On Catalytic P Systems with One Catalyst

Dragos Sburlan

Faculty of Mathematics and Informatics
Ovidius University of Constanta, Romania
dsburlan@univ-ovidius.ro

Summary. In this paper we address the possibility of studying the computational ca-
pabilities of catalytic P systems with one catalyst by the means of iterated finite state
transducers. We also give a normal form for catalytic P systems.

1 Introduction

P systems are a computational model introduced by G. P&un in [4]. One of the basic
variant considered there was P systems with catalysts and priorities; these systems
where shown to be computationally universal. In [2], Sosik and Freund proved that
priorities among the rules can be discarded from the model without any loss of
computational power. Moreover, it was shown that for extended P systems only one
membrane and two catalysts are enough for reaching computational universality.
However, the computational power for P systems with only one catalyst was not
established. The present paper characterize these systems in terms of iterated finite
state transducers hence it converts an open problem from P system framework to
an open problem from string rewriting theory. Additionally, a normal form for
catalytic P systems is presented.

2 Preliminaries

We assume the reader is acquainted with the basic notions and notations from the
formal language theory (see [3] for more details). Here we only recall the definitions
and the results which are useful for the present work.

If FL is a family of languages, then NFL denotes the family of length sets of
languages in FL. We denote by REG, CF, REC, and RE the family of regular,
context-free, recursive, and recursively enumerable languages, respectively. It is
known that NREG = NCF C NREC C NRE.

https://core.ac.uk/display/51401841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

284 D. Sburlan
2.1 Iterated Finite State Transducers

An iterated (finite state) sequential transducer (IFT) is a construct v =
(K,V,qo,a0, F, P), where K is a finite set of states, V is a finite set of symbols
(the alphabet of v), KNV =0, qo € K is the initial state, ag € V is the starting
symbol, F C K is the set of final states, and P is a finite set of transition rules of
the form qa — xp, for g,p € K, a € V, and x € V*.

For ¢q,p € K and u,v,x € V*, a € V, a direct transition step of v is defined
as ugav F uxpv if and only if ga — xp € P. The reflexive and transitive closure
of the relation I is denoted by F*. In general, for «, € V* we say that a derives
into # and we write a = 3, if and only if goae F* Bp for some p € K. By =* we
denote the reflexive transitive closure of =>. If ggae F* Op such that p € F, then
we write o =¢ [3.

The language generated by v is L(y) = {8 € V | a9 =* a =
8, for some o € V*}.

If for each pair (q,a) € K xV, there is at most one transition rule ga - 2p € P,
then ~ is called deterministic (otherwise, it is called nondeterministic). The family
of languages generated by nondeterministic IFTs with at most n > 1 states is
denoted by IFT,. It is known from [1] that CF C IFTy, C IFT3; C IFT, = RE.
Moreover, there are non-semilinear languages belonging to IFT5, and there are
non-recursive languages belonging to I F'T53. Consequently, if we denote by NIFT,,,
n > 1, the family of length sets of languages from I[FT,, then we have that
NREG=NCF C NIFT, C NIFT3 C NIFT, = NRE.

2.2 Membrane Systems
A catalytic P system of degree m > 1 is a construct
II = (Ovcuuvu}h'“7wm7R17"'7Rmai0)

where

e O is an alphabet of objects;

e C C O is the set of catalysts;

e 4 is a hierarchical tree structure of m > 1 uniquely labelled membranes
(which delimit the regions of IT); typically, the set of labels is {1,...,m};

o w; € O, for 1 < i < m, are the multisets of objects initially present in the
m regions of u;

e R;, 1 < i < m, are finite sets of evolution rules; these rules can be non-
cooperative a — v or catalytic ca — cv, where a € O\ C, v € ((O\ C) x
{here,out,in})*, and c € C;

e ig € {1,...,m} is the label of the output region of II.

