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Abstract

In this paper some results are obtained for a smectic-A liquid crystal model with time-

dependent boundary Dirichlet data for the so-called layer variable ϕ (the level sets of ϕ

describe the layer structure of the smectic-A liquid crystal). First, the initial-boundary

problem for arbitrary initial data is considered, obtaining the existence of weak solutions

which are bounded up to infinity time. Second, the existence of time-periodic weak so-

lutions is proved. Afterwards, the problem of the global in time regularity is attacked,

obtaining the existence and uniqueness of regular solutions (up to infinity time) for both

problems, i.e. the initial-valued problem and the time-periodic one, but assuming a dom-

inant viscosity coefficient in the linear part of the diffusion tensor.

Keywords: solution bounded up to infinity time, time-periodic solutions, global in time reg-

ular solutions, Navier-Stokes equations, Smectic-A liquid crystal, coupled non-linear parabolic

system.

1 Introduction

In this work, we study the time evolution of a smectic-A liquid crystal model proposed

in [E’97]. Smectic crystals are in a liquid-crystalline phase, where the molecules of the liquid

crystal not only have a certain orientational order (as in the nematic case) but also have a
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P06-FQM-02373 (Junta de Andalućıa)
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certain positional order (layer structure); the molecules are arranged in almost incompressible

layers of almost constant width. Within each layer, the smectic-A system consists of a single

optical axis n perpendicular to the layer such that ∇ × n = 0. In this case, n = ∇ϕ for a

potential function ϕ, and the level sets of ϕ will represent the layer structure in the sample.

This study is motivated by the following problem in liquid crystals. The usual nematic

molecule configuration is determined by minimizing the Oseen Frank energy, which in the

more simple case of equal constants derives to Dirichlet energy

∫
Ω
|∇d|2. Here, the unit

vector d stands for the orientation of liquid crystal molecules.

Now, in the smectic-A case, this orientation d coincides with the normal vector n of each

layer. Then, in order to study the energy

∫
Ω
|∇(∇ϕ)|2 under the constraint |∇ϕ| = 1, it is

natural to introduce the penalized energy∫
Ω

1

2
|∆ϕ|2 + f(∇ϕ)

where f is the Ginzburg-Landau penalization function

f(n) =
1

ε2
(|n|2 − 1)n,

which has the potential function

F (n) =
1

4ε2
(|n|2 − 1)2

verifying f(n) = ∇nF (n) for each n ∈ IRN . As ε → 0, one can hope that the minimizer of

the penalized energy, or the solution of the corresponding Euler-Lagrange equation

∆2ϕ−∇ · f(∇ϕ) = 0,

will be convergent to the minimizer of the energy
∫

Ω
1
2 |∆ϕ|

2 with the non-convex constraint

|∇ϕ| = 1 (cf. [Kinderlehrer,Liu’96] and [E’97]). Thus, it is important to study the asymptotic

behavior as ε→ 0 (cf. [Guillén,Rojas’02] for nematic crystal models). However, very little is

known about this.

We assume the smectic-A liquid crystal confined in an open bounded domain Ω ⊂ IRN

(N = 2 or 3) with regular boundary ∂Ω. We consider the following PDE system in Ω ×
(0,+∞):  ρ(∂tu + (u · ∇)u)−∇ · (σd + λσe) +∇p = 0, ∇ · u = 0,

∂tϕ+ u · ∇ϕ+ γ(∆2ϕ−∇ · f(∇ϕ)) = 0,
(1)

where u : Ω × [0,+∞) 7→ RN is the flow velocity, p : Ω × [0,+∞) 7→ R describes the fluid

pressure and ϕ : Ω× [0,+∞) 7→ R is the layer variable. The constants ρ, λ, and γ are positive,

representing respectively, the density of the fluid, the ratio between the kinetic energy and
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the elastic one, and the elastic relaxation time. Moreover, we consider the same constitutive

laws for the dissipative stress tensor σd and the elastic stress tensor σe as in [Liu’00]:

σd = µ1(ntD(u)n)n⊗ n + µ4D(u) + µ5(D(u)n⊗ n + n⊗D(u)n),

σe = −f(n)⊗ n +∇(∇ · n)⊗ n− (∇ · n)∇n

where µ1 ≥ 0, µ4 > 0, µ5 ≥ 0 are dissipative constant coefficients, n = ∇ϕ and D(u) denotes

the symmetric tensor of the velocity gradient: D(u) =
1

2
(∇u +∇tu).

The problem (1) is completed with the (Dirichlet) boundary conditions

u|∂Ω = 0, ϕ|∂Ω = ϕ1, ∂nϕ|∂Ω = ϕ2 (2)

(assuming time-depending boundary data ϕ1, ϕ2 : ∂Ω × (0,+∞) 7→ IRN ) and one of the

following conditions:

• either the initial conditions

u(0) = u0 ϕ(0) = ϕ0 in Ω (3)

• or the time-periodic conditions:

u(0) = u(T ), ϕ(0) = ϕ(T ) in Ω, (4)

where T > 0 is a given final time.

In the first case, the compatibility condition ϕ0|∂Ω = ϕ1(0) must be assumed. In this last

case, one assumes ϕ1(0) = ϕ1(T ) and ϕ2(0) = ϕ2(T ).

By splitting the symmetric dissipative tensor into the linear and nonlinear part

σd = µ4D(u) + σdnl(D(u),∇ϕ),

where σdnl := µ1(ntD(u)n)n⊗ n + µ5(D(u)n⊗ n + n⊗D(u)n), notice that

−∇ · σd = −µ4∇ ·D(u)−∇ · σdnl = −µ4

2
∆u−∇ · σdnl

since ∇ · u = 0. By decomposing the term due to the penalization to the other terms in the

elastic tensor as follows

σe = −f(n)⊗ n + σenp(n),

where σenp := ∇(∇ · n)⊗ n− (∇ · n)∇n is the non-penalized tensor, and taking into account

that

∇ · (f(n)⊗ n) = (∇ · f(∇ϕ))∇ϕ+ fi(∇ϕ)∂i∇ϕ = (∇ · f(∇ϕ))∇ϕ+∇F (∇ϕ)
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and

(∇ · σenp)j = (∇ · (∇(∇ · n)⊗ n− (∇ · n)∇n))j = (∇ · (∇(∆ϕ)⊗∇ϕ−∆ϕ∇2ϕ))j

= ∂i(∂i(∆ϕ)∂jϕ−∆ϕ∂ijϕ) = ∆2ϕ∂jϕ+ ∂i(∆ϕ)∂i∂jϕ− ∂i(∆ϕ)∂ijϕ−∆ϕ∂i∂ijϕ

= ∆2ϕ∂jϕ−∆ϕ∂j∆ϕ = ∆2ϕ∂jϕ−
1

2
∂j(|∆ϕ|2),

we have

−∇ · σe = (∇ · f(∇ϕ))∇ϕ+∇F (∇ϕ)−∆2ϕ∇ϕ+∇
(
|∆ϕ|2

2

)
.

Then, joining together all the gradient terms, the momentum system of (1) can be written

as:

ρ(∂tu + (u · ∇)u)− µ4

2
∆u−∇ · σdnl − λ(∆2ϕ−∇ · f(∇ϕ))∇ϕ+∇q = 0 (5)

where q is the potential function q = p+ λF (∇ϕ) + λ
|∆ϕ|2

2
.

One observes that the liquid crystal model (1)-(2) lacks of maximum or comparison prin-

ciples (for ∇ϕ) so one looses one of the strongest tools in analyzing nonlinear pdes.

Assuming time-independent boundary data ϕ1, ϕ2, an important fact of the model (1)-(2)

is its dissipative character, because this system admits (at least formally) the following energy

equality:
d

dt

∫
Ω

(
1

2
|u|2 + λ

(
1

2
|∆ϕ|2 + F (∇ϕ)

))
+

∫
Ω

(µ4

2
|∇u|2 + σdnl : D(u) + λγ|∆2ϕ−∇ · f(∇ϕ)|2

)
= 0.

