
Modeling and Analysis of Firewalls by
(Tissue-like) P Systems

Alberto Leporati, Claudio Ferretti

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{leporati,ferretti}@disco.unimib.it

Summary. We propose to use tissue-like P systems as a tool to model and analyse the
security properties of firewall systems. The idea comes from a clear analogy between
firewall rules and P systems rules: they both modify and or move objects (data packets,
or symbols of an alphabet) among the regions of the system. The use of P systems for
modeling packet filters, routers and firewalls gives the possibility to check — and possibly
mathematically prove — some security properties.

1 Introduction

Firewalls are devices that allow to control network traffic. Depending on the pro-
tocol layer they operate at, firewalls can be classified into packet filters, circuit
proxies, and application level proxies. Since they allow to enforce security policies,
firewalls are essential for organizations that are connected to the Internet, and/or
whose networks are divided in a number of segments. In fact, they operate like fil-
ters that selectively choose what data packets are allowed to cross the boundaries
between network segments, and thus ensure that information flow between those
segments only in the intended ways.

When deploying firewalls in an organization, it is essential to verify that they
are configured properly. Unfortunately, firewall configurations are often written in
a low-level language which is hard to understand. Thus, it is often quite difficult to
find out which connections and services are actually allowed by the configuration.
Indeed, it is well recognized that writing a correct set of rules is a challenging task.
Hence, network administrators would benefit greatly using a tool that helps them
to analyze the behavior of firewall rules.

Membrane systems (also known as P systems) are a distributed, parallel and
synchronous model of computation inspired by the functioning of living cells [15].
The basic model consists of a hierarchical structure composed by several mem-
branes, embedded into a main membrane called the skin. Membranes divide the
Euclidean space into regions, that contain some objects (represented by symbols of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


178 A. Leporati, C. Ferretti

an alphabet) and evolution rules. Using these rules, the objects may evolve and/or
move from a region to a neighboring one. At least two ways to apply the rules are
considered in the literature: the maximally parallel and the sequential way. When
two or more (sets of) rules can be applied in a given computation step, a nonde-
terministic choice is performed. A computation starts from an initial configuration
of the system and terminates when no evolution rule can be executed. Tissue P
systems [10, 11] can be viewed as an evolution of P systems, corresponding to a
shift from cell-like to tissue-like architectures, based on intercellular communica-
tion and cooperation between cells. In this model cells are usually composed of
a single membrane, and the interconnection structure forms an arbitrary graph.
The cells are the nodes of the graph, and objects may either evolve by means of
evolution rules, or move between cells (alongside the edges of the graph) as a result
of the application of symport/antiport or uniport rules. In what follows we assume
the reader is familiar with the basic notions and the terminology underlying P
systems. For details, and a systematic introduction on the subject, we refer the
reader to [16, 17]. The latest information about P systems can be found in [14].

By looking at firewall rules as filters that selectively choose what data packets
are allowed to cross the boundary between two regions of the network, it is apparent
that a firewall operates like a semi-permeable membrane that separates the two
regions. Hence, membrane systems are easily seen as a natural tool that allow to
model and analyze firewall systems.

In this paper we apply the membrane computing paradigm to the problem of
properly configuring a collection of firewall systems. The scenario we imagine is
the following: a network administrator has to devise the rules that allow to control
traffic in a large network, composed of several segments. Each segment delimits an
area, or zone, that contains hardware equipments such as PCs, servers, printers,
etc. Each pair of adjacent areas is separated by a firewall, that for each direction
selectively filters what data packets are allowed to cross the boundary in that di-
rection. We assume that firewalls operate as packet filters, which are allowed to
examine and possibly modify the fields of IP packets. This means, in particular,
that they are also able to operate as routers: for example, they can modify the
destination address of all packets having a specified source address and destina-
tion port. The aim is to help network administrators in testing and analyzing
firewall rules before implementing them; in fact, usually the implementation must
be performed quickly, since as soon as all network equipments are mounted the
organization wants to start using the network. Moreover, it is always desirable to
test a configuration change before putting it at work in a real network.