A configuration of IT is a vector C' = (ay, ..., ay), where a; € O*; 1 < i <m,
is a multiset of objects present in the region ¢ of IT. The vector Cy = (w1, ..., W)
is the initial configuration of II. Starting from the initial configuration and always
applying in all membranes a maximal multiset of evolution rules in parallel, one

On Catalytic P Systems with One Catalyst 285

gets a sequence of consecutive configurations. By = is denoted the transition be-
tween two consecutive configurations. A sequence (finite or infinite) of transitions
starting from Cj represents a computation of II. A computation of IT is a halting
one if no rules can be applied to the last configuration (the halting configuration).
The result of a halting computation is the number of objects from O contained
in the output region iy, in the halting configuration. A non-halting computation
yields no result. By collecting the results of all possible halting computations of a
given P system II, one gets N (IT) — the set of all natural numbers generated by II.
The family of all sets of numbers computed by catalytic P systems with at most m
membranes and k catalysts is denoted by NOP,,(caty). The above definition can
be relaxed such that in a halting configuration one counts only the symbols from a
given alphabet X’ C O. In particular, one can consider X' = O\ C; correspondingly,
the family of all sets of numbers computed by such particular P systems will be
denoted by NO_¢ Py, (caty).

Tt is known (see [7], for instance) that NO_¢ Py, (caty) = NO_¢ Py (caty). More-
over, in [2] it is shown that NO_cP;(caty) = NRE.

3 A Normal Form for P Systems with Catalysts

The following result states that any catalytic P system is equivalent with a catalytic
P system having a restriction on the form of the rules.

Theorem 1. For any P system Il with catalysts there exists an equivalent P sys-
tem II with one region and whose rules are of the form a — «, with |a| < 2, or
ca — ¢, with |G| < 1.

Proof. As we already stated in Section 2.2, for any P system with catalysts and
n > 1 membranes one can construct an equivalent P system with the same number
of catalysts and one membrane. Consequently, without loss of generality, we might
assume that IT has only one membrane, that is IT = (O, C, [], w1, Ry, o).

Let O\ C = {a1,a2,...,a,} and let m = maz{|a| | ¢ — a € Ry or ca — ca €
R;}. In addition, assume for our convenience that the rules of IT are labeled in an
unique manner with numbers from the set {1,...,card(R:)}.

Then one can construct an equivalent P system II = (O,C,[|1, w1, R1,io)
where

O=0U{aq;|1<i<pl<j<m}
U{Xujplita—a;€ R, 1<j<m—2}

The set R; is defined as follows (for the simplicity of the explanations, we will
only consider the rules in R; that are useful for simulating a non-cooperative rule
from Ry; the rules corresponding to a catalytic rule are defined similarly, therefore
we will not present them here). Let ¢ : ¢ — aj,aj,...a;, € Ri and let m —k =t.
Then we add to R; the rules:

286 D. Sburlan

a — X(i,l) (1)
Xy = X2

X(z’,t—l) - X(i,t)

Xty = agy k—1) X (i,t4+1) (2)
X(i,t4+1) = (55 k—2) X (5,t42)

X(it4+k-3) = Qjx_2,2) X (i,t4+k-2)

X(itrh—2) = Qg _1,1) Ay, 1)

A(i;m) = Q(i;m—1) (3)

A(i,m—1) = Q(i,m—2)

A1) = G

The proof is based on the existence of the universal global clock that governs the
functioning of the P system (the clock marks equal time units for the whole system,
hence synchronization is possible). While trying to simulate the application of an
arbitrary non-cooperative rule with several rules of type a — «a, with |a| < 2, one
has to accomplish two conditions. Firstly, one has to guarantee that all the objects
from « will eventually be produced. Secondly, these objects must be produced at
the “proper” time: all of them in the same moment (a local synchronization) and
according with the simulation of other rules that were started at the same time
with @ — « (a global synchronization).

