Some Open Problems Collected
During 7th BWMC

Gheorghe Paun

Institute of Mathematics of the Romanian Academy

PO Box 1-764, 014700 Bucuresti, Romania

and

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
george.paun@imar.ro, gpaunC@us.es

Summary. A few open problems and research topics collected during the 7th Brain-
storming Week on Membrane Computing are briefly presented; further details can be
found in the papers included in the volume.

1 Introduction

This is a short list of open problems and research topics which I have compiled dur-
ing the Seventh Brainstorming Week on Membrane Computing (BWMC), Sevilla,
2-6 February 2009. Different from the previous years, when such lists (much more
comprehensive) were circulated before the meeting, this time the problems were
collected during and inspired by the presentations in Sevilla. Most of the problems
directly refer to these presentations, hence for further details, in several cases for
(preliminary) solutions, the reader should consult the present volume. This list is
only a way to call attention to the respective ideas, not necessarily a presentation
of the state-of-the-art of the research related to these problems.

Of course, the reader is assumed familiar with membrane computing, so that
no preliminaries are provided. As usual, for basic references, the book [17], the
handbook [21], and the membrane computing website [25] are suggested.

The problems are identified by letters, with no significance assigned to the
ordering.

2 Open Problems

A. The following problem was considered in [5] and then in [3], as an extension
to P systems of a problem well known for cellular automata (where it is called the

https://core.ac.uk/display/51401652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

198 Gh. Paun

“firing squad synchronization problem”, FSSP for short): Find a class of cell-like
P systems where all membranes except the skin one may contain given objects,
input some objects in the skin region, and aim to reach a configuration where each
region contains a designated object F, all regions get this object at the same time,
and, moreover, the system stops at that step. (A more technical presentation of
the problem can be found in the cited papers.)

I recall from [3] some lines from the end of the Introduction: “The synchro-
nization problem as defined above was studied in [5] for two classes of P systems:
transitional P systems and P systems with priorities and polarizations. In the first
case, a non-deterministic solution to FSSP was presented and for the second case
a deterministic solution was found. These solutions need a time 3h and 4n + 2h
respectively, where n is the number of membranes of a P system and h is the depth
of the membrane tree.

In this article we significantly improve the previous results in the non-deter-
ministic case. In the deterministic case, another type of P system was considered
and this permitted to improve the parameters. The new algorithms synchronize
the corresponding P systems in 2h + 3 and 3h + 3 steps, respectively.”

Of course, these results depends on the type of P systems used. In particu-
lar, in both papers one makes use of a powerful communication command, of a
broadcasting type: in! target indications can be associated with objects, with the
meaning that the objects marked with in! are sent to ALL membranes placed in-
side the membrane where the rule containing the command in! was used. This is
a very powerful feature, somewhat related to the considered issue itself, so that
the natural question is whether or not one can get rid of in!. This will probably
imply some cost, for instance, in terms of the time needed for synchronization, or
—as A. Alhazov pointed out during BWMC — in the knowledge we assume to have
(inside the system) about the starting systems (degree, depth, etc.).

A related topic is to consider synchronization issues for other classes of P
systems: symport/antiport, active membranes, maybe also for spiking neural P
systems (where the object F' should be replaced with a specified number of spikes).

Actually, because of its interest (and presumably, of its difficulty, at least to
define it), this can be formulated as a separate problem:

B. Define and investigate synchronization problems for spiking neural P systems
(SN P systems).

C. Synchronization can suggest another problem, which has appeared from time
to time in various contexts (for instance, when constructing SN P systems for
simulating Boolean circuits, see [11]): reset a system to its initial configuration
after completing a specified task. As in the case of synchronization, we need to
consider various classes of P systems and, if the resetting is possible for them, we
have to look for the time of doing this.

