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Summary. We identify a family of decision problems that are hard for some complexity
classes defined in terms of P systems with active membranes working in polynomial time.
Furthermore, we prove the completeness of these problems in the case where the systems
are equipped with a form of priority that linearly orders their rules. Finally, we highlight
some possible connections with open problems related to the computational complexity
of P systems with active membranes.

1 Introduction

Membrane systems, usually called P systems, are computing devices inspired by
the internal working of biological cells [6]. The main feature of P systems is a
structure of membranes dividing the space into regions, inside which multisets
of objects describe the molecular environment. A set of rules describe how the
molecules (and often the membranes themselves) evolve during the computation;
usually, the rules are applied in a maximally parallel way, i.e., each component of
the P system must be subject to a rule during each computation step, if a suitable
rule exists. When multiple rules may be applied to an object or membrane, one
of them is nondeterministically chosen. The computation, starting from an initial
configuration, proceeds until no further rule can be applied. For an introduction on
membrane computing we refer the reader to [8, 9], and for the latest information
to the P Systems Webpage [16], where an extensive bibliography on the topic can
be found.

Families of P systems can be used as language recognizers, by associating with
each input string (or to each input length) a P system; this association is sub-
ject to a uniformity condition (i.e., it must be computed by a Turing machine
operating in polynomial time). The constructed P systems can then accept or
reject, thus deciding the membership of strings to the language. The computa-
tional complexity of recognizer P systems with active membranes [7], where the
membranes themselves play an important role during the computation, has been
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subject to extensive investigation, due to their ability of solving NP-complete and
even PSPACE-complete problems [11] in polynomial time: this efficiency is due
to the possibility of creating in polynomial time an exponential number of mem-
branes, which then evolve in parallel using membrane division (a process found in
nature, e.g., in cell mitosis).

In this paper we investigate the existence of complete problems for complexity
classes defined in terms of P systems with active membranes. Some classes are
known to possess them, simply because they coincide with classes defined in terms
of Turing machines and inherit their complete problems: for instance, polynomial-
time P systems with active membranes without membrane division characterize
P [15], while they caracterize PSPACE if all kinds of rule are available [12]. Our
approach is, however, more general; we exhibit problems (inspired by analogous
ones for Turing machines) that are hard for every polynomial-time complexity
class defined in terms of P systems with active membranes, independently of what
rules are available, and complete for several of them if a restricted form of priority
among rules is used.

The remainder of this paper is organized as follows. In Section 2 we recall
the notion of recognizer P systems with active membranes and how to measure
their time complexity. Section 3 describes the bounded acceptance problem; in
particular, the variant for nondeterministic Turing machines is considered and its
NP-completeness is proved. In Section 4 we introduce the bounded acceptance
problem for P systems and prove its hardness for all polynomial-time complexity
classes; we also prove that the problem is complete if we add a linear ordering on
the rules of the P systems.

2 Definitions

We begin by recalling the definition of P systems with active membranes.

Definition 1. A P system with active membranes of the initial degree m ≥ 1 is a
tuple

Π = (Γ, Λ, µ,w1, . . . , wm, R)

where:

• Γ is a finite alphabet of symbols, also called objects;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree) consisting of m mem-

branes enumerated by 1, . . . , m; furthermore, each membrane is labeled by an
element of Λ, not necessarily in a one-to-one way;

• w1, . . . , wm are strings over Γ , describing the multisets of objects placed in the
m initial regions of µ;

• R is a finite set of rules.
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Each membrane possesses a further attribute, named polarization or electrical
charge, which is either neutral (represented by 0), positive (+) or negative (−)
and it is assumed to be initially neutral.

The rules are of the following kinds:

• Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labeled by h, having polarization α
and containing an occurrence of the object a; the object a is rewritten into
the multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

• Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labeled by h, having polarization α and
such that the external region contains an occurrence of the object a; the object
a is sent into h becoming b and, simultaneously, the polarization of h is changed
to β.

• Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labeled by h, having polarization α and
containing an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the polarization of h is changed
to β.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having polarization α and
containing an occurrence of the object a; the membrane h is dissolved and its
contents are left in the surrounding region unaltered, except that an occurrence
of a becomes b.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h, having polarization α, con-
taining an occurrence of the object a but having no other membrane inside; the
membrane is divided into two membranes having label h and polarizations β
and γ; the object a is replaced, respectively, by b and c while the other objects
in the initial multiset are copied to both membranes.

• Non-elementary division rules, of the form
[
[ ]+h1

· · · [ ]+hk
[ ]−hk+1

· · · [ ]−hn

]α

h
→ [

[ ]δh1
· · · [ ]δhk

]β

h

[
[ ]εhk+1

· · · [ ]εhn

]γ

h

They can be applied to a membrane labeled by h, having polarization α, con-
taining the positively charged membranes h1, . . . , hk, the negatively charged
membranes hk+1, . . . , hn, and possibly some neutral membranes. The mem-
brane h is divided into two copies having polarization β and γ, respectively;
the positive children are placed inside the former, their polarizations changed
to δ, while the negative ones are placed inside the latter, their polarizations
changed to ε. Any neutral membrane inside h is duplicated and placed inside
both copies.

A configuration in a P system with active membranes is described by its current
membrane structure, together with its polarizations and the multisets of objects
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contained in its regions. The initial configuration is given by µ, all membranes
having polarization 0 and the initial contents of the membranes being w1, . . . , wm.
A computation step changes the current configuration according to the following
principles:

• Each object and each membrane can be subject to only one rule during a
computation step.

• The rules are applied in a maximally parallel way : each object which appears
on the left-hand side of applicable evolution, communication, dissolution or
elementary division rules must be subject to exactly one of them; the same
holds for each membrane which can be involved in a communication, dissolution
or division rule. The only objects and membranes which remain unchanged are
those associated with no rule, or with unapplicable rules.

• When more than one rule can be applied to an object or membrane, the actual
rule to be applied is chosen nondeterministically; hence, in general, multiple
configurations can be reached from the current one.

• When dissolution or division rules are applied to a membrane, the multiset of
objects to be released outside or copied is the one resulting after all evolution
rules have been applied.

• The skin membrane cannot be divided, nor it can be dissolved. Furthermore,
every object which is sent out from the skin membrane cannot be brought in
again.

A halting computation C of a P system Π is a finite sequence of configurations
(C0, . . . , Ck), where C0 is the initial configuration of Π, every Ci+1 can be reached
from Ci according to the principles just described, and no further configuration can
be reached from Ck (i.e., no rule can be applied). P systems might also perform
non-halting computations; in this case, we have infinite sequences C = (Ci : i ∈ N)
of successive configurations.

We can use families of P systems with active membranes as language recogniz-
ers, thus allowing us to solve decision problems.

Definition 2. A recognizer P system with active membranes Π has an alphabet
containing two distinguished objects yes and no, used to signal acceptance and
rejection respectively; every computation of Π is halting and exactly one object
among yes, no is sent out from the skin membrane during each computation.

In what follows we will only consider confluent recognizer P systems with active
membranes, in which all computations starting from the initial configuration agree
on the result.

Definition 3. Let L ⊆ Σ? be a language and let Π = {Πx : x ∈ Σ?} be a family
of recognizer P systems. We say that Π decides L, in symbols L(Π) = L, when
for each x ∈ Σ?, the result of Πx is acceptance iff x ∈ L.

Usually some uniformity condition, inspired by those applied to families of
Boolean circuits, is imposed on families of P systems. Two different notions of
uniformity have been considered in the literature; they are defined as follows.
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Definition 4. A family of P systems Π = {Πx : x ∈ Σ?} is said to be semi-
uniform when the mapping x 7→ Πx can be computed in polynomial time, with
respect to |x|, by a deterministic Turing machine.

Definition 5. A family of P systems Π = {Πx : x ∈ Σ?} is said to be uniform
when there exist two polynomial-time Turing machines M1 and M2 such that, for
each n ∈ N and each x ∈ Σn

• M1, on input 1n (the unary representation of the length of x), outputs the
description of a P system Πn with a distinguished input membrane;

• M2, on input x, outputs a multiset wx (an encoding of x);
• Πx is Πn with wx added to the multiset located inside its input membrane.