Consequently, the rules presented above are grouped according with their func-
tion in the simulation. The first group represents a set of “delaying” rules (they
are used while simulating the rules with a shorter right hand side in order to syn-
chronize their executions with those that have the longest right hand side). These
rules are “chained”, hence, staring from an object a, an object X(; ;) is produced
in exactly ¢t computational steps. The second group is responsible for producing in
consecutive computational steps the objects a(j, k—1), A(jy,k—2)5 - -+ » AGr_1,1)5 A(ji 1)
(in order of their production, the last two being produced in the same time). For
an object a(;;y in this sequence, the index [represents the number of computa-
tional steps that IT will perform, starting from its production and until the object
a; is produced (see the third group of rules). Finally, one can remark that the
objects a;,, aj,,...,a; are produced in the same computational step by 1T (while
simulating the rule ¢ : ¢ — a;,aj, ...a;, € R1). Moreover, all the other rules from
IT that stated at the same moment as i : a — a;,aj, ...a;,, are simulated in the
same manner by I and their output is produced in the same computational step
as mentioned above. Consequently II correctly simulates any computation of II,
hence the theorem holds true.

On Catalytic P Systems with One Catalyst 287

4 Catalytic P Systems with One Catalyst and IFTs

In what follows we prove that the family of sets of numbers computed by catalytic
P systems with only one catalyst is included in the family of the length sets of the
languages generated by iterated finite state transducers with at most 3 states.

Theorem 2. NIFT5 O NOP;(caty).

Proof. Given an arbitrary catalytic P system IT = (O, C, w1, Ry, 1) such that C' =
{c}, then one can construct an iterated finite transducer v = (K, V, qqo, ag, F, P)
which simulates IT as follows.

Without loss of generality we assume that the initial configuration of IT is
w1 = cap.

Let w = ajas ... a,, be a string. We denote by

Perm(w) = {a;, ai, ... a;, | 1 <i; <m,1 <j<m, withi; #4,1<j,1<m}

the set of all permutations of string w, i.e., the set of all strings that can be
obtained from w by changing the order of symbols.
In addition, let us consider the following sets of objects from O:
X={A€O| (3 A—-aeRyand (B)cA—cBec R}
Y={4A€O|(3)A—a€cR and cA— cB € R};
Z={A€O|(FcA—cacR and (A)A—BER}
T={AcO|(BA)A—a€Rand (B) cA— cf € R}
One can remark that O = X UY UZ UT U {c}.
Based on the above settings the IFT -~y is defined as follows:

K ={q, 01,6},
V =0\{d},
F={qo},

and the set of rules P is constructed in the following manner:
e for any a € T we add to P the rule gga — aqo;

e forany a € XUY and a — a € R; we add to P the rules gya — @g;, where
@ € Perm(a);

e for any a € T we add to P the rule qg1a — aqa;

e forany a € XUY and a — o € Ry we add to P the rules ¢ya — @g;, where
@ € Perm(a);

e for any a € YUZ and ca — ca € Ry we add to P the rules g1a — &gy, where
@ € Perm(a);

e for any a € T U Z we add to P the rule gaa — ago;

o forany a € X UY and a — o € R; we add to P the rules gaa — @gs, where
@ € Perm(a);

288 D. Sburlan

e for any a € YUZ and ca — ca € Ry we add to P the rules gga — @g2, where
@ € Perm(a).

The construction was designed such that each string processed by v during its
computation will correspond to a configuration of II. Moreover, one iteration of ~y
simulates the maximal parallel applications of the rules of II.

If the current string (say w) processed by the IFT is composed only by the
symbols from T, then v remains in gy € F' and stops, accepting the string. This
situation corresponds to the halting configuration of IT (that is, IT contains in its
region the multiset cw and no rules can be further applied).

In case w contains symbols form X UY U Z, then v starts the simulation of the
maximal parallel applications of the rules of I1. Since -y processes strings at each
iteration, then the simulation of IT has to accomplish the following task: all the
symbols which are the subject of a rule of IT have to be processed also by 7. Recall
that v processes strings and in these strings there might be symbols from T (which
are not the subject of any rule) in any position. Consequently, one has be sure that
any symbol in a configuration of IT that is a subject of a rule (non-cooperative or
catalytic) has to have the opportunity to be rewritten in the corresponding string
processed by 7 (by the corresponding rule). This is why, v uses the rules ¢;a — ag;
for ¢; € Q,1 <i<3,and a € T (that is, while processing the string, v "skips” all
the symbols that are not the subject of any rule).