A possible way to address this problem is the following one: let us choose a
class of P systems which halts the computation by sending a specified object to the
environment (this is the case with the systems used in solving computationally hard

Some Open Problems Collected During 7th BWMC 199

problems in a feasible time; those systems are in general with active membranes,
membrane creation, etc.), AND for which the synchronization problem can be
solved; when a system halts and produces an object, say, T, we use this object in
order to start the synchronization phase; when the synchronization is completed,
the object F' introduced in each membrane is used for restoring the contents of
that membrane as in the beginning of the computation. Of course, there are several
difficulties here: is it possible to work with systems whose membrane structure
evolves during the computation? (I guess, not); it is easy to introduce the objects
present in the initial configuration starting from F', but how the “garbage” objects,
those remaining inside in the end of a computation, can be removed? (this needs
some kind of context sensitivity, for instance, using F' as a promotor of erasing
rules, or other similar ideas).

Needless to say that the resetting problem is of a particular interest for SN P
systems, but this time I do not formulate this subproblem separately.

The reset problem can probably be addressed also from other points of view
and in other contexts. An idea is to have somewhere/somewhow in the system
a description of the system itself (a sort of “genome”, in a “nucleus”) and in
the end of the computation to simply destroy the existing system, at the same
time reconstructing it from its description, which amounts at resetting the initial
system. Some related ideas, problems, and techniques are discussed, in a different
set-up, in [6].

D. Let us continue with SN P systems, whose study is far from being exhausted,
and which benefits of many suggestions coming from neurology, psychology, com-
puter science. A problem suggested by Lingiang Pan and then preliminarily dealt
with in [15] is the following: is it possible to work with SN P systems (in particular,
having characterizations of Turing computable sets of numbers or recursively enu-
merable languages) which have neurons of a small number of types? By a “type”
we can understand either only the set of rules present in a neuron (an SN P system
whose neurons are of at most &k such types is said to be in the kR-normal form),
or we can consider both the set of rules and the number of spikes initially present
in the neuron (and then we speak about SN P systems in the knR-normal form,
if they have neurons of at most k such types).

In [15] it is proved that each recursively enumerable set of natural numbers can
be generated by an SN P system (without forgetting rules, but using delays) in
the 3R-normal form when the number is obtained as the distance between spikes
or when the number is given by the number of spikes from a specified neuron,
but two types of neurons suffice in the accepting case. Slightly bigger values are
obtained when we also consider the number of spikes initially present in a neuron
for defining the “type” of a neuron: five and three, respectively.

A lot of open problems can now be formulated: First, we do not know whether
or not these results can be improved. How these results extend to other classes of
SN P systems? (Do the forgetting rules help? What about extended rules, about
asynchronous SN P systems, systems with exhaustive use of rules, etc?) What
about SN P systems which generate languages, or about universal SN P systems?

200 Gh. Paun

E. A problem about SN P systems which was formulated also earlier — see, e.g.,
problem G in [18] — concerns the possibility of dividing neurons, in general, of
producing an exponential working space in a linear number of steps, in such a
way to be able to solve computationally hard problems in a feasible time. Up to
now, no idea how to divide neurons was discussed, although this operations was
considered for cells in tissue-like P systems; see, e.g., [20]. What is really exciting is
that a recent discovery of neuro-biology provides biological motivations for neuron
division: there are so called neural stem cells which divide repeatedly, either with-
out differentiating, hence producing further neural stem cells, or differentiating,
so making possible the production of an exponential number of mature neurons;
details can be found in [7].

In terms of SN P systems, we can easily capture the idea of having several
types of neurons, for instance, using polarizations, as in P systems with active
membranes. On the other hand, each neuron also has a label; if by division we
obtain two new neurons with the same label, then polarizations are perhaps nec-
essary; if we allow producing new neurons with labels different from the divided
neuron, then the polarization can be included in the label (label changing can
account also of polarizations).

However, the difficulties lie in other places. First, in SN P systems the contents
of a neuron is described by the number of spikes it contains, and this number is
usually controlled/sensed by means of a regular expression over alphabet {a}. This
seems to be also the most natural idea for controlling the division, which leads to
rules of the general form

[E]l - [El]j[Q]kﬂ

where E| Ey, Es are regular expressions over {a}, and i, j, k are labels of neurons
(the labels of the produced neurons tell us which are the rules used in those
neurons). By using such a rule, a neuron o; containing n spikes such that a™ €
L(F) divides into two neurons, with labels j and k, containing n; and ns spikes,
respectively, such that n = n; 4+ na, and ™ € L(F4), a™ € L(E2).

