crossovers. Afterwards, mutation is applied depending on a probability.
Crossovers are specifically designed, choosing a value among one of the three
segments formed inside the interval of the attribute by putting the two values of the
individual as cross points. That is, for every attribute, an individual has two values,
and then those values are partitioning the interval in three segments. We select
randomly a value inside of a segment also randomly chooses. The next figure shows
the procedure:
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Fig. 6. Crossover operator.

One of the three types of crossover operator could be applied, depending on a
probability. The first one is more conservative and second and third ones are more
explorative. When the crossover is applied to any angle location, the first one is
always used.

Mutation is applied in two different ways: if the location corresponds to a value of
the interval, then a quantity is subtracted or added, depending on whether it is the
lower or the upper bound, respectively (the distance actually is the lower euclidean
distance between any two examples); if the location corresponds to an angle, it is
randomly generated another one.

Furthermore, it is advisable to explore the space with the best individual, because
we cannot know what angles are the best, and we cannot either know if an angle is
going to be better than other is. In this way, we are using hill-climbing technique,
what could find out best solutions; despite of inconveniences said in the introduction.
The method consists of exploring close rotated regions with the same centre. The
angles of the exploration belongs to the interval [-π/6,π/6], with an increment of π/30.
Then, every best rule explores the search space with other ten regions around the
same centre for each attribute. However, in order to reach better fitness value, the
interval is also modified the same quantity as mutation used.

To improve the best individual is a difficult task. If the fitness value is better, then
the new angle replaces to the old, and one value of one attribute is modified as
mentioned above. This method allows rotating an hyperbox using only one
dimension. To explore 10 new orientations at the beginning (the first generations) can
produce the typical problems of the hill-climbing methods. For that, we recommend
to use few explorations at the start and increase it toward the final. Thus, the last
generations explore more than the first ones.

We next show an overview of the DQ-Classifier.

While exists examples in training file

Step 1. Initialize population

Step 2. Repeat num_generations times

    m in                m in (a ,b )                  m a x ( a ,b )                   m a x

( 1 )

( 2 )

( 3 )
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Step 2.1. Evaluation

Step 2.2. Select the best

Step 2.3. Replication

Step 2.4. Crossover and Mutation

Step 2.6. Improve the best

Step 3. Put the best one in Decision Queue

Step 4. Eliminate the covered ones by the best one

Fig. 7. Overview of DQ-Classifier.

A possible criterion to implement the mutation operator consists of distinguishing
between mutation of values and mutation of angles, as two independent operators.
Mutation of values could be a higher probability of application than mutation of
angles, and also, to incorporate to the evaluation function the distance from the
individual (rule) to the closer example of the same class. Thus, we can penalty the
rotated rules with wrong angles; that is, the new individual is not going near to the
closer example of the same class.

2.3 Fitness Function

The evolutionary algorithm minimizes the fitness function f for each individual. It is
given by

if  G(i)*RC<=CE(i) then CE(i)=0

f i V
T

G i
CE i

( ) ( )
( )

= +
+1

    (5)

where T is the cardinality of the training file, V is a new factor called coverage (the
rule coverage is the side of a k-dimensional hypercube which volume is equivalent to
the volume of the covered k-dimensional region by the rule); CE(i) is the class errors,
which are produced when the i example belongs to the region defined by the rule, but
it does not the same class; G(i) is the number of goals of the rule; RC is the relaxing
coefficient. Every rule can quickly expands for finding more examples due to V in the
fitness function.

2.4   Relaxing Coefficient

Databases uses as training files have not areas clearly differentiated, for that, to
obtain a rule system totally coherent involves a high number of rules. We show in
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previous paper [1] a system capable of producing a rule set exempt from error rate;
however sometimes, it is interesting to reduce the number of rules for having a rule
set which may be used like a comprehensible linguistic model. When databases
present a distribution of examples very hard to classify, then it is advisable to use a
relaxing coefficient [10]. Many times, we are more interested in understanding the
structure of the databases than in the error rate. In this way, it could be better a system
with less cardinality (despite some errors) than too many rules (with 0% of error rate).
Then, it may be interesting to introduce the relaxing coefficient for understanding the
behavior of databases by decreasing the number of rules. RC indicates what
percentage of examples inside of a rule can have different class to the rule. RC
behaves like the upper bound of the error with respect to the training file, that is, as an
allowed error rate.

To deal efficiently with noise and find a good value for RC, the expert should have
an estimate of the noise percentage in its data.

3   Application

3.1   Ex Profeso Databases

We have designed some databases of varying complexity to show  graphically the
experiments. These databases are shown in the fig. 8. Results are in table 1.

 

Fig. 8.  Ex profeso databases named DB1, DB2 and DB3.

3.2   Databases from UCI Repository

The experiments described in this section are from UCI Repository [7]. We use five
cross validation in all our experiments to estimate classification accuracy. This cross
validation experiment consists of the following steps: randomly divide the data into
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two disjoint partitions (70% an 30%); build a rule set using 70% of data and test the
rule set with 30% of data; for each partitions the number of correct classification of
the rule set are all counted and divided it by the number of instances of the test file to
compute the classification accuracy; the five values are summed and divided by five;
report one hundred minus this accuracy multiplies by 100 and the average of the
number of rules. We have chosen C4.5 to compare the results, also with five
experiments and cross validation which are shown in Table 2.

DATABASE C4.5 DQ-CLASSIFIER-
RH

ERRO
R RATE

NUMBER
OF RULES

ERROR
RATE

NUMBER OF
RULES

DB1(200,2,2) 12.9 17 3.3 3

DB2(200,2,2) 16.25 12.5 2.7 2

DB3(200,2,2) 12.13 11 6.6 3

Table 1.  The results of artificial databases.

DATABASE C4.5 DQ-CLASSIFIER-
RH

ERRO
R RATE

NUMBER
OF RULES

ERROR
RATE

NUMBER OF
RULES

IRIS (150, 4, 3) 6.3 4.4 4.83 3.6

BREAST CANCER (683, 9, 13.8 5.2 5.38 2.2

PIMA (768, 8, 2) 28.4 77.6 26.35 17.4

WINE (178, 13, 3) 7.2 5.0 10.1 6.4

Table 2.  Databases ( number of examples, dimension, number of classes).

It is very important to note that every execution has been realized with a population
of 50 individuals and 50 generations. Very low numbers considering the number of
examples and number of dimensions of the databases.

Decision queue is very relevant in relation to the number of rules.
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4   Conclusions

A supervised learning tool to classify databases with rotated hyperboxes is
presented in this paper. It produces a decision queue where conditions of each rule
indicate if an example belongs to a rotated hyperbox. The number of rules is reduced
with regard to other systems, like C4.5; and improves the flexibility to construct a
classifier varying the relaxing coefficient.
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