Another goal of our work — not addressed in this paper — is to give the
possibility to mathematically prove security properties (such as, for example, the
impossibility for a certain kind of TCP packets to reach a given region of the
network). This will be obtained by considering reachability problems on the P
systems that simulate the functioning of the firewalls. So doing, we will be able to
find answers to questions like:

• What is the action for a specified IP packet?



Modeling and Analysis of Firewalls by (Tissue-like) P Systems 179

• What packets are permitted by this list of rules?
• From which sources are packets to this destination permitted?
• Which services are accessible on a given host?
• Is a given host/network accessible from another given host/network?
• What kind of traffic is allowed between two networks?
• From which networks is a given host accessible?

Of course, some attempts have already been made in the literature to provide
tools that help network administrators to test and analyze firewalls and packet
filters before implementing them. To the best of our knowledge, no one of these
attempts uses membrane systems. Moreover, much of the work currently present
in the literature focuses on the configuration of a single firewall, and proposes
algorithms that detect common configuration mistakes, such as rule shadowing,
correlation, generalization and redundancy. The work whose spirit is most similar
to ours has been done by Eronen and Zitting [1]; in their paper they describe an
expert system whose knowledge base contains a representation of a firewall config-
uration. The tool allows to model a single firewall, but it has the advantage that
it can also compare the firewall configuration against a list of known vulnerabili-
ties and attacks, and warn the user whenever a match is found. Mayer, Wool and
Ziskind [12] propose a firewall analysis engine based on graph algorithms. Similar
work based on a logic background has been done by Hazelhurst et al. [4, 5, 6],
where ordered binary decision diagrams have been used to analyze routers’ access
control lists. This representation allows for efficient handling of the lists: for in-
stance, finding redundant (shadowed) rules is easy. Several researches have also
implemented tools for describing and generating the contents of an access list. For
example, Guttman [2] describes an approach for generating filters’ rules starting
from a desired security policy, and verifying that a packet filter correctly imple-
ments a given security policy.

The paper is organized as follows. In section 2 we briefly describe the features
of packet filters we want to model, and consequently we derive some properties
and constraints of the P systems we will use. In sections 3 and 4 we present the
model of tissue-like P systems that results from this analysis, and we show how
this model can be simulated by a single-membrane P system. Section 5 contains
the conclusions, and gives some directions for future research.

2 Preliminary Analysis

We focus our attention to stateless firewalls with packet inspection, also known as
packet filters. We assume the reader has some background in IP-based networking
[19].

As told in the Introduction, firewalls function as routers which connect different
network segments together. Based on their configuration, they may restrict the
traffic flowing between the different segments. Despite being so common, firewalls,
routers, and many other simple packet filters usually lack good user interfaces



180 A. Leporati, C. Ferretti

1 permit udp any host 192.168.1.1 eq 53

2 deny udp any host 192.168.1.2

3 permit udp any 192.168.1.0 0.0.0.255 eq 123

4 permit udp any host 192.168.1.2 eq 177

5 deny ip any any

Fig. 1. An example of a Cisco router access list. Note that the fourth rule is never
matched because of the second rule

for specifying the desired security policy. Hence it is very easy to make mistakes
when writing the lists of filtering rules, especially when these lists are long (several
hundreds rules is not uncommon). In particular, it is possible to make four kinds of
errors when implementing a security policy as a set of rules: shadowing, correlation,
generalization, and redundancy. Briefly, a rule r1 shadows a rule r2 when r1 is
always executed before r2, and r2 operates on a subset of the IP packets which are
processed by r1. In this situation r2 can never be executed and hence is useless. A
pair of rules r1 and r2 are correlated when the sets of packets processed by them
are not one the subset of the other but have a nonempty intersection; the problem
arises in particular when the actions (either accept or reject) specified in the
two rules are different. A rule r2 is a generalization of a rule r1 if r2 follows r1 in
the order, and r2 matches a superset of the packets matched by r1, and the actions
of r2 and r1 are different. Generalization may not be a configuration error, since it
is generally accepted that more specific rules are followed by more general rules;
however, since the actions performed are different it is a good practice to warn the
administrator, so that he is aware of the situation. A redundant rule performs the
same action on the same packets as another rule such that if the redundant rule is
removed, the security policy will not be affected. Rule r2 is redundant to rule r1 if
r1 precedes r2 in the order, and r2 matches a subset (or the same set) of packets
matched by r1, and the actions of r1 and r2 are the same. If r1 precedes r2 and r1

matches a subset of the packets matched by r2, and the actions of r1 and r2 are
the same, then rule r1 is redundant to rule r2 provided that r1 is not involved in
any generalization or correlation anomalies with other rules preceding r2.