Now, the second important point/diffficulty appears: which are the synapses
of the new neurons? There are two possibilities: to have the neurons places “in
parallel” and to have them placed “serially/in cascade”. In the first case, no con-
nection exists between the two new neurons, but both of them inherit the links of
the father neuron; in the second case, neuron o; inherits the synapses coming to
0;, neuron oy inherits the synapses going out of o;, while a synapse (4, k) is also
established. In order to distinguish the two interpretations, the rules are written
as follows:

(a) [E]; = [Ea] [l Bzl
®) [E], — [Ei]/] Bal,
and the semantics described above is illustrated in Figure 1.

The use of these rules was already explored in [16], where SAT is solved in
polynomial time by SN P systems having the possibility of dividing neurons. The

Some Open Problems Collected During 7th BWMC 201

Fig. 1. Dividing neurons — two cases

solution is uniform. Is it possible to use only neuron division where the labels
are not changed? (A more intensive use of the regular expressions controlling the
division might be helpful, maybe also the use of polarizations, hence of suggestions
coming from neural stem cells.) What about solving more difficult problems, for
instance, QSAT (so that to cover PSPACE)?

In general, complexity investigations related to SN P systems need further
efforts.

F. Both for stressing its interest and also because is related to the previous prob-
lem, I recall /reformulate here another problem from [18], problem N, about using
pre-computed resources in solving hard problems by means of SN P systems. The
motivation is clear, several papers have considered this idea, directly producing
solutions to well-known problems, but still a more general approach is missing.
The basic issue is to say which pre-computed (arbitrarily large) nets of neurons
are allowed, how much information may be given “for free” (and how it can be
evaluated /measured), how complexity classes should look like in this framework?
A possible way to address some of these questions is to mix the idea of dividing
neurons with that of pre-computed resources, and to build a net of neurons start-
ing from a few given neurons, with a limited contents. This approach moves the
pre-computation in the computation, with the important difference being that the
time of the pre-computation (of “programming”) is ignored as long as the pro-

202 Gh. Paun

duced system contains a limited quantity of information. (We return to the main
problem: how to define and measure the information present in a system?) In the
present volume there is a contribution related to this problem, namely [?], which
address this issue starting from rules able to create neurons and synapses, hence
to provide a dynamical SN P system.

G. Continuing with SN P systems, a problem which was vaguely formulate from
time to time, but only orally, refers to a basic feature of the brain, the memory.
How can this be captured in terms of SN P systems is an intriguing question. First,
what means “memory”? In principle, the possibility to store some information for
a certain time (remember that there is a short term and also a long term memory),
and to use this information without losing it. For our systems, let us take the case
of storing a number; we need a module of an SN P system where this number is
“memorized” in such a way that in precise circumstances (e.g., at request, when
a signal comes from outside the module), the number is “communicated” without
“forgetting” it. In turn, the communication can be to only one destination or to
several destinations. There are probably several ways to build such a module. The
difficulty comes from the fact that if the number n is stored in the form of n spikes,
“reading” these spikes would consume them, hence it is necessary to produce copies
which in the end of the process reset the module. This is clearly possible in terms
of SN P systems, what remains to do is to explicitly write the system. However,
new questions appear related to the efficiency of the construction, in terms of
time (after getting the request for the number n, how many steps are necessary
in order to provide the information and to reset the module?), and also in terms
of descriptional complexity (how many neurons and rules, how many spikes, how
complex rules?). It is possible that a sort of “orthogonal” pair of ideas are useful:
many spikes in a few neurons (n spikes in one neuron already is a way to store the
number, what remains is to read and reset), or a few spikes in many neurons (a
cycle of n neurons among which a single spike circulates, completing the cycle in
n steps, is another “memory cell” which stores the number n; again, we need to
read and reset, if possible, using only a few spikes). Another possible question is
to build a reusable module, able to store several numbers: for a while (e.g., until
a special signal) a number n; is stored, after that another number ny, and so on.

