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Summary. Besides usual spikes employed in spiking neural P systems, we consider
“anti-spikes”, which participate in spiking and forgetting rules, but also annihilate spikes
when meeting in the same neuron. This simple extension of spiking neural P systems
is shown to considerably simplify the universality proofs in this area: all rules become
of the form bc → b′ or bc → λ, where b, b′ are spikes or anti-spikes. Therefore, the
regular expressions which control the spiking are the simplest possible, identifying only
a singleton. A possible variation is not to produce anti-spikes in neurons, but to consider
some “inhibitory synapses”, which transform the spikes which pass along them into anti-
spikes. Also in this case, universality is rather easy to obtain, with rules of the above
simple forms.

1 Introduction

The spiking neural P systems (in short, SN P systems) were introduced in [4], and
then investigated in a large number of papers. We refer to the respective chapter
of [7] for general information in this area, and to the membrane computing website
from [9] for details.

In this note, we consider a variation of SN P systems which was suggested
several times, i.e., involving inhibitory impulses/spikes or inhibitory synapses and
investigated in a few papers under various interpretations/formalizations – see,
e.g., [1], [2], [5], [8]. The definition we take here for such spikes – we call them
anti-spikes (somewhat thinking to anti-matter) – considers having, besides usual
“positive” spikes denoted by a, objects denoted by ā, which participate in spiking
or forgetting rules as usual spikes, but also in implicit rules of the form aā → λ:
if an anti-spike meets a spike in a given neuron, then they annihilate each other,
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and this happens instantaneously (the disappearance of one a and one ā takes no
time, it is like applying the rule aā → λ without consuming any time for that).

This simple extension of SN P systems is proved to entail a surprising simpli-
fication of both the proofs and the form of rules necessary for simulating Turing
machines (actually, the proofs here are based on simulating register machines) by
means of SN P systems: all rules have a singleton regular expression, which, more-
over, indicates precisely the number of spikes or anti-spikes to consume by the
rule. (Precisely, we have rules of the forms bc → b′ or bc → λ, where b, b′ are spikes
or anti-spikes; such rules, having the regular expression E such that L(E) = bc are
called pure; formal definitions will be given immediately.) This can be considered
as a (surprising) normal form for this case; please compare with the normal forms
from [3], especially with the simplifications of regular expressions obtained there.

Anti-spikes are produced from usual spikes by means of usual spiking rules; in
turn, rules consuming anti-spikes can produce spikes or anti-spikes (actually, as
we will see below, the latter case can be avoided). A possible variant is to produce
always only spikes and to consider synapses which “change the nature” of spikes.
Also in this case, universality is easily proved, using only pure rules.

2 Prerequisites

We assume the reader to be familiar with basic elements about SN P systems,
e.g., from [7] and [9], and we introduce here only a few notations, as well as the
notion of register machines, used later in the proofs of our results. We also assume
familiarity with very basic elements of automata and language theory, as available
in many monographs.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ,
the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. When V = {a} is a singleton, then we write simply a∗ and a+

instead of {a}∗, {a}+.
A regular expression over an alphabet V is defined as follows: (i) λ and each

a ∈ V is a regular expression, (ii) if E1, E2 are regular expressions over V , then
(E1)(E2), (E1)∪ (E2), and (E1)+ are regular expressions over V , and (iii) nothing
else is a regular expression over V . With each regular expression E we associate
a language L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a},
for all a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2),
and L((E1)+) = (L(E1))+, for all regular expressions E1, E2 over V . Non-necessary
parentheses can be omitted when writing a regular expression, and also (E)+∪{λ}
can be written as E∗.

The family of Turing computable sets of natural numbers is denoted by NRE.
A register machine is a construct M = (m,H, l0, lh, I), where m is the number

of registers, H is the set of instruction labels, l0 is the start label (labeling an ADD
instruction), lh is the halt label (assigned to instruction HALT), and I is the set of
instructions; each label from H labels only one instruction from I, thus precisely
identifying it. The instructions are of the following forms:
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• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we proceed to apply instructions as indicated by
the labels (and made possible by the contents of registers); if we reach the halt
instruction, then the number n stored at that time in the first register is said to
be computed by M . The set of all numbers computed by M is denoted by N(M).
It is known that register machines compute all sets of numbers which are Turing
computable, hence they characterize NRE.

