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Abstract. The process of determining whether a power system is in 
a secure or insecure state is a crucial task which must be addressed 
on-line in any Energy Management System. In this paper, an Artificial 
Neural Network, capable of accurately identifying the set of harmful 
contingencies, is presented, along with several results obtained from a 
real-size power network. The proposed approach makes use of classical 
numerical techniques to compensate the ANN's inputs so that it can deal 
with topological changes in the power system. 

1 Introduction 

A reliable power system should be operated in a "secure" state, which implies 
that the load is satisfied and no operating limits are violated under present oper­
ating conditions, but also after the occurrence of several unforeseen contingencies 
(e.g., outages of lines, transformers or generators)[l3]. 

The process of determining whether the power system is secure or insecure 
is known as "Static Security Assessment", whose key issues are [2]: 

1. First, a fast identification of the set of dangerous critical contingencies must 
be performed ("Contingency Selection or Screening"). 

2. Next, the impact of the critical contingencies on the power system must be 
evaluated, usually through a post-contingency "Load Flow" routine ("Con­
tingency Analysis"). 

Given this information, a system operator can decide if preventive actions should 
be initiated to mitigate the potential problems. 

A good "Contingency Selection & Analysis" package must be computation­
ally fast and accurate in correctly identifying the harmful contingencies, that is, 
quickly reducing the number of contingencies to be studied in detail by elimi­
nating all the non-critical ones. 
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Several algorithmic techniques have been proposed, most of which are cur­
rently being used in Energy Management Centers, to reduce the number of 
critical contingencies to be studied explicitly in real-time, the most popular be­
ing "Distribution Factors" [12, 9], "Performance Index" [6], and "Approximated 
Load-Flow" [15, 3, 4, 1] methods. In reference [11], a performance evaluation of 
several classical static security algorithms is presented. 

Over the past few years, several approaches using "Artificial Neural Net­
works" (ANN) have been proposed as alternative methods for "Static Security 
Assessment" in power system management, both using supervised and unsu­
pervised architectures [7, 10]. However, both classical and ANN-based methods 
must deal with the following problems: 

The number of possible system configurations (i.e., network topologies) ts 
large. 
The state of every system configuration is typically defined by several hun­
dreds or thousands of line/transformer power flows, along with a similar 
number of electrical bus voltages. 
Each pre-contingency configuration gives rise to a huge number of post­
contingency topologies. 

Perhaps owing to the combinatorial explosion of the number of contingencies 
and variables, almost all ANN applications to "Security Assessment" reported 
in the literature have only been applied to small academic power systems. 

In this article, an ANN intended to carry out a "Contingency Screening" for 
line/transformer overloads is presented and tested on the Andalusian Transmis­
sion Network, composed of about 130 electrical buses (400 and 220 kV buses) 
and 250 lines and transformers. 

The paper is structured as follows: First, an ANN for a specific system topol­
ogy is presented, following the techniques proposed in [5]. Secondly, a hybrid 
approach, which makes use of an ANN along with classical numerical techniques, 
is also presented and tested, showing that it is capable of dealing with several 
pre-contingency topologies by "compensating" the input variables of the ANN. 

2 Scheme 1: ANN Based on Line Power Flows 

The power system for which the NN is intended refers to the Southern Spanish 
Transmission Network, comprising 256 branches (lines/transformers), 130 buses 
and 22 generators (these figures include an equivalent of the external national 
network). 

The ANN adopted is of the multi-layer perceptron (MLP) type, its structure 
being determined by the following considerations: 

As the goal of the ANN is to detect line overloads, it seems intuitive to choose 
the line apparent power flows as input variables. This information is readyly 
available as a byproduct of the state estimator. However, in order to reduce 
the number of inputs as much as possible, a feature selection algorithm, 
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based on the :F index [8, chapter 5], was used to determine which of the 256 
possible power flows were actually significant. As a result, only 54 branch 
power flows were selected. 

- There is no clear guidelines to decide how many neurons should comprise the 
hidden layer. In our case, after several trials, it was decided that 108 hidden 
neurons constitute a good compromise between complexity and performance. 

- Ideally, the ANN should have as many output variables as relevant outages 
we wish to assess. In practice, however, operators are much more interested in 
the consequences of outages affecting the 400 kV transmission lines, because 
they carry huge amounts of power. In this case, 7 out of the 11 400 kV 
internal branches, plus 3 branches of the external network, were monitored. 
In the end, only 9 output variables were adopted, since it was noticed that 
two of the contingencies systematically led to identical results. The output 
values are constrained to the interval [0, 1), a value larger than 0.5 indicating 
that the outage associated with this particular output causes overloading in 
any system component. 