In other words, the P system Πx associated with string x consists of two parts;
one of them, Πn, is common for all strings of length |x| = n (in particular, the
membrane structure and the set of rules fall into this category), and the other
(the input multiset wx for Πn) is specific to x. The two parts are constructed
independently and, only as the last step, wx is inserted in Πn.

Time complexity classes for P systems [10] are defined as usual, by restricting
the amount of time available for deciding a language. By PMCD (resp., PMC?

D)
we denote the class of languages which can be decided by uniform (resp., semi-
uniform) families Π of confluent P systems of class D (e.g., AM denotes the class
of P systems with active membranes) where each computation of Πx ∈ Π halts
in polynomial time with respect to |x|.

3 The bounded acceptance problem for Turing machines

A classic decision problem related to each class of automata is the acceptance or
prediction problem: given an automaton A and a string x over its input alphabet,
is it the case that A accepts x? The difficulty of this problem varies according to
the class of automata: for instance, if we consider finite automata it is in P, while
it is PSPACE-complete for linear bounded automata [3, p. 265]; one of the first
and most important results of computability theory asserts that the problem is
undecidable for Turing machines [13].

Even when the problem is not solvable, one can often devise an easier version
by limiting the amount of resources allocated. Consider the variant defined as
follows.

Definition 6. The bounded acceptance problem BAPNTM for nondeterministic
Turing machines is the set of triples (N, x, 1t) where

• N is a “reasonable” encoding [2] of a nondeterministic Turing machine;
• x is a string over the input alphabet of N ;
• 1t is the unary encoding of a natural number t;

such that N accepts the string x within t computation steps.
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BAPNTM is an interesting problem because it is very easy to prove its NP-
completeness.

Proposition 1. BAPNTM ∈ NP.

Proof (a variant of the proof of Theorem 2.9 in [1]). A nondeterministic Turing
machine N ′, given (N, x, 1t) as input, can easily perform a step-by-step simulation
of a computation of N on x with a polynomial slowdown, making a nondetermin-
istic choice every time N does; simultaneously, on another tape, N ′ counts the
number of simulated computation steps. If N accepts before the counter reaches
t + 1, then N ′ halts and accepts; if, on the contrary, the counter reaches t + 1
without N having accepted, then N ′ halts and reject. Since the input t is given
in unary notation, the whole simulation runs in polynomial time, and N ′ has an
accepting computation on (N, x, 1t) iff N has an accepting computation on x. ut
Proposition 2. BAPNTM is NP-hard.

Proof. Let L ∈ NP be a language. Then, there exists a nondeterministic Turing
machine N deciding L in polynomial time p(n).

Let R : Σ? → Σ? be defined by R(x) = (N,x, 1p(|x|)); the function R can be
computed by a deterministic Turing machine operating in polynomial time, since
N does not depend on x (hence it can be output in constant time) and 1p(|x|)

can be easily computed in polynomial time given a unary encoding of |x| as input
(which can be easily obtained from x itself).

Now let x ∈ Σ?. Clearly x ∈ L iff N accepts x; since N runs in p(n) steps,
this is equivalent to saying that R(x) = (N, x, 1p(|x|)) ∈ BAPNTM: thus, R is a
polynomial-time reduction of L to BAPNTM. ut

4 The bounded acceptance problem for P systems

In this section we discuss a variant of the bounded acceptance problem in the
setting of P systems with active membranes.

Definition 7. Let D be any subclass of P systems with active membranes; the
bounded acceptance problems BAPD and BAP?

D for uniform and semi-uniform
families of P systems of class D are, respectively, the set of triples (Π,w, 1t) and
the set of pairs (Π, 1t) where

• Π is a P system in the class D;
• w is a multiset over the alphabet of Π;
• 1t is the unary encoding of a natural number t;

such that Π accepts within t steps when the multiset w is placed inside its input
membrane (resp., Π accepts within t steps).

It is easy to show that every problem in PMCD can be reduced to BAPD (and
every problem in PMC?

D to BAP?
D) by modifying the proof of Proposition 2.
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Lemma 1. BAPD is PMCD-hard, and BAP?
D is PMC?

D-hard.