Without loss of generality, we may assume that in the halting configuration,
all registers different from the first one are empty, and that the output register is
never decremented during the computation, we only add to its contents.

We can also use a register machine in the accepting mode: a number is stored
in the first register (all other registers are empty); if the computation starting in
this configuration eventually halts, then the number is accepted. Again, all sets
of numbers in NRE can be obtained, even using deterministic register machines,
i.e., with the ADD instructions of the form li : (ADD(r), lj , lk) with lj = lk (in this
case, the instruction is written in the form li : (ADD(r), lj)).

Again, without loss of generality, we may assume that in the halting configu-
ration all registers are empty.

Convention: when evaluating or comparing the power of two number gener-
ating/accepting devices, number zero is ignored.

3 Spiking Neural P Systems with Anti-Spikes

We recall first the definition of an SN P system in the classic form (without delays,
because this feature is not used in our paper) and of the set of numbers generated
or accepted by it.

An SN P system of degree m ≥ 1 is a construct

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
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a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a, where E is a regular expression over a and c ≥ 1;
(2) as → λ, for some s ≥ 1;

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

4. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule
E/ac → a can be applied. The application of this rule means removing c spikes
(thus only k − c remain in σi), the neuron is fired, and it produces a spike which
is sent immediately to all neurons σj such that (i, j) ∈ syn.

The rules of type (2) are forgetting rules and they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

Note that we have not imposed here the restriction that for each rule E/ac → a
of type (1) and as → λ of type (2) from Ri to have as /∈ L(E).

If a rule E/ac → a of type (1) has E = ac, then we will write it in the simplified
form ac → a and we say that it is pure.

In each time unit, if a neuron σi can use one of its rules, then a rule from
Ri must be used. Since two firing rules, E1/ac1 → a and E2/ac2 → a, can have
L(E1)∩L(E2) 6= ∅, it is possible that two or more rules can be applied in a neuron,
and in that case only one of them is chosen non-deterministically. Thus, the rules
are used in the sequential manner in each neuron, but neurons function in parallel
with each other.

The configuration of the system is described by the number of spikes present
in each neuron. The initial configuration is n1, n2, . . . , nm. Using the rules as de-
scribed above, one can define transitions among configurations. Any sequence of
transitions starting in the initial configuration is called a computation. A com-
putation halts if it reaches a configuration where no rule can be used. With any
computation (halting or not) we associate a spike train, the sequence of zeros and
ones describing the behavior of the output neuron: if the output neuron spikes,
then we write 1, otherwise we write 0.

When using an SN P system in the generative mode, we start from the initial
configuration and we define the result of a computation as the number of steps
between the first two spikes sent out by the output neuron. We denote by N2(Π)
the set of numbers computed by Π in this way. In the accepting mode, a number n
is introduced in the system in the form of a number f(n) of spikes placed in neuron
σin, for a well-specified mapping f , and the number n is accepted if and only if
the computation halts. We denote by Nacc(Π) the set of numbers accepted by Π.
It is also possible to introduce the number n by means of a spike train entering
neuron σin, as the distance between the first two spikes coming to σin.

In the generative case, the neuron (with label) in is ignored, in the accepting
mode the neuron out is ignored (sometimes below, we identify the neuron σi with
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its label i, so we say “neuron i” understanding that we speak about “neuron σi”).
We can also use an SN P system in the computing mode, introducing a number
in neuron in and obtaining a result in (by means of) neuron out, but we do not
consider this case here.

We denote by NαSNP (rulek) the families of all sets Nα(Π), α ∈ {2, acc},
computed by SN P systems with at most k ≥ 1 rules (spiking or forgetting) in
each neuron.

Let us now pass to the extension mentioned in the Introduction. A further
object, ā, is added to the alphabet O, and the spiking and forgetting rules are of
the forms

E/bc → b′, bc → λ,

where E is a regular expression over a or over ā, while b, b′ ∈ {a, ā}, and c ≥ 1.
As above, if L(E) = bc, then we write the first rule as bc → b′ and we say that it
is pure.

Note that we have four categories of rules, identified by (b, b′) ∈
{(a, a), (a, ā), (ā, a), (ā, ā)}.

The rules are used as in a usual SN P system, with the additional fact that a
and ā “cannot stay together”, they instantaneously annihilate each other: if in a
neuron there are either objects a or objects ā, and further objects of either type
(maybe both) arrive from other neurons, such that we end with ar and ās inside,
then immediately a rule of the form aā → λ is applied in a maximal manner, so
that either ar−s or ās−r remain, provided that r ≥ s or s ≥ r, respectively.