(6)

This equality is obtained multiplying the ϕ-equation by −λ(∆2ϕ−∇ · f(∇ϕ)), the u-system

(5) by u and integrating by parts, because all the nonlinear convective and elastic terms cancel

and the boundary terms vanish by using that u|∂Ω = 0, ∂tϕ|∂Ω = 0 and ∂t∂nϕ|∂Ω = 0 (see

(20) below for an energy equality related to a system with time-dependent boundary data). In

particular, since
∫

Ω σ
d
nl : D(u) ≥ 0 (see (22) below), this equality implies that the total energy

(that is, the kinetic energy 1
2

∫
Ω |u|

2 plus the elastic energy λ
∫

Ω
1
2 |∆ϕ|

2 + F (∇ϕ)) decreases

respect to the time. Now, since time-dependent boundary data ϕ1, ϕ2 will be considered, (6)

must be modified with a right hand side depending on time derivatives of ϕ1, ϕ2 which act as

force terms, see (20).

If we consider again time-independent boundary data, it is important to remark that the

following (static) critical points are particular solutions of the time-periodic problem:

u = 0,

ϕ : any solution of the problem: ∆2ϕ−∇ · f(∇ϕ) = 0 in Ω, ϕ = ϕ1, ∂nϕ = ϕ2 on ∂Ω,

p = −λF (∇ϕ)− λ |∆ϕ|
2

2
.
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Therefore, in order to consider a nontrivial time-periodic problem, it will be essential to

assume time-dependant boundary data for ϕ.

Definition 1 We say that (u, ϕ) is a weak solution of (1)-(3) in [0, T ), 0 < T < +∞ if

∇ · u = 0 in Q, u|Σ = 0, ϕ|Σ = ϕ1, ∂nϕ|Σ = ϕ2

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), ϕ ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H4(Ω)), (7)

verifying

〈∂tu, v〉+ ((u · ∇)u, v) + ((µ4/2)∇u + σdnl,∇v)− λ((∆2ϕ−∇ · f(∇ϕ))∇ϕ, v) = 0 ∀ v ∈ V,

∂tϕ+ (u · ∇)ϕ+ γ(∆2ϕ−∇ · f(∇ϕ)) = 0, a.e. in Q

u(0) = u0, ϕ(0) = ϕ0 in Ω.

Definition 2 We say that a weak solution (u, ϕ) is a strong solution of (1)-(3) in [0, T ) if

u ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)), ϕ ∈ L∞(0, T ;H4(Ω)) ∩ L2(0, T ;H6(Ω)), (8)

verifying point-wise the fully differential system (1).

In [Liu’00], considering a problem like (1)-(3), with variable density and time-independent

boundary conditions for ϕ, author proves the existence of weak solutions using a semi-Galerkin

procedure keeping the transport equation for density and the ϕ-equation at infinity dimension.

Moreover, the global regularity of weak solutions (for big enough µ4 if N = 3) is deduced in

[Liu’00], and a preliminary analysis about the asymptotic behavior in time is made (see also

[Lai,Liu’06] for other asymptotic behavior study for a related model).

The main results of present paper are the following, always for boundary data ϕ1 and ϕ2

depending on the time:

1. the uniqueness of weak/strong solutions of the initial-value problem (1)-(3),

2. the existence of global weak solutions of problem (1)-(3), which is bounded up to infinity

time (with an exponential weighted norm for the L2(0,+∞)-norm, see (31)),

3. the existence of weak time-periodic solutions,

4. the existence of regular solutions for both previous cases, the initial-valued problem and

the time-periodic one, but assuming a dominant viscosity coefficient µ4 in the linear part

of the diffusion tensor.
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The results obtained in this paper are in a certain sense similar to the results presented in

[Climent et al.’06] and [Climent et al.] for the weak solutions and the regular solutions of a

nematic liquid crystal model, respectively.

The paper is organized as follows. In Section 2, some differential inequalities are deduced,

which will be used in the rest of the paper. In Section 3, the uniqueness of weak/strong

solutions of the initial-value problem (1)-(3) is analyzed. In Section 4, the global in time

solution of the initial valued problem is studied at infinity time and the existence of weak

time-periodic solutions is obtained in Section 5. Finally, under the constraints of viscosity

coefficient µ4 big enough, the existence and uniqueness of global regular solutions of the initial

valued problem is proved in Section 6 and the existence of regular time-periodic solutions is

deduced in Section 7.

For simplicity we fix the constants excepting the viscosity µ4, taking

ρ = λ = γ = µ1 = µ5 = 1, ν = µ4/2.

Notation

• We denote Q = (0,+∞)×Ω, QT = (0, T )×Ω, Σ = (0,+∞)×∂Ω and ΣT = (0, T )×∂Ω.

• In general, the notation will be abridged. We set Lp = Lp(Ω), p ≥ 1, H1
0 = H1

0 (Ω), etc.

If X = X(Ω) is a space of functions defined in the open set Ω, we denote by Lp(X) the

Banach space Lp(0, T ;X). Also, boldface letters will be used for vectorial spaces, for

instance L2 = L2(Ω)N .

• The Lp norm is denoted by | · |p, 1 ≤ p ≤ ∞, the Hm norm by ‖ · ‖m (in particular

| · |2 = ‖ · ‖0) and the product norm in Hn × Hm by ‖ · ‖n×m. The inner product of

L2(Ω) is denoted by (·, ·).

• We set V the space formed by all fields u ∈ C∞0 (Ω)N satisfying ∇·u = 0. We denote H

(respectively V ) the closure of V in L2 (respectively H1). H and V are Hilbert spaces

for the norms | · |2 and ‖ · ‖1, respectively. Furthermore,

H = {u ∈ L2; ∇ · u = 0, u · n = 0 on ∂Ω}, V = {u ∈ H1; ∇ · u = 0, u = 0 on ∂Ω}

• In the sequel, C,C1, C2 > 0 will denote different constants, depending only on the fixed

data of the problem, as Ω, ϕ1, ϕ2, ε (and u0, ϕ0 for the initial-value problem).

6



2 Preliminaries

2.1 A lifting function

We define ϕ̃ = ϕ̃(t) as the weak solution of the problem −∆2ϕ̃ = 0 in Ω,

ϕ̃ = ϕ1(t) ∂nϕ̃ = ϕ2(t) on ∂Ω.
(9)

In the time-periodic case, since by hypothesis ϕ1(0) = ϕ1(T ) and ϕ2(0) = ϕ2(T ) on ∂Ω, then

ϕ̃(0) = ϕ̃(T ) in Ω.

Therefore, if we define ϕ̂(t) = ϕ(t) − ϕ̃(t), then ∆2ϕ̂ = ∆2ϕ in Q and ϕ̂ = ∇ϕ̂ = 0 on

Σ. In the time-periodic case, one has ϕ(0) = ϕ(T ) if and only if ϕ̂(0) = ϕ̂(T ). Then, we can

rewrite the problem (1)-(2) respect to the variables (u, ϕ̂) (with ϕ̂(t) = ϕ(t)− ϕ̃(t)) as follows

(recall that all coefficients have been taken equal to one, excepting viscosity ν = µ4/2):

∂tu + (u · ∇)u− ν∆u−∇ · σdnl − (∆2ϕ̂−∇ · f(∇ϕ))∇ϕ+∇q = 0 in QT ,

∇ · u = 0 in QT ,

∂tϕ̂+ u · ∇ϕ+ ∆2ϕ̂−∇ · f(∇ϕ) = ∂tϕ̃ in QT ,

u = 0, ϕ̂ = 0, ∂nϕ̂ = 0 on ΣT

(10)

jointly with either the initial conditions u(0) = u0, ϕ̂(0) = ϕ0 − ϕ̃(0) or the time-periodic

conditions u(0) = u(T ), ϕ̂(0) = ϕ̂(T ).

Since u ∈ H1
0 and ϕ̂ ∈ H2

0, the following norms are equivalents:

‖u‖1 ≈ |∇u|2, ‖ϕ̂‖2 ≈ |∆ϕ̂|2 ‖ϕ̂‖4 ≈ |∆2ϕ̂|2.

2.2 Some inequalities

We will give two inequalities in the next two lemmas, relating the elliptic operator ∆2ϕ̂−
∇ · f(∇ϕ) and the penalized energy

∫
Ω
F (∇ϕ) with some norms.

Lemma 3 The following inequality holds:

|∆ϕ̂|22 +
1

2ε2
|∇ϕ̂|44 ≤

1

2
|∆2ϕ̂−∇ · f(∇ϕ)|22 + C1, (11)

where C1 > 0 is a constant depending on ε, |Ω|, and ‖∇ϕ̃‖L∞(L4).