Proof. Let L ∈ PMCD be a language. Then, there exists a uniform family of
P systems Π = {Πx : x ∈ Σ?} deciding L in polynomial time p(n); the family
Π is constructed by polynomial-time Turing machines M1 (for the portion that
only depends on the length of the input) and M2 (for the input multiset, which
depends on the whole string).

Let R : Σ? → Σ? be defined by R(x) =
(
M1(|x|),M2(x), 1p(|x|)); clearly, the

function R can be computed in polynomial time by a deterministic Turing machine.
For each x ∈ Σ? we have, by hypothesis, x ∈ L iff the P system Πx, constructed by
combining M1(|x|) with the multiset M2(x), accepts within p(|x|) steps; in other
words, x ∈ L iff R(x) ∈ BAPD. But then R is a polynomial-time reduction from
L to BAPD.

The proof is completely analogous in the semi-uniform case: the only difference
is that we have no input multiset. ut

Unfortunately, proving that the BAP for standard P systems with active mem-
branes belongs to PMCD or PMC?

D (if this is indeed the case) seems to be much
more difficult than proving the same result for Turing machines. The reason is
that it is very easy to equip a Turing machine with a clock that halts the machine
after a certain number of steps: there are few “moving parts” to stop, namely the
tape heads, and the transition function controls them all simultaneously. On the
other hand, in a P system the global state is distributed, and each rule only affects
a small part of it; the computation is also, in general, nondeterministic. It is then
very difficult to stop every region of the P system, at least in an efficient way (i.e.,
with a polynomial slowdown): the intuitive idea of halting the system by dissolv-
ing every membrane when a certain period of time has passed also fails, since the
dissolution rule may enter into a conflict with the original rules, and hence might
never be applied.

4.1 Completeness of BAP in a special case

By adding a limited form of priority among rules to P systems with active mem-
branes (both with and without polarizations), we are able to find a class D such
that a variant of BAPD (resp., BAP?

D) is complete for PMCD (resp., PMC?
D).

Definition 8. A P system with active membranes (with or without polarizations)
and linear priority

Π = (Γ,Λ, µ, w1, . . . , wm, R,≤)

is a P system (Γ, Λ, µ,w1, . . . , wm, R) with active membranes equipped with a linear
(i.e., total) order ≤ over R, which is used as follows: whenever a nondeterministic
choice between two rules r1 < r2 has to be made during the computation, the rule
which is actually applied is r2.
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Confluent families of P systems with active membranes and polarizations us-
ing only elementary membrane division are powerful enough to solve NP-complete
problems in polynomial time [15]. Due to confluence, we know that any possible
computation (i.e., any sequence of nondeterministic, maximally paralles choices of
rules) yields the correct result: in particular, the computation obtained by linearly
ordering the set of rules in an arbitrary way. This proves that introducing prior-
ities does not affect the ability of solving NP-complete problems in polynomial
time. On the other hand, one can simulate polynomial-time P systems with active
membranes in polynomial space, and this simulation can be easily extended to in-
clude priorities without increasing the space requirements[12]. In other words, the
class of problems decided in polynomial time by P systems with active membranes
(with polarizations) and linear priority is located between NP and PSPACE.

Proposition 3. NP ⊆ PMCD ⊆ PMC?
D ⊆ PSPACE. ut

The existence of complete problems for PMCD and PMC?
D not only provides

us with a possible way of proving PMCD ⊆ NP and PMC?
D ⊆ NP by solving

one of these problems via a polynomial-time nondeterministic Turing machines,
but it also gives us another hint on the nature of this complexity class. It is a
common assumption [5] that the the cumulative polynomial hierarchy PH (i.e.,
the union of all levels of the hierarchy), which is also located between NP and
PSPACE, consists of infinitely many distinct levels. As a consequence, PH is
conjectured not to have complete problems, since their existence would imply the
collapse of the hierarchy, i.e., only finitely many levels would exist: we can then
conjecture that PMCD and PMC?

D differ from PH (or, for that matter, from
any other class lacking complete problems).