Since the administrator may write several rules that may affect the same set of
IP packets, when one of these packets arrives the firewall must choose what rule to
apply. Since a nondeterministic choice is not desirable, the firewall disambiguates
by considering the rules in the same order as they have been specified, and applies
the first rule whose parameters match the packet. For instance, Figure 1 shows an
example of a Cisco router access list. When a packet is received, the list is scanned
from the start to the end, and the action (either permit or deny) associated with
the first match is taken. If a packet does not match any of the rules, the default
action is deny. Often a “deny all” rule is included at the end of the list to make it
easier to verify that a list has not been truncated. Separate lists can be specified
for each network interface. As told above, it is very easy to make mistakes when



Modeling and Analysis of Firewalls by (Tissue-like) P Systems 181

Fig. 2. The structure of a firewall P system. Each node of the graph represents a mem-
brane in our tissue-like P system, that on its own represents a segment or zone of the
network. The edges show the connections between zones. The small circles located on the
membranes represent the lists of rules that filter the packets incoming to the membranes
through the corresponding edges

writing access lists. For instance, the fourth rule in Figure 1 is never matched
because it is shadowed by the second rule.

A crucial observation is that IP packets are processed one at the time, as soon
as they arrive. Stated otherwise, network traffic is seen as a stream of packets. No
cooperation among packets and no form of parallelism exist in current firewalls.
If we sum all these observations, we can see that our model of P systems should
apply non-cooperative rules in the sequential way; moreover, we should either im-
pose that they are deterministic, or otherwise we should associate a linear (i.e.,
total) ordering < to rules, so that if two rules r1 < r2 can be applied to a given
object then r2 (the rule which has the hightest priority) will be applied. However
the assumption that our P systems are deterministic is not realistic, since this
would mean that the above mentioned problems in writing firewall rules (shadow-
ing, correlation, generalization, redundancy) have been solved before modeling the
firewall by using the P system. Since we would rather like to use our P systems
to solve these problems (as well as to answer questions concerning other security
properties) we will assume that each rule has an associated priority.

Our rules will be an abstraction of the accept (also permit) and reject (also
deny) rules which can be found in many packet filters such as, for example, Cisco
routers [7], ipchains and iptables [13]. The rules will use the following fields from
the IP protocol header: next level protocol (e.g., TCP, UDP or ICMP), source and
destination IP addresses. In addition, some fields for upper level protocols, such as
TCP and UDP port numbers, can be used. It will also be possible to specify entire
subnets in place of single IP addresses, and to use wildcards when specifying the
protocol or port numbers.

Since a firewall checks packets that try to pass the barrier in both directions,
we should provide a separate list for the packets that try to enter and those trying
to leave each of the regions separated by the firewall.

Another aspect that we have to take into account is that the segments of a
network may be interconnected in an arbitrary way. Further, two segments may



182 A. Leporati, C. Ferretti

possibly be connected by two (or even more) network interfaces, that is, two seg-
ments may have multiple connections. This means that if we want to associate
a membrane to each segment of the network we have to use a model similar to
tissue P systems. In what follows we refer to this model — that will be formally
defined in the next section — as firewall P systems. Figure 2 represents a sketch
of the structure of a firewall P system. Nodes are labelled with the name of the
segment or zone of the network, and edges show the existing connections between
zones. The small circles located on the borders of the membranes represent the
lists of rules that filter the packets incoming to the membranes through the cor-
responding edges. So, for example, Segment1 is a zone connected to Gateway by
means of two network interfaces. The two small circles located on the membrane
of Segment1 represent the two lists of rules that control the incoming traffic in the
zone named Segment1. The corresponding small circles located on the membrane
named Gateway represent the lists of rules that filter the packets that come from
Segment1 and try to enter the zone Gateway. The precise form of the rules that
compose these lists, as well as of the objects upon which these rules operate, is
the subject of the next section.

3 The P Systems Model

In this section we give a precise definition of all the ingredients of our model of
firewall P systems.