Proof. We denote ω = ∆2ϕ̂−∇ · f(∇ϕ). Testing this equality by ϕ̂ one has:

(ω, ϕ̂) = (∆2ϕ̂, ϕ̂)− (∇ · f(∇ϕ), ϕ̂) = |∆ϕ̂|22 + (f(∇ϕ),∇ϕ̂). (12)
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The last term on the right hand side of (12) can be written as

(f(∇ϕ),∇ϕ̂) = (f(∇ϕ)− f(∇ϕ̂),∇ϕ̂) + (f(∇ϕ̂),∇ϕ̂)

= (f(∇ϕ)− f(∇ϕ̂),∇ϕ̂) +
1

ε2
|∇ϕ̂|44 −

1

ε2
|∇ϕ̂|22

(13)

From (12) and (13), one has

|∆ϕ̂|22 +
1

ε2
|∇ϕ̂|44 = (ω, ϕ̂) +

1

ε2
|∇ϕ̂|22 − (f(∇ϕ)− f(∇ϕ̂),∇ϕ̂). (14)

The first term on the right hand side of (14) can be bounded as

|(ω, ϕ̂)| ≤ |ω|2|ϕ̂|2 ≤
1

2
|ω|22 +

C

2
|∇ϕ̂|24 ≤

1

2
|ω|22 +

1

6ε2
|∇ϕ̂|44 + C ε2 (15)

where the constant C depends on ε and |Ω|.
On the other hand, the second term on the right hand side of (14) will be bounded as:

1

ε2
|∇ϕ̂|22 ≤

1

6ε2
|∇ϕ̂|44 +

C

ε2
. (16)

Now, we are going to bound the third term of (14). Taking into account that

f(a)− f(b) =
1

ε2

(
|a|2 + |b|2 + a · b− 1

)
(a− b) ∀a, b ∈ IRN ,

in particular

f(∇ϕ)− f(∇ϕ̂) =
1

ε2

(
|∇ϕ|2 + |∇ϕ̂|2 +∇ϕ · ∇ϕ̂− 1

)
∇ϕ̃. (17)

Consequently, by using that ∇ϕ̃ ∈ L∞(L4), the Hölder and Young’s inequalities, the last term

on the right hand side of (14) can be bounded as follows

|(f(∇ϕ)− f(∇ϕ̂),∇ϕ̂)| ≤ 1

ε2
||∇ϕ|2 + |∇ϕ̂|2 +∇ϕ · ∇ϕ̂− 1|2|∇ϕ̃|4|∇ϕ̂|4

≤ C

ε2

(
|∇ϕ|24 + |∇ϕ̂|24 + 1

)
|∇ϕ̂|4

≤ C

ε2

(
|∇ϕ̂|24 + 1

)
|∇ϕ̂|4 ≤

1

6ε2
|∇ϕ̂|44 +

C

ε2
.

(18)

where C depends on |Ω| and ‖∇ϕ̃‖L∞(L4).

Finally, from (14)-(18), the inequality (11) is deduced.

Lemma 4 The following inequality holds:∫
Ω
F (∇ϕ) ≤ 1

2ε2
|∇ϕ̂|44 +

C2

ε2
(19)

where C2 depends on |Ω| and ‖∇ϕ̃‖L∞(L4)
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Proof. Since F (∇ϕ) =
1

4ε2

(
|∇ϕ|2 − 1

)2
, one has∫

Ω
F (∇ϕ) =

1

4ε2

∫
Ω
|∇ϕ|4 +

1

2ε2

∫
Ω
|∇ϕ|2 +

1

4ε2
|Ω|

≤ 1

2ε2

∫
Ω
|∇ϕ|4 +

C

ε2
≤ 1

2ε2

∫
Ω
|∇ϕ̂|4 +

C2

ε2

where C depends on |Ω| and C2 depends, moreover, on ‖∇ϕ̃‖L4(L4). Therefore, (19) holds.

2.3 Energy Inequality

Lemma 5 (Energy equality) If (u, ϕ) is a regular enough solution of (10), the following

energy equality holds:

d

dt

(
1

2
|u|22 +

1

2
|∆ϕ̂|22 +

∫
Ω
F (∇ϕ)

)
+ |∇ϕTD(u)∇ϕ|22 + |D(u)∇ϕ|22

+ν|∇u|22 + |ω|22 = (∂tϕ̃, ω) + (∂t∇ϕ̃, f(∇ϕ)).

(20)

where ω = ∆2ϕ̂−∇ · f(∇ϕ).

Proof. Taking u as test function in the u-system of (10), one has

1

2

d

dt
|u|22 + ν|∇u|22 + (σdnl,∇u)− (ω · ∇ϕ,u) = 0. (21)

The nonlinear dissipative tensor σdnl verifies:

(σdnl,∇u) = (σdnl, D(u)) = |∇ϕTD(u)∇ϕ|22 + |D(u)∇ϕ|22, (22)

since

(n⊗ n) : D(u) = ninjD(u)ij = nTD(u)n

and

(D(u)n⊗ n + n⊗D(u)n) : D(u) = 2(D(u)n⊗ n) : D(u) = D(u)iknknjD(u)ij = |D(u)n|2.

Therefore, from (21) we obtain

1

2

d

dt
|u|22 + ν|∇u|22 + |∇ϕTD(u)∇ϕ|22 + |D(u)∇ϕ|22 + |ω|22 − (ω · ∇ϕ,u) = 0. (23)

On the other hand, by taking ω as test function in the ϕ-equation of (10), one has

1

2

d

dt
|∆ϕ̂|22 − (∂tϕ̂,∇ · f(∇ϕ)) + (u · ∇ϕ, ω) + |ω|22 = (∂tϕ̃, ω). (24)

The second term on the left hand side of (24) can be written as

−(∂tϕ̂,∇ · f(∇ϕ)) = (∂t∇ϕ, f(∇ϕ))− (∂t∇ϕ̃, f(∇ϕ)) =
d

dt

∫
Ω
F (∇ϕ)− (∂t∇ϕ̃, f(∇ϕ)). (25)

By adding (23) and (24) and into account (25) we obtain (20).
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Corollary 6 (Energy inequality) Under hypothesis of Lemma 5, the following energy in-

equality holds:

d

dt

(
|u|22 + |∆ϕ̂|22 + 2

∫
Ω
F (∇ϕ)

)
+ 2ν|∇u|22 + |∆2ϕ̂−∇ · f(∇ϕ)|22 ≤

1

4ε2
|∇ϕ̂|44 +

C3

ε2
(26)

where C3 depends on ‖∇ϕ̃‖L∞(L4) and ‖∂t∇ϕ̃‖L∞(L4).

Proof. The first term on the right hand side of (20) can be bounded as follows:

(∂tϕ̃, ω) ≤ 1

2
|∂tϕ̃|22 +

1

2
|ω|22 ≤

1

2
|ω|22 + C.

Into account the expression of f and that ‖∂t∇ϕ̃‖L∞(L4) ≤ C, the second term on the right

hand side of energy equality (20) can be written as

(∂t∇ϕ̃, f(∇ϕ)) ≤ 1

ε2
||∇ϕ|2 − 1|2|∇ϕ|4|∂t∇ϕ̃|4 ≤

C

ε2

(
|∇ϕ|24 + 1

)
|∇ϕ|4

≤ C

ε2

(
|∇ϕ̂|24 + |∇ϕ̃|24 + 1

)(
|∇ϕ̂|4 + |∇ϕ̃|4

)
≤ C

ε2

(
|∇ϕ̂|24 + 1

)(
|∇ϕ̂|4 + 1

)
≤ 1

8ε2
|∇ϕ̂|44 +

C

ε2
.

Hence, as |∇ϕTD(u)∇ϕ|22 + |D(u)∇ϕ|22 is positive, (26) is obtained.

Corollary 7 The following inequality holds:

d

dt

(
|u|22 + |∆ϕ̂|22 + 2

∫
Ω
F (∇ϕ)

)
+ 2ν|∇u|22 + |∆ϕ̂|22

+
1

4ε2
|∇ϕ̂|44 +

1

2
|∆2ϕ̂−∇ · f(∇ϕ)|22 ≤ C4

(27)

where C4 depends on ε, |Ω|, ‖∇ϕ̃‖L∞(L4) and ‖∂t∇ϕ̃‖L∞(L4).