H. The previous problem can be placed in a more general set-up, that of mod-
eling other neurobiological issues in terms of SN P systems. A contribution in
this respect is already included in the present volume, [13], where the sleep-awake
passage is considered. Of course, the approach is somewhat metaphorical, as the
distance between the physiological functioning of the brain and the formal struc-
ture and functioning of an SN P system is obvious, but still this illustrates the
versatility and modeling power of SN P systems. Further biological details should
be considered in order to have a model with some significance for the brain study
(computer simulations will then be necessary, like in the case of other applications
of P systems in modeling biological processes). However, also at this formal level
there are several problems to consider. For instance, what happens if the sleeping

Some Open Problems Collected During 7th BWMC 203

period is shortened, e.g., because a signal comes from the environment? Can this
lead to a “damage” of the system? In general, what about taking the environment
into account? For instance, we can consider a larger system, where some modules
sleep while other modules not; during the awake period it is natural to assume
that the modules interact, but not when one of them is sleeping, excepting the
case of an “emergency”, when a sleeping module can be awakened at the request
of a neighboring module. Several similar scenarios can be imagined, maybe also
coupling the sleep-awake issue with the memory issue.

I. Let us now pass to general P systems, where still there are many unsettled
problems and, what is more important for the health of membrane computing,
there still appear new research directions. One of them was proposed and prelim-
inarily explored in [23]: space complexity for P systems. It is somewhat surprising
that this classic complexity issue was not considered so far, while the time com-
plexity is already intensively investigated. We do not enter here into any detail —
anyway, the details are moving fast in this area — but we refer to the mentioned

paper.

J. Remaining in the framework of complexity, it is worth noting a sound recent
result, the first one of this type, dealing with the relation between uniform and
semi-uniform solutions to (computationally hard) problems. In [24] one produces a
first example where semi-uniform constructions cover a strictly larger family than
the uniform one. There also are classes of P systems for which the two approaches,
uniform and semi-uniform, characterize the same family of problems — see, e.g.,
[22]. However, as also in [24] is stated, it is highly possible — and definitely of
interest to find it — that the separation between uniform and semi-uniform families
is strict for further classes of P systems.

K. Similarly short formulations (actually, only pointing out the problem and the
main reference, always from the present volume) will also have the next problems.
First, the idea of merging two “classic” topics in membrane computing: P systems
with active membranes and P systems with string objects. Up to now only P
systems with active membranes and with symbol objects were considered, but the
necessity to mix the two ideas arose in [2] in the framework of a specific application.
It is also natural to investigate this kind of systems as a goal per se, mainly from
the complexity (descriptional and computational — and here both time and space)
points of view.

L. A related general problem is suggested by the above paper [2]: looking for
other “practical” problems, of known polynomial complexity, but which are so
frequent and important that as efficient as possible solutions are desirable. The
mentioned paper considers such a problem: search and updating of dictionaries.
Many other problems can probably be addressed in terms of membrane computing,
with good (theoretical) results. And, as it happens also in the case of [2], it is also

204 Gh. Paun

possible that new classes of P systems will emerge in this context, as requested by
the respective applications.

M. A problem several times mentioned, also addressed from various angles in
several places concerns the general idea of “going backwards”. Sometimes it is
directly called computing backwards, as in [8], other times one speaks about dual
P systems, as in [1], about reversible P systems, as in [12]. In the present volume,
the reversibility is addressed again, in [4], but the question still deserves further
research efforts.

N. Iclose this short list of research topics by mentioning the one proposed in [14]
— the title is self-explanatory, so I do not enter into other details, but I mention that
the issue seems rather promising, both theoretically (composition-decomposition,
structural/descriptional complexity, etc.) and from the applications point of view.

Lists of open problems were presented in all previous brainstorming volumes
— the reader can find them at [25]. There also exists an attempt to follow the
research and to present the known solutions to some of these problems — see [19].

Acknowledgements

Work supported by Proyecto de Excelencia con investigador de recognoscida valia,
de la Junta de Andalucia, grant P08 — TIC 04200.