The objects represent IP packets. For the purposes of this paper, IP packets
are represented as six-tuples

(protocol, src IP, dst IP, src port, dst port, gateway), where:

• protocol ∈ {TCP, UDP, ICMP};
• src IP and dst IP represent the source and destination address in the usual

form (a quartet of integer numbers, each in the range 0..255);
• src port and dst port are integer numbers in the range 0..65535 that represent

the source and the destination port associated with the source and destina-
tion address, respectively. These fields are meaningful only when protocol ∈
{TCP, UDP};

• gateway is an identifier of the edge to be followed at the next hop. It is used
for routing purposes.

Note that in real IP packets there are other fields (such as flags) that we do not
consider in this paper.

A rule is a quadruple of the form

(priority, action, in fields, out fields), where:

• priority is a non-negative integer that specifies the priority of the rule;
• action ∈ {accept, reject, drop} specifies how the packet filter should treat

packets matched by the rule;



Modeling and Analysis of Firewalls by (Tissue-like) P Systems 183

• in fields is a six-tuple of the form

(protocol, src IP/subnet, dst IP/subnet, src port, dst port, gateway),

where:
– protocol ∈ {TCP, UDP, ICMP, any}. The value any is treated as a wild-

card;
– src IP and dst IP represent the source and destination address in the usual

form (a quartet of integer numbers, each in the range 0..255). The subfield
subnet is an integer in the range 0..32, and allows to specify subnets (that
is, sets of IP addresses) in the customary way: it indicates that the specified
number of bits of the IP address — starting from the most significant bit
— are fixed (as specified in the address), whereas the others may assume
any value. So, for example, the subnet 192.168.1.0/30 is composed by the
IP addresses 192.168.1.x, where x ∈ {0, 1, 2, 3}.
Alternatively, src IP and/or dst IP may assume the special value (wildcard)
any. In such a case, the subfield subnet is not specified;

– src port and dst port are integer numbers in the range 0..65535 that rep-
resent the source and the destination port (if protocol ∈ {TCP, UDP}) as-
sociated with the source and destination address/subnet, respectively. Also
in this case, src port and/or dst port may assume as a value the wildcard
any;

– gateway is an identifier (that is, a label) of the edge to which the rule is
associated;

• out fields is a six-tuple of the form

(protocol, src IP, dst IP, src port, dst port, gateway),

whose fields and values are defined exactly as those appearing in the objects of
the system. Additionally, each field may assume the special value same, which
indicates that the rule does not change the value of the field (that is, the value
already present in the analyzed object is kept).

A rule r matches an object o if the fields specified in in fields match. The fields
protocol, src port and dst port match if they are equal (in the object and in the
rule), or if the field in the rule contains the wildcard any. The field src IP of o
matches the field src IP/subnet of r if the former IP address is contained in the
subnet (set of IP addresses) of the latter. This definition includes the case in which
the rule specifies a single IP address. The same criteria are applied when matching
the field dst IP of o with the field src IP/subnet of r. The fields gateway match if
and only if they are equal (in the object and in the rule).

The lists of rules are associated to the membranes, rather than to the regions
enclosed by them, as is customary in membrane computing. Each list of rules
checks the packets coming from a specific region, seeking to enter into the region
enclosed by the membrane that contains the rules. As stated above, each list of
rules is processed in the order given by priorities, until a match is found. The
first matching rule specifies the action taken by the filter on the given object. In



184 A. Leporati, C. Ferretti

case two or more rules having the same priority match (a situation that should
not occur, since it denotes a misconfiguration), a nondeterministic choice is made
between such rules.

The application of an accept rule to an object o has the effect of letting the
object enter the zone delimited by the membrane that contains the rule. Precisely,
the object is removed from the system and a new object is created, with the same
values of the fields as those of o but for the fields of out fields different from same,
which are rewritten with the new values specified in the rule. So doing it is possible
to simulate port forwarding, an important feature of firewalls that allows to redirect
the incoming traffic towards the appropriate server, which is supposed to be in a
specific zone of the network (unknown to anyone located outside). The application
of a reject rule is similar: the incoming object is removed from the system and
a new special object, representing an ICMP error packet, is created. The source
and destination IP addresses of the new packet are exchanged with respect to the
packet given as input, so that the new packet goes back to the sender to signal
that its previous IP packet has been rejected. The destination port is set equal to
the source port of the original packet, whereas the source port is simply put to
0. Since all these fields of the resulting packet are so determined, when writing a
reject rule the only argument of out fields which is meaningful is gateway, which
indicates the direction to be followed to go back to the sender; all the other fields
are ignored. The application of a drop rule simply removes the object from the
system, without producing any new object. In this case, the argument out fields
can be omitted.