Proof. Recalling (11), by adding C1 to both terms of inequality (26), we have

d

dt

(
|u|22 + |∆ϕ̂|22 + 2

∫
Ω
F (∇ϕ)

)
+ 2ν|∇u|22 + |∆ϕ̂|22 +

1

2ε2
|∇ϕ̂|44

+
1

2
|∆2ϕ̂−∇ · f(∇ϕ)|22 ≤

1

4ε2
|∇ϕ̂|44 + C4

and therefore (27) holds.
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3 Weak/strong uniqueness

The aims of this section is to check that the classic argument to prove uniqueness of

weak/strong solutions of the Navier-Stokes model (see for instance [Lions’96]) is valid now

for the smectic-A model (1)-(3) even taking into account the high nonlinear character of the

dissipative stress tensor σd. The sketch of the proof given in [Liu’00] is very short and, in

our opinion, the most important nonlinear terms are not clearly bounded. Then, we will do

a formal proof, see [Lions’96] for a rigorous justification in the Navier-Stokes case. We will

need this result of weak/strong uniqueness twice later.

Theorem 8 If (u1, ϕ1) and (u2, ϕ2) are respectively a weak and a strong solution of (1)-(3)

in [0, T ], then u1 = u2, and ϕ1 = ϕ2 a.e. in Ω× [0, T ].

Proof. We denote u = u1 − u2 and ϕ = ϕ1 −ϕ2 (notice that ϕ = ϕ̂). Making the difference

between (1) for (u1, ϕ1) and (u2, ϕ2), considering u and ∆2ϕ as test functions, the following

equalities holds

1

2

d

dt
|u|22 + ν|∇u|22 + ((u · ∇)u2,u) + (σdnl(Du1,∇ϕ1)− σdnl(Du2,∇ϕ2), D(u))

−((∆2ϕ−∇ · (f(∇ϕ1)− f(∇ϕ2))∇ϕ1,u) + ((∆2ϕ2 −∇ · f(∇ϕ2))∇ϕ,u) = 0,

1

2

d

dt
|∆ϕ|22 + |∆2ϕ|22 + (u · ∇ϕ1,∆

2ϕ) + (u2 · ∇ϕ,∆2ϕ)

−(∇ · (f(∇ϕ1)− f(∇ϕ2)),∆2ϕ) = 0.

(28)

From (28), cancelling the term (u · ∇ϕ1,∆
2ϕ) in both equations, we obtain

1

2

d

dt
(|u|22 + |∆ϕ|22) + ν|∇u|22 + |∆2ϕ|22 = −((u · ∇)u2,u)

−(σdnl(Du1,∇ϕ1)− σdnl(Du2,∇ϕ2), D(u)) + (∆2ϕ2∇ϕ,u)

−(∇ · f(∇ϕ2)∇ϕ,u)− (∇ · (f(∇ϕ1)− f(∇ϕ2))∇ϕ1,u)

−(u2 · ∇ϕ,∆2ϕ)− (∇ · (f(∇ϕ1)− f(∇ϕ2)),∆2ϕ) :=

7∑
i=1

Ii.

(29)

The first, third, fourth and six terms on the right hand side of (29) are bounded, respec-

tively, by

I1 ≤ δν|∇u|22 + C|∇u2|42|u|22, I3 ≤ δν|∇u|22 + C|∆2ϕ2|22|∆ϕ|22

I4 ≤ δν|∇u|22 + C
1

ε2

(
3|∇ϕ2|24|∆ϕ2|4 + |∆ϕ2|2

)
|∆ϕ|22, I6 ≤ δ|∆2ϕ|22 + C|∆ϕ|22

for any δ > 0 a small enough constant. Taking into account the equality

∇ · f(∇ϕ1)−∇ · f(∇ϕ2) =
1

ε2

(
(3|∇ϕ1|2 − 1)∆ϕ+ 3(∇ϕ1 +∇ϕ2)∆ϕ2∇ϕ

)
11



the fifth term on the right hand side of (29) can be written as

I5 =
1

ε2

(
(3|∇ϕ1|2 − 1)∇ϕ1∆ϕ,u

)
+

1

ε2
(3(∇ϕ1 +∇ϕ2)∇ϕ1∆ϕ2∇ϕ,u)

and it is bounded by

I5 ≤ C

ε2

(
|(3|∇ϕ1|2 − 1)∇ϕ1|3|∆ϕ|2 + |3(∇ϕ1 +∇ϕ2)∇ϕ1∆ϕ2|3/2|∇ϕ|6

)
|u|6

≤ δν|∇u|22 +
C

ε2

(
|(3|∇ϕ1|2 − 1)∇ϕ1|23 + |3(∇ϕ1 +∇ϕ2)∇ϕ1∆ϕ2|22

)
|∆ϕ|22.

Analogously, the seventh one is bounded as follows:

I7 ≤ C

ε2

(
|3|∇ϕ1|2 − 1|∞|∆ϕ|2 + |3(∇ϕ1 +∇ϕ2)∆ϕ2|3|∇ϕ|6

)
|∆2ϕ|2

≤ δ|∆2ϕ|22 +
C

ε2

(
|3|∇ϕ1|2 − 1|2∞ + |3(∇ϕ1 +∇ϕ2)∆ϕ2|23

)
|∆2ϕ|22.

With regard to the second term (recall that n1 = ∇ϕ1 and n = ∇ϕ),

(σdnl(Du1, n1)−σdnl(Du2, n2), D(u)) = ((nt1D(u)n1)n1⊗n1, D(u))+(the rest of terms, D(u)),

taking into account that

((nt1D(u)n1)n1 ⊗ n1, D(u)) ≥ 0,

the problem is to born appropriately |the rest of terms|22. Concretely, the more nonlinear

term can be bounded as follows

|(nt1D(u2)n1)n1 ⊗ n|22 ≤ |D(u2)|22|n1|6∞|n|2∞ ≤ C‖u2‖21‖ϕ1‖32‖ϕ1‖33‖ϕ‖2‖ϕ‖3

≤ C ‖ϕ1‖3/24 ‖ϕ‖
3/2
2 ‖ϕ‖

1/2
4 ≤ δ‖ϕ‖24 + C‖ϕ1‖24‖ϕ‖22

Here, the interpolation inequalities |ϕ|2∞ ≤ C ‖ϕ‖2‖ϕ‖3 and ‖ϕ‖23 ≤ C ‖ϕ‖2‖ϕ‖4 have been

used jointly with the L∞ in time estimates ‖u2‖1 ≤ C and ‖ϕ1‖2 ≤ C.

Therefore, one arrives at
d

dt

(
|u|22 + |∆ϕ|22

)
≤ a(t)(|u|22 + |∆ϕ|22)

|u(0)|22 + |∆ϕ(0)|22 = 0,

where a(t) is bounded in L1(0, T ). Applying Gronwall’s Lemma, one has u = 0 and ∆ϕ = 0.

Finally, since ϕ = 0 on ∂Ω, then ϕ = 0 in QT . Therefore, uniqueness of Galerkin approximate

solution for the initial-boundary problem (42) is proved.
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4 Global weak solution of the initial-value problem.

Definition 9 We say that (u, ϕ) is a weak solution of (1)-(3) in [0,+∞) if

∇ · u = 0 in Q, u|Σ = 0, ϕ|Σ = ϕ1, ∂nϕ|Σ = ϕ2

‖(u(t), ϕ(t))‖0×2 ≤ C1 ∀t ≥ 0 (30)

∀γ > 0, e−γt
∫ t

0
eγs‖(u(s), ϕ(s))‖21×4 ds ≤ C2

(
1 +

1

ν

)
, ∀t ≥ 0, (31)

where C1, C2 > 0 are constants independent of ν, verifying

〈∂tu, v〉+ ((u · ∇)u, v) + ν(∇u,∇v) + (σdnl,∇v)− ((∆2ϕ−∇ · f(∇ϕ))∇ϕ, v) = 0 ∀ v ∈ V,

∂tϕ+ (u · ∇)ϕ+ ∆2ϕ−∇ · f(∇ϕ) = 0, a.e. in Q

u(0) = u0, ϕ(0) = ϕ0 in Ω.

In the finite time case (T <∞), (31) holds even when γ = 0, i.e. (u, ϕ) ∈ L2(0, T ;H1×H4).