This MLP, whose neurons make use of the sigmoid transfer function, was trained 
by means of the back propagation algorithm. As many as 7 46 network states 
were generated by systematically modifying the load profile and running a load 
flow program. Note that all situations refer to the same base-case topology. 
Two thirds of these states were chosen to train the NN, keeping in mind that 
both secure and insecure states were included in the same proportion, while the 
remaining subset was used in the test phase. 

The performance of the MLP on these test cases was extremely good. There 
were no missed detections and only a single false alarm, which represents an 
error of 0.4% over the entire test set (0.04% when the 10 outputs per case are 
considered). Since the main purpose of the ANN is to detect critical contingen­
cies, which should be subsequently analyzed in detail by a load flow routine, 
the existence of a very small percentage of false alarms is not too important, 
because the consequence of this kind of error is merely a moderate increase in 
the computational cost at the contingency analysis stage. 

Although most of the time all components of the transmission network are 
in service in order to increase the security level, it sometimes happens that a 
particular line or transformer is disconnected owing to periodical maintenance, 
etc. The ANN described above was also tested using a battery of cases in which 
the base-case topology was modified by disconnecting a single element. Accord­
ing to expectations, the percentage of misclassifications largely exceeded 30%, 
because the NN had not been trained with the modified topologies. 

Consequently, a new set of 5861 cases was created comprising 5 different 
topologies in addition to the base-case topology. Four of the new topologies 
differ from the base case in a single element, while the fifth case constitutes 
a rather extreme case in which 3 components are simultaneously disconnected. 
When 2/3 of the whole set of cases are used again to train the NN, only 12 
out of the 1953 test cases led to one or several classification errors, as shown in 
Table 1. 
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Topology 0 3 5 

Case# 1 2 7 9 10 11 12 

False Alarms 0 0 2 1 1 
Missed Detections 6 6 0 0 0 

Table 1. Statistics corresponding to the 12 cases containing one or several wrong 
outputs. 

The following comments are in order regarding these results: 

- The NN gives now 2 false alarms, instead of 1, for the base-case topology 
(labeled 0 in Table 1). This performance deterioration is caused by the new 
learning process, aimed at tuning the NN to 5 additional topologies. 
The 2 missed detections corresponding to topology #1 could have been 
avoided with a more conservative threshold (the value of the 2 affected out­
puts was 0.48 while the threshold was 0.5). However, this solution would 
lead to extra false alarms. 
As expected, the worst results were obtained with the fifth topology, which 
significantly departs from the base case ( 3 elements are disconnected). No 
errors appear with topologies 2 and 4. 
Overall, taking into account that each of the 1953 test cases provides in­
formation about 10 different contingencies, the 12 false alarms and the 14 
missed detections summarized in Table 1 represent only 0.06% and 0.07% 
respectively of the whole set of NN outputs. This performance is better than 
the one obtained with conventional contingency screening techniques, based 
on distribution factors or incremental load-flow models [11]. 

3 Scheme 2: ANN Based on Bus Power Injections 

Although the results presented in the previous section are promising, it should be 
remembered that the NN was trained by means of only 6 different topologies to 
detect the overloads caused by just 10 contingencies. It would be quite difficult, 
if not impossible, to develop a single NN capable of recognizing any conceiv­
able network topology and providing an output for every branch and generator 
outage, at least for realistic networks. 

In an attempt to somehow elude the dependence on network topology and 
on the particular contingency being studied, a NN based on bus power injec­
tions has been developed and tested. As discussed in [8, chapter 9], power flows 
contain implicit information on the topology of the network, but the dimension 
of the power injection vector is smaller and the absence of input redundancy is 
guaranteed. 

The basic idea behind the new NN is that both what makes the current 
topology different from the base case and the information on the particular con­
tingency being studied, can be approximately represented by properly modifying 
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the injection vector, much in the same way as compensation techiques [14] are 
applied in conventional methods to deal with localized network changes. 

Again, the MLP type was adopted but, according to the new operating prin­
ciples, its structure is as follows: 

- The output layer comprises a single neuron whose output provides the same 
information as before, i.e., a value higher than 0.5 indicates that at least 
one branch is overloaded. This means that the NN must be resorted to every 
time a particular contingency has to be studied, unlike in the previous scheme 
where a single pass provided all outputs corresponding to the reduced set of 
contingencies for which the NN had been trained. 

- The input buffer, as stated earlier, contains as many elements as the number 
of buses, plus an extra element representing the total demand. The precise 
meaning of these inputs will be explained below. 

- The number of neurons comprising the hidden layer has been chosen in 
acordance with the number of network branches. A similar choice was made 
in [8], where 36 neurons were found optimal for a 35-branch network. 