In one iteration of v one can apply at most once a rule corresponding to a
catalytic rule of IT (recall that the P system functioning semantics define such
behaviour). More precisely, assuming that w is the current processed string, we
have

e either v is in state ¢y and executes a rule of type goa — @qs for ¢q1,q2 € Q,
a € YUZ, ca — ca € Ry, and @ € Perm(a). This situation occurs when ~y
processes w = wyawsy, w1 € T*, and we € (X UY UZ UT)* (w has the prefix
wy composed only by symbols from 7', followed by the symbol a € Y U Z that
triggers the simulation of the catalytic rule; the symbols from wsy that belong
to X UY will trigger only the simulation of the non-cooperative rules).

e cither v is in state ¢; and executes a rule of type gia — agq for g1,q2 €
Q,a €YUZ ca — ca € Ry, and @ € Perm(a)). This situation occurs
when - processes w = wyaws, where w; is described by the regular expression
T*(X|Y)(X|Y|T)*, we € (X UY UZUT)* (the symbols from w; and ws that
belong to X UY will trigger only the simulation of the non-cooperative rules) .

One can also remark that if a configuration w of IT contains at least one
object a € Z, then in the current computational step a catalytic rule will be
executed (because of the maximal parallel applications of the rules); in contrary,
if w does not contain any symbol a € Z then it is not guaranteed that a catalytic
rule will be executed (even if w contains symbols from Y, then, because of the
nondeterminism, it might happen that all the rules selected for application are
non-cooperative). On the other hand, v simulates IT by processing strings (hence
the order of symbols is precisely defined). The design of v guarantees that, if

On Catalytic P Systems with One Catalyst 289

applicable, a rule corresponding to a catalytic rule of IT is executed at most once.
The only issue that could appear regards the presence of multiple symbols from
Y'UZ in the current string processed by v (in order to perform a correct simulation,
one has to be sure that any of these symbols has a ”chance” to be rewritten). This
is why for any rule a — a € R; or ca — ca € Ry, the IFT ~ will use for the
simulation a set of rules of the type ga — pPerm(«).

Based on the above theorem, the following result holds true.

Corollary 1. If NIFT; C NRE then NOPy(cat;) C NRE

5 Conclusions

In this paper we gave a normal-form theorem for catalytic P systems. We also
investigated the relation between P systems with one catalyst and iterated finite
transducers. This last topic is of a particular interest because it converts an open
problem from the P system framework to an open problem from the string rewrit-
ing theory. In addition, the simplicity of the construction gives hopes for solving
an open problem stated from the introduction of P systems.

Acknowledgements

The work of the author was supported by the CNCSIS IDEI-PCE grant, no.
551/2009, Romanian Ministry of Education, Research and Innovation.

References

1. Bordihn H., Fernau H., Holzer M., Manca V., Martin-Vide C., Iterated Sequential
Transducers as Language Generating Devices, Theoretical Computer Science, 369, 1
(2006), pp. 67-81.

2. Freund R., Kari L., Oswald M., Sosik P., Computationally Universal P Systems
Without Priorities: Two Catalysts Are Sufficient, Theoretical Computer Science, 330,
2 (2005), pp. 251-266.

3. Rozenberg G., Salomaa A., eds., Handbook of Formal Languages, 3 volumes, Springer-
Verlag, Berlin, 1997.

4. Paun G., Computing with Membranes: an Introduction. Bulletin EATCS, 67 (1999),
pp- 139-152.

5. Paun G., Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.

6. Paun G., Rozenberg G., Salomaa A., eds., The Ozford Handbook of Membrane Com-
puting, Oxford University Press Inc., New York, 2010.

7. Sburlan D., Further Results on P Systems with Promoters/Inhibitors, International
Journal of Foundations of Computer Science, 17 (2006), pp. 205-221.