Remark: (30) and (31) imply that ∂tu ∈ L
4/3
loc ([0,∞);V′) and ∂tϕ ∈ L2

loc([0,∞);L2). In

particular, 〈∂tu, v〉 denotes the duality product between V′ and V.

Theorem 10 (Existence of weak solutions of the initial-valued problem) Let u0 ∈
H and ϕ0 ∈ H2. Let Ω, ϕ1 and ϕ2 be regular enough, verifying the compatibility conditions

ϕ0|∂Ω = ϕ1(0), ∂nϕ0|∂Ω = ϕ2(0) and such that the lifting function ϕ̃ defined in (9) satisfies

ϕ̃ ∈ L∞(0,+∞;H4(Ω)) and ∂tϕ̃ ∈ L∞(0,+∞;W1,4(Ω)).

Then, there exists a weak solution (u, ϕ) of (1)-(3) in [0,+∞).

Proof. The proof is based on a semi-Galerkin method as in [Liu’00]. The novelty respect to

[Liu’00] is that now we will find a weak solution with regularity up to infinity time, even for

the time-dependent boundary conditions for the layer variable ϕ.

Let {wi}i ≥ 1 a “special” basis of V formed by eigenfunctions of the Stokes problem

(∇wi,∇v) = λi(wi, v) ∀ v ∈ V, wi ∈ V, with ‖wi‖L2 = 1, λi ↗ +∞.

Let Vm be the finite-dimensional subspace spanned by {w1,w2, . . . ,wn}.
For each m ≥ 1, we say that (um, ϕm) is an approximate solution, if um : [0,+∞) 7→ Vm

and ϕm : [0,+∞) 7→ H4 with ϕ̂m = ϕm − ϕ̃ (ϕ̃ being the lifting function defined in (9)) and

the following variational formulation holds:

(∂tum(t), vm) + ((um(t) · ∇)um(t), vm) + ν(∇um(t),∇vm) + (σd,mnl , Dvm)

−((∆2ϕ̂m(t)−∇ · f(∇ϕm(t)))∇ϕm(t), vm) = 0 ∀ vm ∈ Vm, a.e. t ≥ 0,

∂tϕ̂m(t) + (um(t) · ∇)ϕm(t) + ∆2ϕ̂m(t)−∇ · f(ϕm(t)) = ∂tϕ̃(t), a.e. t ∈ Q,

um(0) = u0m := Pm(u0), ϕm(0) = ϕ0 in Ω.

(32)
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Here, Pm : H 7→ Vm denotes the usual orthogonal projector from H onto Vm. In particular,

u0m → u0 in L2. Moreover, we have denoted σd,mnl = σdnl(D(um),∇ϕm).

The existence and uniqueness of local in time solution of (32) is proved in [Liu’00]. More-

over, one has the following estimates (independent of m): um is bounded in L∞(0, T ;H) ∩
L2(0, T ;V) and ϕm is bounded in L∞(0, T ;H2) ∩ L2(0, T ;H4). This suffices to control the

nonlinear terms and to pass to the limit in (32), obtaining a weak solution of the initial-valued

problem (1)-(3) in [0, T ], with T > 0 a finite fixed final time. Next, to extend the solution to

the whole time interval [0,+∞), we will prove that the approximate solutions (um(t), ϕm(t))

of (32) are bounded in [0,+∞).

From (11) and (26), one has

d

dt

(
|um|22 + |∆ϕ̂m|22 + 2

∫
Ω
F (∇ϕm)

)
+ 2ν|∇um|22 + 2|∆ϕ̂m|22 +

3

4ε2
|∇ϕ̂m|44 ≤ C (33)

(since the ϕm-equation is verified pointwise in Q and (um, ϕm) are regular functions, it is easy

to justify the computations of Lemma 3 and Corollary 6, in order to arrive at (33)). Applying

inequality (19) and the Poincaré inequality P |u| ≤ |∇u| (with P > 0 a constant) to (33) one

obtains

d

dt

(
|um|22 + |∆ϕ̂m|22 + 2

∫
Ω
F (∇ϕm)

)
+ C0

(
|um|22 + |∆ϕ̂m|22 + 2

∫
Ω
F (∇ϕm)

)
≤ C, (34)

where C0 = min{2νP, 3/4}. Multiplying by eC0s and integrating in s ∈ [0, t] we have

|um(t)|22 + |∆ϕ̂m(t)|22 + 2

∫
Ω
F (∇ϕm) ≤ e−C0t

(
|u0m|22 + |∆ϕ0|22 + 2

∫
Ω
F (∇ϕ0)

)
+C(1− e−C0t) ≤ |u0|22 + |∆ϕ0|22 + 2

∫
Ω
F (∇ϕ0) + C

(35)

for all t ≥ 0. Therefore, one deduces the following estimates independently of m: um is

bounded in L∞(0,+∞;H), ϕm is bounded in L∞(0,+∞;H2(Ω)), and

∫
Ω
F (∇ϕm) is bounded

in L∞(0,+∞).

Now, using (27), multiplying by eγt for any γ > 0, we get

d

dt

(
eγt(|um|22 + |∆ϕ̂m|22 + 2

∫
Ω
F (∇ϕm))

)
+eγt

(
2ν|∇um|22 + |∆ϕ̂m|22 +

1

4ε2
|∇ϕ̂m|44 +

1

2
|∆2ϕ̂m −∇ · f(∇ϕm)|22

)
≤ Ceγt,

(36)

hence it is easy to deduce the estimates

∀γ > 0, e−γt
∫ t

0
eγs‖um(s)‖21 ds ≤

C2

ν
, ∀t ≥ 0, (37)

and

∀γ > 0, e−γt
∫ t

0
eγs|∆2ϕ̂m(s)−∇ · f(∇ϕm(s))|22 ds ≤ C2, ∀t ≥ 0. (38)
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From the equality

∇ · f(∇ϕm) =
3

ε2
|∇ϕm|2∆ϕm −

1

ε2
∆ϕm (39)

and previous estimates ∆ϕm is bounded in L∞(0,+∞;L2(Ω)) and |∇ϕm|2 is bounded in

L∞(0,+∞;L3(Ω)), one has that ∇ · f(∇ϕm) is bounded in L∞(0,+∞;L6/5(Ω)) (recall that

ϕ̃ is in L∞(0,+∞;H4(Ω))). In particular,

∀γ > 0, e−γt
∫ t

0
eγs|∇ · f(∇ϕm)|26/5 ds ≤ C2, ∀t ≥ 0.

Therefore, into account (38), we obtain

∀γ > 0, e−γt
∫ t

0
eγs|∆2ϕ̂m(s)|26/5 ds ≤ C2, ∀t ≥ 0, (40)

Applying to the imbedding of W3,6/5(Ω) into H2(Ω), to the sequence ∇ϕ̂m, one has

∀γ > 0, e−γt
∫ t

0
eγs‖∇ϕ̂m(s)‖22 ds ≤ C2, ∀t ≥ 0, (41)

From (41), the bound of ∇ϕ̂m in L∞(0,+∞;H1(Ω)) and the interpolation inequality |g|∞ ≤
‖g‖1/21 ‖g‖

1/2
2 , we obtain

∀γ > 0, e−γt
∫ t

0
eγs|∇ϕ̂m(s)|4∞ ds ≤ C2, ∀t ≥ 0.

By using (39) and the bound of ϕm in L∞(0,+∞;H2), one has

|∇ · f(∇ϕm)|22 ≤ C
(
|∇ϕm|4∞|∆ϕm|22 + |∆ϕm|22

)
≤ C

(
|∇ϕm|4∞ + 1

)
.

Therefore,

∀γ > 0, e−γt
∫ t

0
eγs|∇ · f(ϕ̂m(s))|22 ds ≤ C2, ∀t ≥ 0.

From this last inequality and (38) one has

∀γ > 0, e−γt
∫ t

0
eγs|∆2ϕ̂m(s)|22 ds ≤ C2, ∀t ≥ 0,

hence the regularity (31) for ϕ can be deduced.

At this point, the existence of weak solutions of (1)-(3) in (0,+∞) can be proved by means

of a rather standard pass to the limit argument (see [Liu’00] for the finite time case).
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5 Weak time-periodic solutions

In this section, let T > 0 a finite fixed number which states the time period.