This time, the transfer function adopted is the hyperbolic tangent and the 
learning process is based on a modification of the cumulative back propagation 
rule known as the "Normalized-Cumulative-Delta Learning Rule". 

The values fed into the NN inputs depend on the case in hand. Both in the 
learning and test phases the NN is used as if the network topology was always 
that of the base case. Consequently, when we are dealing with any base-case 
load profile, the NN is trained and tested by simply setting every input value to 
the net active power injection of the respective bus, normalized with the total 
demand. If we are interested in the outage of a branch carrying a certain active 
power flow from bus i to j, this flow must first be added to and substracted 
from the injection at buses i and j respectively, before resorting to the NN. 
This modification of the involved power injections is not intended to accurately 
compensate for the outaged branch, but as a simple means of informing the 
NN that there has been a change with respect to the base case affecting the 
two buses. When the topology of the current network state differs from that of 
the base case, the missing element is first identified (owing to security reasons, 
it is very unlikely that several components are simultaneously disconnected at 
the high-voltage levels). Then, a load flow program is run to find the power 
flows that would exist if the disconnected element was in service (the overhead 
caused by this numerical step is still modest compared to the cost of the overall 
process). From this step on, the way of proceeding is similar to the one explained 
above, except for the fact that the adjacent injections of both the voluntarily 
disconnected and the outaged branches must be properly modified. 

The role played by the ANN in the contingency selection phase of the whole 
security assessment process is shown in figure 1. 

In order to assess the efectiveness of this alternative approach, the same 
transmission network of section 2 has been used. In this case, the network is 
composed of 123 buses and 227 branches, and the total load amounts to 5711 
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Yes 

I No 

-Add the missing element(s) 
-Run a Load Flow 
-Find branch power flows 
-Compensate the respective injections 

for the missing element(s) 

L--------------------> 

,---------> Loop over every contingency 

No 

Compensate the a<ljacent injections 
for the outaged branch power flow 

-Feed the injections to the ANN 

exceeded? 

-Add the current contingency 
to the list of critical cases 

'----------------> I 
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Run a Load Flow for 

every critical contingency 

I 
~ 

Fig. 1. Flow diagram of the hybrid security assessment approach. 
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MW (this state corresponds to a snapshot saved on April 27, 1994 during the 
peak load situation). Excluding radial and external branches, a total of 110 con­
tingencies are of interest (in this study, only branch outages will be considered, 
but generator outages could be very easily included since they do not involve 
topology changes). By linearly decreasing the load demand, and by resorting 
to an optimal power flow to find reasonable generation patterns, 18 additional 
states were obtained. Each of the resulting states, combined with all possible 
branch outages, yield a total of 2109 cases (19 · 111) which were used to train 
the NN. After the training process, that took 42500 iterations, the training set 
was aplied again to the NN resulting in 3 false alarmas (0.14%) and no missed 
detections. This means that only 3 extra cases would have to be numerically 
analyzed in addition to the 327 contingencies which are truly critical. Note that 
all cases belonging to the training set referred to contingencies affecting the same 
base-case topology. 

The test set was generated intentionally from 8 different topologies for which 
the NN had not been previously trained. These alternative topologies were ob­
tained from the base case by disconnecting a single line or transformer. In ad­
dition, 4 different loading levels were considered for every topology. Combining 
the 32 resulting states with all possible contingencies, and discarding a few in­
feasible situations, a total of 3472 test cases were applied to the NN, of which 
725 corresponded to critical contingencies. The MLP response included a single 
missed detection and 146 false alarms (4.2%). The missed detection turned out 
to be irrelevant in practice, because the only overload detected referred to a line 
carrying 190.8 MW. whose rating was 189 MW. The relatively high proportion of 
false alarms suggests that a more accurate way of modeling topological changes 
should be devised. However, thanks to the use of an ANN that was just trained 
with the base-case topology, the load flow program had to be run only 871 times, 
out of the 3472 tested cases, which means a saving of 75% in the computational 
effort. 

4 Conclusions 

In this paper, the potential application of a MLP to the screening phase of secu­
rity assessment is explored in the context of realistically sized power transmission 
systems. Firstly, an ANN based on a selected subset of branch power flows is 
developed, which is capable of simultaneously dealing with a reduced number of 
major contingencies. Although the performance obtained with this approach is 
acceptable, its generalization to all possible contingencies and network topolo­
gies is not trivial. Secondly, an alternative scheme is proposed based on bus 
power injections, which must be properly modified to account for topological 
modifications and/or outaged branches. This generalized approach has shown 
to perform satisfactorily so long as the input topology is close enough to the 
base-case topology used in the training phase, which is usually the case. Further 
research efforts should be directed to devise more accurate ways of compensating 
power injections for topological changes. 
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