When a new object has been created as the result of the application of a
rule, it is put in the region enclosed by the membrane, ready to be processed
by the next list of rules. Such a list is located at the end of the edge which is
uniquely determined by the gateway parameter; the presence of this field thus
allows to simulate also routing tables, and is particularly useful when two regions
are connected by two or more edges. Of course there may already be other objects
waiting to be matched against these rules; at the next computation step, one
of these objects will be chosen in a nondeterministic way and will be processed,
according to the sequential mode of applying the rules. Since no object may be
processed by two or more lists of rules in the same computation step, each list
can be operated in parallel with the others. This situation is similar to what
happens with spiking neural P systems [8], where each neuron applies its rules in
the sequential way but all neurons work in parallel.

We conclude this section by giving the formal definition of our model of P sys-
tems. A firewall P system, of degree m ≥ 1, is a tuple Π = (O,Z1, . . . , Zm, conn),
where:

• O is the set of objects, which represent IP packets as described above;
• Z1, . . . , Zm are the membranes (cells) of the system, each representing a zone

of the network. Each membrane is a tuple Zi = (wi, Li1 , . . . , Lik
), where wi is

the multiset of objects initially present in the membrane, and k is the number
of incoming edges (in-degree) of Zi. For every j ∈ {1, 2, . . . , k}, Lij is a set of



Modeling and Analysis of Firewalls by (Tissue-like) P Systems 185

rules, associated to Zi and to the j-th incoming edge, having the form described
above:
– (priority, accept, in fields, out fields)
– (priority, reject, in fields, out fields)
– (priority, drop, in fields)

• conn =
{{i, j} : i, j ∈ {1, 2, . . . ,m} and i 6= j

}
is the multigraph (that is, a

multiset of edges) of connections between the membranes.

A configuration of a firewall P system Π is described by the multisets of ob-
jects contained in its membranes. The initial configuration is the one in which
membrane Zi contains the multiset wi, for all i ∈ {1, 2, . . . , m}. A computation
step changes the current configuration by applying the rules as described above.
In particular, we recall that at every computation step each list of rules chooses
in a nondeterministic way an object among those which have to be processed by
such rules. Moreover, the lists operate with maximal parallelism: if at least one
object exists which has to be processed by a given list of rules, then one of these
objects must be chosen and matched against the rules. A final configuration is
a configuration in which no rule can be applied. As usual, a computation starts
from an initial configuration and produces configurations by applying computation
steps. The computation halts if it reaches a final configuration. By identifying an
input membrane Zin and an output membrane Zout, with in, out ∈ {1, 2, . . . ,m},
we can define a computation device that transforms input multisets into output
multisets: the input of the computation is win, whereas the output is the con-
tents of membrane Zout in the final configuration, if it is reached. Non-halting
computations produce no output. By considering the Parikh vectors associated
with multisets, we immediately obtain also a computation device that transforms
vectors of natural numbers into vectors of natural numbers.

4 One Membrane Suffices

Let us give now some insight on the computational power of firewall P systems.
As stated in the Introduction, we envision that our systems will be used to

mathematically prove some security properties. Such proofs will be obtained by
considering reachability problems. So, for example, we could prove that a certain
kind of TCP packets will never reach a specified zone of the network by showing
that no configuration which can be reached from the initial configuration contains
that kind of packets in that zone. This means that our P systems should not
be Turing-complete, otherwise the reachability problem would be undecidable.
However, it is easily proved that firewall P systems are not universal: since objects
are never created (rules can only modify an object or remove it from the system,
and no object can enter the system from the environment during the computation,
as it happens with tissue P systems), no output which contains more objects than
those given in the initial configuration may be produced.