We stress the fact that the mutual annihilation of spikes and anti-spikes takes
no time, so that the neuron always contains either only spikes or anti-spikes. That
is why, for instance, the regular expressions of the spiking rules are defined either
on a or on ā, but not on both symbols. Of course, we can also imagine that the
annihilation takes one time unit, when the explicit rule aā → λ is used, but we do
not consider this case here (if the rule aā → λ has priority over other rules, then
no essential change occurs in the proofs below).

The computations and the result of computations are defined in the same way
as for usual SN P systems – but we consider the restriction that the output neuron
produces only spikes, not also anti-spikes (again, this is a restriction which is only
natural/elegant, but not essential). As above, we denote by NαSaNP (rulek, forg)
the families of all sets Nα(Π), α ∈ {2, acc}, computed by SN P systems with at
most k ≥ 1 rules (spiking or forgetting) in each neuron, using also anti-spikes.
When only pure rules are used, we write NαSaNP (prulek).

4 Universality Results

We start by considering the generative case, for which we have the next result
(universality is known for usual SN P systems, without anti-spikes, but now both
the proof is simpler and the used rules are all pure):

Theorem 1. NRE = N2SaNP (prule2).
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Proof. We only have to prove the inclusion NRE ⊆ N2SaNP (prule2, forg).
Let us consider a register machine M = (m,H, l0, lh, I) as introduced in Section

2. We construct an SN P system Π (with O = {a, ā}) which simulates M in the
way already standard in the literature when proving that a class of SN P systems
is universal. Specifically, we construct modules ADD and SUB to simulate the
instructions of M , as well as an output module FIN which provides the result
(in the form of a suitable spike train). Each register r of M will have a neuron
σr in Π, and if the register contains the number n, then the associated neuron
will contain n spikes, except for the neuron σ1 associated with the first register
(the neurons associated with registers will either contain occurrences of a, hence ā
disappears immediately, or only ā is present, and it is consumed in the next step
by a rule ā → a). Two spikes are initially placed in the neuron σ1 associated with
the first register, so if the first register contains the number n, then neuron σ1 will
contain n + 2 spikes. These two spikes are used for outputting the computation
result. Note that the number of spikes in the neuron σ1 will not be smaller than
two before the simulation reaches the instruction lh and the output module FIN
is activated, because we assume that the output register is never decremented
during the computation. One neuron σli is associated with each label li ∈ H, and
some auxiliary neurons σ

l
(j)
i

, j = 1, 2, 3, . . ., will be also considered, thus precisely
identified by label li (remember that each li ∈ H is associated with a unique
instruction of M).

The modules will be given in a graphical form, indicating the synapses and, for
each neuron, the associated set of rules. In the initial configuration, all neurons are
empty, except for the neurons associated with label l0 of M and the first register,
which contain one spike and two spikes, respectively. In general, when a spike a
is sent to a neuron σli , with li ∈ H, then that neuron becomes active and the
module associated with the respective instruction of M starts to work, simulating
the instruction.

The functioning of the module from Figure 1, simulating an instruction li :
(ADD(r), lj , lk), is obvious; the non-deterministic choice between instructions lj and
lk is done by non-deterministically choosing the rule to apply in neuron σ

l
(3)
i

.
The simulation of an instruction li : (SUB(r), lj , lk) is also simple – see the

module from Figure 2. The neuron σli sends a spike to neurons σ
l
(1)
i

and σ
l
(2)
i

.
In the next step, neuron σ

l
(2)
i

sends an anti-spike to neuron σr, corresponding
to register r; at the same time, σ

l
(1)
i

sends a spike to each neuron σ
l
(3)
i

, σ
l
(4)
i

. If
register r is non-empty, that is, neuron σr contains at least one a, then ā removes
one occurrence of a, which corresponds to subtracting one from register r, and no
rule is applied in σr. This means σ

l
(5)
i

and σ
l
(6)
i

receive only two spikes, from σ
l
(3)
i

and σ
l
(4)
i

, hence σlj is activated and σlk not. If register r is empty, then the rule
ā → a is used in σr, hence σ

l
(5)
i

and σ
l
(6)
i

receive three spikes, and this leads to the
activation of σlk , which is the correct continuation also in this case.