Definition 11 We say that (u, ϕ) is a weak time-periodic solution of (1), (2) and (4) if

u ∈ L∞(0, T ;H) ∩ L2(0, T ;H1), ϕ ∈ L∞(0, T ;H2) ∩ L2(0, T ;H4)

satisfying (1) and boundary conditions (2) as in Definition 9 and time-periodic conditions

u(0) = u(T ), ϕ(0) = ϕ(T ) in the sense of spaces L2 and H2 respectively.

Theorem 12 (Existence of weak time-periodic solutions) Let Ω, ϕ1 and ϕ2 be regular

enough with ϕ1(0) = ϕ1(T ), ϕ2(0) = ϕ2(T ), and such that the lifting function ϕ̃ defined in

(9) satisfies

ϕ̃ ∈ L∞(0, T ;H4(Ω)), ∂tϕ̃ ∈ L∞(0, T ;W1,4(Ω)).

Then, there exists a weak time-periodic solution of (1), (2) and (4).

Proof. In the proof of this theorem, a fully Galerkin method (approximating in finite dimen-

sion both variables u and ϕ) will be used. The reason is that this finite-dimensional Galerkin

problem let us to find time-periodic approximate solutions via a fixed-point argument for the

operator mapping the initial and final time values. Firstly, we consider the initial-boundary

Galerkin problem associated to any arbitrary finite-dimensional initial data. Afterwards, the

key is to find an initial data at t = 0 which will be “reproduced” at final time t = T . Finally,

by means of a pass to the limit procedure, a weak time-periodic solution will be found.

We divide the proof in several steps.

Step 0: Existence of local in time Galerkin solution.

Let {wi}n ≥ 1 and {φi}n ≥ 1 “special” basis of V and H2
0 (Ω), respectively, formed by

eigenfunctions of the Stokes problem

(∇wi,∇v) = λi(wi, v) ∀ v ∈ V, wi ∈ V, con ‖wi‖L2 = 1, λi ↗ +∞

and of the bilaplacian problem

(∆φi,∆e) = µi(φi, e) ∀ e ∈ H2
0 , φi ∈ H2

0 , con ‖φi‖L2 = 1, µi ↗ +∞.

Let Vm and Wm be the finite-dimensional subspaces spanned by {w1,w2, . . . ,wn} and

{φ1, φ2, . . . , φn} respectively.

Given u0 ∈ H and ϕ0 ∈ H2
0 , for each m ≥ 1, we seek an approximate solution (um, ϕm),

with um : [0, T ] 7→ Vm and ϕm = ϕ̂m + ϕ̃, with ϕ̂m : [0, T ] 7→ Wm, verifying the following

variational formulation a.e. t ∈ (0, T ):
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

(∂tum(t), vm) + ((um(t) · ∇)um(t), vm) + ν(∇um(t),∇vm) + (σd,mnl (t), Dvm)

−(Qm
(
∆2ϕ̂m(t)−∇ · f(∇ϕm(t))

)
∇ϕm(t), vm) = 0 ∀ vm ∈ Vm,

(∂tϕ̂m(t), em) + ((um(t) · ∇)ϕm(t), em) + (∆2ϕ̂m(t)−∇ · f(∇ϕm(t)), em)

= (∂tϕ̃(t), em), ∀ em ∈Wm,

um(0) = u0m = Pm(u0), ϕm(0) = ϕ0m = Pm(ϕ0) in Ω.

(42)

Here, Pm : H 7→ Vm denotes the usual orthogonal projector from H onto Vm, and Qm :

L2 7→ Wm the orthogonal projector from L2 onto Wm. In particular, u0m → u0 in L2 and

ϕ0m → ϕ0 in H2 (as m→ 0).

If we write

um(t) =
m∑
j=1

ξi,m(t)φi and ϕ̂m(t) =
m∑
j=1

ζi,m(t)ϕi,

(42) can be rewritten as a first order ordinary differential system (in normal form) associated

to the unknowns (ξi,m(t), ζi,m(t)). Then, one has existence of a maximal solution (defined

in some interval [0, τm) ⊂ [0, T ]) of the related Cauchy problem. Moreover, from a priori

estimates (independent onm) which will be obtained below, in particular one has that τm = T .

Step 1: Energy estimates.

By taking in (42) vm = um ∈ Vm and em = Qm(∆2ϕ̂m − ∇ · f(ϕm(t))) ∈ Wm as test

functions in (42), one can arrives at a similar inequality to (26) changing (u, ϕ̂) by (um, ϕ̂m)

and |∆2ϕ̂m −∇ · f(ϕm(t))|22 by |Qm(∆2ϕ̂m −∇ · f(ϕm(t)))|22. That is, one has

d

dt

(
|um|22 + |∆ϕ̂m|22 + 2

∫
Ω
F (∇ϕm)

)
+ 2ν|∇um|22 + |Qm(∆2ϕ̂m −∇ · f(∇ϕm))|22

≤ 1

4ε2
|∇ϕ̂m|44 + C.

(43)

On the other hand, the proof of Lemma 3 can be mimic for the case of Galerkin solutions,

obtaining the following inequality (similar to (11))

|∆ϕ̂m|22 +
1

2ε2
|∇ϕ̂m|44 ≤

1

2
|Qm(∆2ϕ̂m −∇ · f(∇ϕm))|22 + C1. (44)

Following the same argument of the proof of Theorem 10, from (43) and (44) one has (35)

and (36). Since now the final time T > 0 is finite, in particular, the following estimates holds:

um is bounded in L∞(0, T ;H) ∩ L2(0, T ;V),

17



ϕm is bounded in L∞(0, T ;H2)

and

ωm := Qm(∆2ϕ̂m −∇ · f(∇ϕm)) is bounded in L2(0, T ;L2).

Step 2: ϕm is bounded in L2(0, T ;H4).

We have defined ωm = Qm(∆2ϕ̂m −∇ · f(∇ϕm)), namely,

ωm ∈Wm, (ωm, em) =
(
∆2ϕ̂m −∇ · f(∇ϕm), em

)
∀ em ∈Wm. (45)

By taking em = ∆2ϕ̂m ∈ Wm as test function in (45) (that is possible because a spectral

basis of the eigenfunctions of the bilaplacian has been considered), one obtains

|∆2ϕ̂m|22 ≤ |∇ · f(∇ϕm))|2|∆2ϕ̂m|2 + |ωm|2|∆2ϕ̂m|2,

hence

‖ϕ̂m‖4 ≤ C
(
|∇ · f(∇ϕm)|2 + |ωm|2

)
. (46)

From (39) and by using the bound of ϕm in L∞(0,+∞;H2) and the interpolation inequality

‖ϕ‖3 ≤ C‖ϕ‖1/22 ‖ϕ‖
1/2
4 , one has

|∇ · f(∇ϕm))|22 ≤ C
(
|∇ϕm|46|∇∇ϕm|26 + |∆ϕm|22

)
≤ C

(
‖ϕm‖42‖ϕm‖23 + ‖ϕm‖22

)
≤ C (‖ϕm‖4‖ϕm‖2 + 1) ≤ δ‖ϕ̂m‖24 + δ‖ϕ̃‖24 + C ≤ δ‖ϕ̂m‖24 + C.

(47)

By using this last inequality for δ small enough in (46) we obtain ‖ϕ̂m‖24 ≤ C + C|ωm|22. As

ωm is bounded in L2(Q), integrating in [0, T ] we have that ϕm is bounded in L2(0, T ;H4).

Step 3: Uniqueness of Galerkin solution

By applying the arguments given in Theorem 8 to (um, ϕm), we can obtain the uniqueness

of Galerkin solution. Notice that this is possible because ∆2ϕm ∈Wm (and um ∈ Vm).

Step 4: Existence of time-periodic Galerkin solution

Given (um0 , ϕ
m
0 ) ∈ V m ×Wm, we define the map

Lm : [0, T ] 7→ IRm × IRm

t 7→ (ξ1m(t), ..., ξmm(t), ζ1m(t), ..., ζmm(t))

where (ξ1m(t), ..., ξmm(t)) and (ζ1m(t), ..., ζmm(t)) are the coefficients of um(t) and ϕ̂m(t)

respect to Vm and Wm respectively, being (um(t), ϕ̂m(t)) the (unique) approximate solution

of (42) corresponding to the initial data (um0 , ϕ
m
0 ).
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Now, varying the initial data (um0 , ϕ
m
0 ), we are going to define a new map Φm : IRm×IRm 7→

IRm × IRm as follows: given Lm0 ∈ IRm × IRm, we define Φm(Lm0 ) = Lm(T ), where Lm(t) is

related to the solution of problem (42) with initial data Lm0 (= Lm(0)).