References

1. O. Agrigoroaiei, G. Ciobanu: Dual P systems. Membrane Computing - 9th Interna-
tional Workshop, LNCS 5391, 2009, 95-107.

2. A. Alhazov, S. Cojocaru, L. Malahova, Y. Rogozhin: Dictionary search and update
by P systems with string-objects and active membranes. In the present volume.

3. A. Alhazov, M. Margenstern, S. Verlan: Fast synchronization in P systems. Membrane
Computing, 9th Intern. Workshop. Edinburgh, UK, July 2008 (D.W. Corne et al eds.),
LNCS 5391, Springer, Berlin, 2009, 118—-128.

4. A. Alhazov, K. Morita: A short note on reversibility in P systems. In the present
volume.

5. F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan: How to synchronize the
activity of all components of a P system? Prof. Intern. Workshop Automata for
Cellular and Molecular Computing (G. Vaszil, ed.), Budapest, Hungary, 2007, 11-22.

6. E. Csuhaj-Varju, A. Di Nola, Gh. Paun, M.J. Pérez-Jiménez, G. Vaszil: Editing
configurations of P systems, Third Brainstorming Week on Membrane Computing,
Sevilla, 2005, RGNC Report 01/2005, 131-155, and Fundamenta Informaticae, 82,
1-2 (2008), 29-46.

7. R. Galli, A. Gritti, L. Bonfanti, A.L. Vescovi: Neural stem cells: an overview. Circu-
lation Research, 92 (2003), 598-608.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Some Open Problems Collected During 7th BWMC 205

M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez: Computing backwards with P systems.
In the present volume.

O.H. Ibarra, A. Paun, Gh. Paun, A. Rodriguez-Patén, P. Sosik, S. Woodworth: Nor-
mal forms for spiking neural P systems. Theoretical Computer Sci., 372, 2-3 (2007),
196-217.

M. Tonescu, Gh. Paun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279-308.

M. Tonescu, D. Sburlan: Some applications of spiking neural P systems. Proc. WMCS8,
Thessaloniki, June 2007, 383-394, and Computing and Informatics, 27 (2008), 515
528.

A. Leporati, C. Zandron, G. Mauri: Reversible P systems to simulate Fredkin circuits.
Fundam. Inform., 74, 4 (2006), 529-548.

J.M. Mingo: Sleep-awake switch with spiking neural P systems: A basic proposal and
new issues. In the present volume.

R. Nicolescu, M.J. Dinneen, Y.-B. Kim: Structured modeling with hyperdag P sys-
tems: Part A. In the present volume.

L. Pan, Gh. Paun: New normal forms for spiking neural P systems. In the present
volume.

L. Pan, Gh. Paun, M.J. Pérez-Jiménez: Spiking neural P systems with neuron division
and budding: In the present volume.

Gh. Paun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

Gh. Paun: Twenty six research topics about spiking neural P systems. Fiftth Brain-
storming Week on Membrane Computing (M.A. Gutiérrez-Naranjo, et al., eds.),
Sevilla, January 29-February 2, 2007, Fenix Editora, Sevilla, 2007, 263—280.

Gh. Paun: Tracing some open problems in membrane computing, Romanian J. In-
formation Sci. and Technology, 10, 4 (2007), 303-314.

Gh. Paun, M. Pérez-Jiménez, A. Riscos-Nufiez: Tissue P systems with cell division.
Second Brainstorming Week on Membrane Computing (A. Riscos-Nunez et al. eds.),
Technical Report 01/04 of RGNC, Sevilla University, Spain, 2004, 380-386, and
Intern. J. Computers. Comm. Control, 3, 3 (2008), 295-303.

Gh. Paun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-
ford University Press, 2009.

M.J. Pérez-Jiménez, A. Riscos-Niiiez, A. Romero-Jiménez, D. Woods: Complexity
— Membrane division, membrane creation. In [21], in press.

A.E. Porreca, A. Leporati, G. Mauri, C. Zandron: Introducing a space complexity
measure for P systems. In the present volume.

D. Woods, N. Murphy:

The P Systems Website: http://ppage.psystens.eu.