Note that if there are several sub instructions lt which act on register r, then
σr will send one spike to neurons σ

l
(5)
t

and σ
l
(6)
t

while simulating the instruction
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Fig. 1. Module ADD, simulating li : (ADD(r), lj , lk)

li : (SUB(r), lj , lk), but this spike is immediately removed by the rule a → λ present
in all neurons σ

l
(5)
t

, σ
l
(6)
t

.
The module FIN, which produces a spike train such that the distance between

the first two spikes equals the number stored in register 1 of M , is indicated in
Figure 3. At some step t, the neuron σlh is activated, which means that the register
machine M reaches the halt instruction and the system Π starts to output the
result. Suppose the number stored in register 1 of M is n. At step t+2, neurons σh1 ,
σh3 and σh4 contain a spike. Neurons σh1 and σh4 exchange spikes among them,
and thus σh4 sends a spike to neuron σh5 continuously until neuron σ1 spikes and
neurons σh1 , σh4 , σh5 are “flooded”. At step t + 4, neuron σout receives a spike,
and in the next step σout sends a spike to the environment; at the same time, σ1

receives an anti-spike that decreases by one the number of spikes from σ1. At step
t + n + 4, the neuron σ1 contains one spikes, and in the next step neuron σ1 sends
a spike to neuron σout. At step t + n + 6, neuron σout spikes again. The distance
between the first two spikes emitted by σout equals n, which is exactly the number
stored in register 1 of M . The spike produced by neuron σ1 “floods” neurons σh1 ,
σh4 , and σh5 , thus blocking the work of these neurons. After the system sends the
second spike out, the whole system halts.

From the previous explanations we get the equality N(M) = N2(Π) and this
concludes the proof. ut

Note that in the previous construction there is no rule of the form āc → ā; is
it possible to also avoid other types of rules? For instance, the rule ā → a only
appears in the neurons associated with registers in module SUB. Is it possible to
remove the ā → a by replacing it with the rules ac → a and a → ā?
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If the SN P systems are used in the accepting mode, then a further simplifi-
cation is entailed by the fact that the ADD instructions are deterministic. Such
an instruction li : (ADD(r), lj) can be directly simulated by a simple module as in
Figure 4.
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Together with SUB modules, this suffices in the case when the number to accept
is introduced as the number of spikes initially present in neuron σ1. If this number
is introduced in the system as the distance between the first two spikes which
enters the input neuron, then a input module is necessary, as used, for instance,
in [3]. Note that the module INPUT from [3] uses only pure rules (involving only
spikes, not also anti-spikes), hence we get a theorem like Theorem 1 also for the
accepting case, for both ways of providing the input number.

It is worth mentioning that in the previous constructions we do not have spiking
rules which can be used at the same time with forgetting rules.

5 Using Inhibitory Synapses

Let us now consider the case when no rule can produce an anti-spike, but there
are synapses which transform spikes into anti-spikes. The previous modules ADD,
SUB, FIN can be modified in such a way to obtain a characterization of NRE also
in this case. We directly provide these modules, without any explanation about
their functioning, in Figures 5, 6, and 7; the synapses which change a into ā are
marked with a dot.

Note that this time the non-determinism in the ADD instruction is simulated
by allowing the non-deterministic choice among the spiking rule ā → a and the
forgetting rule ā → λ of neuron σ

l
(1)
i

, which is not allowed in the classic definition
of SN P systems. Removing this feature, without introducing rules which are not
pure or other ingredients, such as the delay, remains as an open problem.

Denoting by NαSaNPs(prulek) the respective families of sets of numbers (the
subscript s in Ps indicates the use of inhibitory synapses, in the sense specified
above), we conclude having the next result:

Theorem 2. NRE = N2SaNPs(prule2).

6 Final Remarks

There are several open problems and research topics suggested by the previous
results. Some of them were already mentioned, but further questions can be for-
mulated. For instance, can the proofs be improved so that less types of rules are
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necessary? We have avoided using rules āc → ā, but not the other three types,
corresponding to the pairs (a, a), (a, ā), (ā, a). Then, following the idea from [6],
can we decrease the number of types of neurons, in the sense of having a small
number of sets of rules which are used in each neuron (three such sets are found
in [6] to be sufficient for universality in the case of usual SN P systems; do the
anti-spikes helps also in this respect?).
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