By uniqueness of approximate solution of (42), this map is well-defined. Moreover, using

regularity of the corresponding ordinary differential system (equivalent to (42)), this map is

continuous.

In order to prove existence of fixed point of Φm, we will use Leray-Schauder’s Theorem.

Consequently, we have to prove that for all λ ∈ [0, 1], solutions Lm0 (λ) of

Lm0 (λ) = λΦm(Lm0 (λ))

are uniformly bounded (independent of λ). Since Lm0 (0) = {0}, it is suffices to analyze

λ ∈ (0, 1] and the equation
1

λ
Lm0 (λ) = Φm(Lm0 (λ)).

Since we have considered the eigenfunctions of ∆2 to furnish Wm and (45), it is easy to justify

the computations of lemma 3, lemma 4 and Corollary 6, in order to arrive at (35). Considering

the norm ‖Lm(t)‖IRm×IRm =
(
‖um(t)‖2L2 + ‖∆ϕ̂m(t)‖2L2

)1/2
in IRm×IRm, inequality (35) yields

‖ 1

λ
Lm0 (λ)‖2IRm×IRm ≤ e−C0T ‖Lm0 (λ)‖2IRm×IRm + C(1− eC0T ).

Since λ ∈ (0, 1], one has

‖Lm0 (λ)‖2IRm×IRm ≤
C(1− eC0T )

eC0T − 1

which is a bound independent of λ (and m). Consequently, Leray-Schauder Theorem implies

the existence of fixed point of Φm, and therefore the existence of time-periodic Galerkin

solutions.

Moreover, for each time-periodic Galerkin solution (um, ϕm), their corresponding initial-

end data (um(0), ϕm(0)) = (um(T ), ϕm(T )) is bounded in the L2 ×H2-norm, i.e

‖(um, ϕ̂m)(0)‖L2×H2 ≤ C (C independent of m).

Step 5: Pass to the limit in time-periodic Galerkin solutions

The pass to the limit in variational formulation (42) can be done using estimations (inde-

pendents of m) and compactness obtained in order to control nonlinear terms. Consequently,

here we will only write the pass to the limit in time-periodic conditions.

From estimations of (ϕm) in L∞(H2) and (∂tϕm) in L2(L3/2) and using the triplet of

spaces H2 ↪→ H1 ↪→ L3/2, one has that (ϕm) is relatively compact in C([0, T ];H1), hence

19



ϕm(T ) → ϕm(T ) and ϕm(0) → ϕ(0) in H1(Ω). Since ϕm(T ) = ϕm(0), then ϕ(T ) = ϕ(0)

in H1(Ω). Moreover, it is easy to see that ϕ ∈ Cw([0, T ];H2) (i.e. ϕ is continuous from

[0, T ] onto H2, respect to the weak topology in H2), therefore ϕ(T ) = ϕ(0) in H2(Ω). The

argument for u is similar.

Consequently, we have found a weak time-periodic solution of problem (1)-(2), (4) and

the proof of Theorem 12 is finished.

6 Regularity for the initial-value problem

The idea now is to obtain regularity for the weak solutions of the initial-value problem

(1)-(3) (see [Lin,Liu’95], [Lin,Liu’00] for a nematic liquid crystal case and [Liu’00] for the

smectic-A case, imposing time-independent boundary data in all these previous cases). In

this sense, we will see that a global regularity result hold but only for the case of dominant

viscosity, that is for ν big enough.

In our opinion, the global regularity imposing constraints of initial data near of special

equilibrium solutions is an interesting problem, which up to our knowledge remains as an

open problem.

Definition 13 We say that a weak solution (u, ϕ) of (1)-(3) is a strong solution if

‖(u(t), ϕ(t))‖1×4 ≤ C3 ∀t ≥ 0, (48)

∀γ > 0, e−γt
∫ t

0
eγs‖(u(s), ϕ(s))‖22×6 ds ≤ C4, ∀t ≥ 0 (49)

and verifying point-wise the fully differential system (1).

Theorem 14 In the conditions of theorem 10, if moreover (u0, ϕ0) ∈ H1×H4 with ‖u0‖1 ≤
R1, ‖ϕ0‖4 ≤ R2,

∂tϕ̃ ∈ L∞(0,+∞;W1,4(Ω)) and ∂ttϕ̃ ∈ L∞(0,+∞;L2(Ω)),

then for each ν ≥ ν0, with ν0 = ν0(R1, R2, ∂tϕ̃, ∂ttϕ̃), there exists a unique strong solution of

(1)-(3) in [0,+∞), which verifies (48) and (49) with constants C3 and C4 depending on ν0

(but independent of ν).

Proof. We define

ω̂ = −∂tϕ̂− (u · ∇)ϕ̂. (50)

By owing to ϕ̂|Σ = 0, ∇ϕ̂|Σ = 0 and u|Σ = 0, we have

ω̂|Σ = 0, ∇ω̂|Σ = 0. (51)
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On the other hand, we are going to obtain the following inequalities:

‖ϕ‖4 ≤ C(|ω̂|2 + |u|2 + 1), ‖ϕ‖6 ≤ C(‖ω̂‖2 + ‖u‖2 + 1). (52)

Indeed, as ω = ∆2ϕ−∇ · f(∇ϕ) = −∂tϕ− (u · ∇)ϕ = ω̂ − ∂tϕ̃− (u · ∇)ϕ̃, one has

∆2ϕ̂ = ∆2ϕ = ω +∇ · f(∇ϕ) = ω̂ − u · ∇ϕ̃− ∂tϕ̃+∇ · f(∇ϕ). (53)

Hence

‖ϕ̂‖4 ≤ |ω̂|2 + |∇ϕ̃|∞|u|2 + |∂tϕ̃|2 + |∇ · f(∇ϕ)|2.

Proceeding in the analogous way that in (47) to bound the term |∇ · f(∇ϕ)|2 and using the

regularity of ϕ̃ one arrives at the bound of ‖ϕ̂‖4 given in (52). The bound for ‖ϕ̂‖6 given in

(52) can be obtained in a similar way.

Notice that,

1

2

d

dt
|ω̂|22 = (ω̂, ∂tω̂) = (ω̂, ∂t(ω + u · ∇ϕ̃+ ∂tϕ̃))

= (ω̂, ∂t(∆
2ϕ̂−∇ · f(∇ϕ) + u · ∇ϕ̃+ ∂tϕ̃))

= (∆ω̂, ∂t∆ϕ̂) + (∇ω̂, ∂tf(∇ϕ)) + (ω̂, ∂tu · ∇ϕ̃+ u · ∂t∇ϕ̃+ ∂ttϕ̃).

By using (50), one has

∂t∆ϕ̂ = −∆ω̂ −∆((u · ∇)ϕ̂) = −∆ω̂ −∇2u∇ϕ̂−∇u∇2ϕ̂− (u · ∇)∆ϕ̂

and

∂tf(∇ϕ) = (3|∇ϕ|2 − 1)∂t∇ϕ = (3|∇ϕ|2 − 1)(−∇ω̂ −∇((u · ∇)ϕ̂) +∇∂tϕ̃)

= (3|∇ϕ|2 − 1)(−∇ω̂ −∇u∇ϕ̂− (u · ∇)∇ϕ̂+∇∂tϕ̃),
.

Therefore, we obtain that

1

2

d

dt
|ω̂|22 + |∆ω̂|22 = −(∆ω̂,∇2u∇ϕ̂)− (∆ω̂,∇u∇2ϕ̂)− (∆ω̂, (u · ∇)∆ϕ̂)− (∇ω̂, 3|∇ϕ|2∇ω̂)

−(∇ω̂, 3|∇ϕ|2∇u∇ϕ̂)− (∇ω̂, 3|∇ϕ|2(u · ∇)∇ϕ̂)) + (∇ω̂,∇ω̂) + (∇ω̂,∇u∇ϕ̂)

+(∇ω̂, (u · ∇)∇ϕ̂)) + (ω̂, ∂tu · ∇ϕ̃) + (ω̂,u · ∂t∇ϕ̃) + (ω̂, ∂ttϕ̃) + (∇ω̂, (3|∇ϕ|2 − 1)∂t∇ϕ̃).