186 A. Leporati, C. Ferretti

Establishing the precise computational power of firewall P systems is left as an
open problem. In this section we just prove that firewall P systems can be simulated
by single-membrane transition P systems using non-cooperative rewriting rules
with priorities and catalysts. If the simulated firewall P system would operate
in the sequential mode (meaning that lists of rules do not work in the maximally
parallel way) this would mean that they would generate at most the Parikh images
of ET0L languages [18]. However, in order to correctly simulate the maximally
parallel application of the lists of rules — while maintaining sequentiality between
the rules of the same list — we have to use a catalyst for each list of rules.

Theorem 1. Firewall P systems can be simulated by single-membrane transition
P systems using non-cooperative rewriting rules with priorities and catalysts.

Proof. Let Π = (O, Z1, . . . , Zm, conn) be a firewall P system, where Zi =
(wi, Li1 , . . . , Lik

). We build a transition P system Π ′ = (A,µ, w, R) that simu-
lates Π as follows. The alphabet A is composed of objects which can be seen as
seven-tuples

(region, protocol, src IP, src port, dst IP, dst port, gateway)

where (protocol, src IP, src port, dst IP, dst port, gateway) is an object of Π, and
region keeps track of the region which contains the object. Moreover, alphabet
A contains also a symbol ] 6∈ O, and a symbol ci,j 6∈ O for each set of rules Lj

of simulated membrane Zi. The membrane structure µ is composed by a single
membrane, the skin. The multiset w of the objects initially present in the skin
membrane is built from the multisets wi by adding to each object o ∈ wi the new
value of the region component (that, for wi, is equal to i). This initial multiset
also contains a single copy of each symbol ci,j ∈ A.

The set R of rewriting rules is obtained from the lists of rules of Π as follows.
Let ri,j = (priority, accept, in fields, out fields) be an accept rule of Π, associ-
ated with membrane i and its incoming edge j. This rule produces a set Ri,j of
rewriting rules in Π ′, where each rule is obtained by specifying a source and a
destination IP address, taken from the subnets specified in in fields in all possible
ways. For every pair (src IP, dst IP) of IP addresses a rule aci,j → bci,j ∈ Ri,j is
generated, where a is the object that represents the IP packet being analyzed, and
b represents the packet modified according with the values of out fields. Object
ci,j is a catalyst, unique to membrane i and its incoming edge j, which is used to
make the application of rules from the same list sequential; indeed, for all i and
j, system Π ′ contains a single copy of ci,j . The value of region in b is i, while the
value of region in a is put equal to the membrane which is connected to membrane
i through its incoming edge j. The priority of the rule is set equal to the value of
priority from ri,j . Each reject rule produces an analogous set of rewriting rules,
whereas all drop rules generate rewriting rules in which the output object is ], that
does not appear in the left hand side of any rule. The set R of rules is obtained as
the union of all sets Ri,j thus generated.

The system Π ′ thus generated operates in the maximally parallel way. Due to
the presence of catalysts, the rules occurring in the same list of Π are simulated



Modeling and Analysis of Firewalls by (Tissue-like) P Systems 187

by Π ′ in the sequential way. It is not difficult to see that each computation step of
Π corresponds to a computation step of Π ′, and hence that Π ′ simulates Π. ut

Please note that in firewall P systems we can have rules with wildcard patterns
when the fields src IP/subnet, dst IP/subnet have a subfield subnet of value less
than 32, or anywhere a value any is used in a field, but these wildcards will have
matches only over a predefined finite set of values (valid IP addresses, protocols,
. . . ). Ours is therefore just a syntactic short notation for finite sets of usual P
rules, and this comes into play also in the previous proof, when building the set
of rules of the simulating transition P system.

Remark.

The possibility of modeling a network of firewalls by an equivalent single formal
element has been studied also in a completely different technical context, when
using SAT instances as a representation of the system [9]. Moreover, this property
suggests the interesting perspective of having actual network systems where all
the subnets are seen as a single region. In the actual implementation of such a
system, we could consider to write in the header of IP packets the value of the
region component used by our single membrane model, and anywhere a packet
would arrive, it would be filtered/transformed by active elements of the network.
This technological approach could enhance network security, since filtering would
no longer happen only in firewalls on the borders, with the trouble of them being
“single points of failure”, but consistently anywhere on the network.