On the other hand, if we consider polarizationless P systems with active mem-
branes and elementary division only, we run into the so-called P conjecture [14, 4]:
these systems are conjectured to solve only P problems in polynomial time, but
a proof of this statement is still missing. We are able to exhibit a complete prob-
lem when linear priority among rules is assumed: solving it, or solving any new
complete problem which could emerge in the future, via a polynomial-time deter-
ministic Turing machine (if this is possible at all) might provide some insight for
the P conjecture.

The bounded acceptance problem for P systems with active membranes and
linear priority is hard for PMCD and PMC?

D as described above, and its com-
pleteness can be proved as follows.

Theorem 1. Let D be any subclass of P systems with active membranes (with or
without polarizations) and linear priority, using at least evolution, communica-
tion and dissolution rules. Then BAPD and BAP?

D are complete for PMCD and
PMC?

D respectively.

Proof. We only have to prove membership in PMCD (we focus on the uniform
version here, as the argument for the semi-uniform one is just a simplification
of it). Given (Π, w, 1t), a polynomial-time Turing machine M1 can construct a
P system Π ′ which is identical to Π except for the following differences:
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• The membrane structure is enclosed by two further membranes with new labels
h1 and h0 (h0 becomes the new skin membrane).

• The objects yes and no of Π are renamed as the two new symbols yes ′ and
no′ (they are also renamed in all rules involving them).

• Each of the original membranes of Π contains a timer object z0, that evolves
to the new objects z1, . . . , zt according to the rules

[z0 → z1]αh [z1 → z2]αh . . . [zt−1 → zt]αh [zt]αh → #

for all α ∈ {+, 0,−} and for each original label h. These objects count up
to t and then dissolve the membrane producing a new “junk” object. In the
polarizationless case, the charges are simply omitted.

• The new membrane h1 also contains a timer object z′0 with the rules

[z′0 → z′1]
α
h1

[z′1 → z′2]
α
h1

. . . [z′t → z′t+1]
α
h1

[z′t+1]
α
h1
→ no

The goal of these objects is to count up to t+1 and then dissolve h1, producing
the object no. The objects z′i are also assumed to be different from any object
in Π.

• The new membranes h1 and h0 are also involved in the following rules:

[yes ′]h1 → yes [no′]h1 → no
[yes]h0 → [ ]h0 yes [no]h0 → [ ]h0 no

• The priority among the original rules is left untouched, but all the new rules
have a higher priority than them; the precise ordering among the new rules is
arbitrary.

The Turing machine M2 constructing the input multiset simply outputs the mul-
tiset w. Thus, we obtain a uniform family Π of P systems.

If the original P system Π sends out its output from its skin membrane within
t steps, then either yes ′ or no′ appears in membrane h1 of Π ′. In such a case, yes
(resp., no) is first sent out to h0 (by dissolution, hence interrupting the timer z′)
and then to the environment as the result of the computation, which in this case
is clearly the same as Π. If, however, Π computes for more than t steps, then its
membranes are all simultaneously dissolved in Π ′ in step t+1 (recall that the new
rules have highest priority) and membrane h1 produces a no object that becomes
the result of the computation. Thus, the family Π solves BAPD, and it does so in
O(t) steps, which is polynomial time with respect to the input size. ut

5 Conclusions

We have shown that the bounded acceptance problem, that is, determining whether
a given P systems accepts its input within a certain number of steps, is complete
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for the class of decision problems that can be solved in polynomial time by cer-
tain families of P systems. The P systems covered by the proof are recognizer
P systems with active membranes, with or without polarizations, using at least
evolution, communication and dissolution rules; additionally, it is required that a
linear priority relation is defined on the rules of the system. The result holds both
in the uniform and semi-uniform cases.

The classes of decision problems PMCD and PMC?
D defined as above are

easily shown to be located between NP and PSPACE: hence, the existence of
decision problems for these classes might provide an useful tool in finding a tighter
upper bound, as well as in differentiating them from classes, such as the cumulative
polynomial hierarchy PH, that do not (apparently) possess complete problems.

An outstanding open question concerns the existence of complete problems for
complexity classes defined in terms of standard (i.e., without priority) polynomial-
time P systems with active membranes, particularly those without non-elementary
division rules, as they still lack a characterization in terms of Turing machines;
investigating this question in the polarizationless case might shed new light on the
P conjecture.
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