By bounding the terms on the right hand side of previous equality one arrives at

d

dt
|ω̂|22 + ‖ω̂‖22 ≤

ν

2
‖u‖22 +

1

2
|∂tu|22 +

C

ν
‖ω̂‖22(1 + ‖ϕ̂‖3 + ‖ϕ̂‖23) + C|ω̂|22 + C, (54)

where C > 0 may denote different constants, always independent of ν.
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On the other hand, taking Au+∂tu as test functions in the u-system (A being the Stokes

operator, i.e. A = −P∆ with P the Leray projector onto H) it is easy to obtain

d

dt
((ν + 1)‖u‖21) + ν‖u‖22 + |∂tu|22 ≤

1

2
‖ω̂‖22 +

(
C +

C

ν

)
‖u‖1‖u‖22

+

(
C +

C

ν

)
(|ω̂|22 + ‖u‖1) +

C

ν

(
‖ϕ̂‖43 + ‖ϕ̂‖23 + 1

)
‖u‖22,

(the last term on the right hand side of previous inequality is a bound of |∇ ·σdnl|22). Since we

want to choose ν big enough, for instance we assume ν0 ≥ 1. Then, for each ν > ν0 ≥ 1, we

get
d

dt
((ν + 1)‖u‖21) + ν‖u‖22 + |∂tu|22 ≤

1

2
‖ω̂‖22 + C

(
‖u‖1‖u‖22 + |ω̂|22 + ‖u‖1

)
+
C

ν

(
‖ϕ̂‖43 + ‖ϕ̂‖23 + 1

)
‖u‖22.

(55)

Adding (54) and (55) we have

d

dt
((ν + 1)‖u‖21 + |ω̂|22) +

ν

2
‖u‖22 +

1

2
|∂tu|22 +

1

2
‖ω̂‖22 ≤

C

ν
‖ω̂‖22(1 + ‖ϕ̂‖3 + ‖ϕ̂‖23)

+D(‖u‖1‖u‖22 + |ω̂|22 + ‖u‖1) +
C

ν

(
‖ϕ̂‖43 + ‖ϕ̂‖23 + 1

)
‖u‖22 + E

(56)

where C, D and E are constants independent of ν ≥ 1. On the other hand, using (52),

the regularity of u, ϕ̂, ϕ̃ and the interpolation inequality ‖ϕ̂‖3 ≤ C‖ϕ̂‖1/22 ‖ϕ̂‖
1/2
4 we get

‖ϕ̂‖3 ≤ C(1 + |ω̂|1/22 ). Hence, from (56) one has the following inequality:

d

dt
((ν + 1)‖u‖21 + |ω̂|22) +

ν

2
‖u‖22 +

1

2
|∂tu|22 +

1

2
‖ω̂‖22 ≤

C

ν
‖ω̂‖22(1 + |ω̂|1/22 + |ω̂|2)

+D(‖u‖1‖u‖22 + |ω̂|22 + ‖u‖1) +
C

ν

(
|ω̂|23 + |ω̂|3 + 1

)
‖u‖22 + E.

(57)

If we denote

Φ1(t) = ‖u‖21, Φ2(t) = |ω̂|22, Ψ1(t) = ‖u‖22, Ψ2(t) = ‖ω̂‖22,

we obtain from (57),

d

dt
((ν + 1)Φ1 + Φ2) +

(
ν

2
−DΦ

1/2
1 − C

ν

(
Φ2 + Φ

1/2
2 + 1

))
Ψ1

+

(
1

2
− C

ν
(1 + Φ

1/4
2 + Φ

1/2
2 )

)
Ψ2 ≤ D(Φ2 + Φ

1/2
1 ) + E.

(58)

Let R1, R2, M and ν0 ≥ 1 some positive constants that we will specify below, such that if

Φ1(0) ≤ R1 and Φ2(0) ≤ R2, we will prove that

(ν + 1)Φ1(t) + Φ2(t) ≤M ∀ t ∈ [0,+∞), (59)
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for any ν ≥ ν0. Indeed, by contradiction, let t∗ > 0 the first value such that (ν + 1)Φ1(t∗) +

Φ2(t∗) = M , hence

(ν + 1)Φ1(t∗) + Φ2(t∗) = M and (ν + 1)Φ1(t) + Φ2(t) < M ∀ t ∈ [0, t∗).

Then,

Φ1(t) ≤ M

ν + 1
and Φ2(t) ≤M ∀ t ∈ [0, t∗].

Assume that there exists ν0 big enough such that, for each ν ≥ ν0

ν

2
−D

(
M

ν + 1

)1/2

− C

ν
(M +M1/2 + 1) ≥ ν + 1

4

and
1

2
− C

ν

(
1 +M1/4 +M1/2

)
≥ 1

4
. (60)

Then, for each t ∈ [0, t∗]

d

dt
((ν + 1)Φ1 + Φ2) +

ν + 1

4
Ψ1 +

1

4
Ψ2 ≤ D(Φ2 + Φ

1/2
1 ) + E. (61)

We define P = min{P1, P2} where 1/P1 and 1/P2 are the Poincaré constants that verify

Φ1 ≤
1

P1
Ψ1 and Φ2 ≤

1

P2
Ψ2 respectively. Therefore,

d

dt
((ν + 1)Φ1 + Φ2) +

P

4
((ν + 1)Φ1 + Φ2) ≤ D(Φ2 + Φ

1/2
1 ) + E. (62)

Multiplying (62) by ePt/4 and integrating in [0, t∗] we deduce

(ν + 1)Φ1(t∗) + Φ2(t∗) ≤ ((ν + 1)Φ1(0) + Φ2(0))e−Pt
∗/4

+e−Pt
∗/4

∫ t∗

0
(D(Φ2(s) + Φ

1/2
1 (s)) + E)ePs/4 ds.

(63)

By (53), ω̂ = ∆2ϕ̂+ u · ∇ϕ̃+ ∂tϕ̃−∇ · f(∇ϕ), hence we get

Φ2 = |ω̂|22 ≤ C(‖ϕ̂‖24 + |u|2 + 1 + ‖ϕ̂‖4) ≤ C(‖ϕ̂‖24 + |u|2 + 1).

Therefore, taking into account weak estimates (31), the second term on the right hand side

of (63) is bounded by a constant Cw independent of ν (in fact, Cw depends on the constant

C2 given in (31)) and

(ν + 1)Φ1(t∗) + Φ2(t∗) ≤ ((ν + 1)Φ1(0) + Φ2(0)) + Cw

(
1

ν
+ 1

)
≤ ((ν + 1)R1 +R2) + 2Cw.

Hence, if we choose

M > (ν + 1)R1 +R2 + 2Cw, (64)
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then we arrives at a contradiction. Therefore, we could get the estimate (59) whether there

exists big enough constants M and ν0 such that (60) and (64) hold, for each ν ≥ ν0. Indeed,

if we choose M = λ ν then (64) holds for any λ > 2R1 + R2 + 2Cw. If we fix λ with this

condition, then the two conditions given in (60) hold if

λ1/2

ν
≤ ε and

1

ν
(1 + λ1/4ν1/4 + λ1/2ν1/2) ≤ ε

for ε > 0 small enough. But these conditions hold for each ν ≥ ν0 with ν0 big enough respect

to λ. Therefore, we get estimates (59).

From (59), we obtain u ∈ L∞(0,+∞;H1) and ω̂ ∈ L∞(0,+∞;L2). Recalling (52) we also

obtain ϕ ∈ L∞(0,+∞;H4). By going back to (61), multiplying by eγt for any γ > 0 and

integrating in [0, t] we deduce

∀ γ > 0, e−γt
∫ t

0
eγs‖(u(s), ω̂(s))‖22×2 ds ≤ C2, ∀ t ≥ 0.

Again, by applying (52) we get (49).

7 Regularity for the time-periodic problem

The results obtained up to now allow us to obtain, for big enough ν, the regularity given

in Definition 13 also for the time-periodic problem. Indeed, arguing as in [Climent et al.] for

a nematic crystal model, to prove that weak time-periodic solution is regular it suffices to use

the following three results:

1. the existence of the weak time-periodic solution (proved in Section 4),

2. the weak/strong uniqueness of the initial-valued problem (proved in Section 3),

3. the existence of global strong solution for big enough viscosity of the initial-valued

problem (proved in Section 6).

Consequently, the regularity for time-periodic solutions can be deduced.
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