5 Conclusions and Directions for Future Work

In this paper we have modeled the functioning of firewalls, routers, and other
simple rule filters by a tissue-like model of P systems. After a description of the
features of this model, we have formally defined it and we have shown that it can
be easily simulated by a single-membrane P system. We can thus argue that what
is seen as an important and difficult problem in the practice of computer networks
(analyzing and understanding long lists of filtering rules) is indeed a very simple
task in the theory of membrane systems.

Future work includes further analysis of the features of packet filters and of the
properties of the corresponding P systems. In particular, it should be interesting
to see how the algorithms currently proposed in the literature (such as those in
[3, 4, 5]) to solve common firewall misconfiguration problems map themselves to the
model of P systems we have proposed. Also some new algorithms may be devised,
based upon the new point of view given by P systems. Since many simulators of
P systems already exist, an interesting development is to test the application of P
systems described in the current paper against real cases.

Acknowledgements. This work was partially supported by the Italian project
FIAR 2008 “Modelli di calcolo naturale e applicazioni alla systems biology”.



188 A. Leporati, C. Ferretti

References

1. P. Eronen, J. Zitting. An expert system for analyzing firewall rules. In Proceedings of
the 6th Nordic Workshop on Secure IT Systems (NordSec 2001), 2001, pp. 100–107.

2. J.D. Guttman. Filtering postures: local enforcement for global policies. In Proceedings
of the 1997 IEEE Symposium on Security and Privacy, 1997.

3. A. Hari, S. Suri, G. Parulkar. Detecting and resolving packet filter conflicts. In Pro-
ceedings of IEEE INFOCOM 2000, 2000, pp. 1203–1212.

4. S. Hazelhurst. Algorithms for analysing firewall and router access lists. Technical Re-
port TR-Wits-CS-1999-5, Department of Computer science, University of the Wit-
watersrand, South Africa, 1999.

5. S. Hazelhurst, A. Attar, R. Sinnappan. Algorithms for improving the dependability
of firewall and filter rule lists. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN 2000), IEEE Computer Society Press, 2000,
pp. 576–585.

6. S. Hazelhurst, A. Fatti, A. Henwood. Binary decision diagram representations of
firewall and router access lists. Technical Report TR-Wits-CS-1998-3, Department of
Computer Science, University of Witwatersrand, South Africa, 1998.

7. K. Hundley, G. Held. Cisco access lists field guide. McGraw-Hill, 2000.
8. M. Ionescu, Gh. Păun, T. Yokomori. Spiking neural P systems. Fundamenta Infor-

maticae 71(2-3):279–308, 2006.
9. A. Jeffrey, T. Samak. Model checking firewall policy configurations. In Proc. of the

2009 IEEE Symposium on Policies for Distributed Systems and Networks, 2009, pp.
60–67.

10. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón. A new class of symbolic
abstract neural nets: tissue P systems. Computing and Combinatorics, 8th Annual
International Conference, COCOON 2002, LNCS 2387, Springer, Berlin, 2002, pp.
290–299.

11. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón. Tissue P systems. Theo-
retical Computer Science, 296(2):295–326, 2003.

12. A. Mayer, A. Wool, E. Ziskind. Fang: A firewall analysis engine. In Proc. of the 2000
IEEE Symposium on Security and Privacy, 2000, pp. 177–187.

13. The netfilter/ipchains/iptables web page: http://www.netfilter.org/
14. The P systems web page: http://ppage.psystems.eu/
15. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,

61:108–143, 2000.
16. Gh. Păun. Membrane computing. An introduction. Springer, 2002.
17. Gh. Păun, G. Rozenberg. An introduction to and an overview of membrane comput-

ing. In Gh. Păun, G. Rozenberg and A. Salomaa (eds.), The Oxford Handbook Of
Membrane Computing, Oxford University Press, 2010, pp. 1–27.

18. D. Sburlan. Non-cooperative P systems with priorities characterize PsET0L. In Mem-
brane Computing, 6th International Workshop, WMC 2005, LNCS 3850, Springer,
2006, pp. 363–370.

19. A.S. Tanenbaum. Computer networks. Prentice Hall, 2002.


