
On the Power of Insertion P Systems
of Small Size

Alexander Krassovitskiy

Research Group on Mathematical Linguistics,
Rovira i Virgili University
Av. Catalunya, 35, Tarragona 43002, Spain
alexander.krassovitskiy@estudiants.urv.cat

Summary. In this article we investigate insertion systems of small size in the framework
of P systems. We consider P systems with insertion rules having one symbol context and
we show that they have the computational power of matrix grammars. If contexts of
length two are permitted, then any recursively enumerable language can be generated.
In both cases an inverse morphism and a weak coding were applied to the output of the
corresponding P systems.

1 Introduction

The study of insertion-deletion operations on strings has a long history. We just
mention [18], [5], [7], [13], [15]. Motivated from molecular computing they have
been studied in [1], [6], [17], [19], [12]. With some linguistic motivation they may
be found in [11] and [3].

In general form, an insertion operation means adding a substring to a given
string in a specified (left and right) context, while a deletion operation means
removing a substring of a given string from a specified (left and right) context.
A finite set of insertion/deletion rules, together with a set of axioms provide a
language generating device: starting from the set of initial strings and iterating
insertion-deletion operations as defined by the given rules we get a language. The
number of axioms, the length of the inserted or deleted strings, as well as the
length of the contexts where these operations take place are natural descriptional
complexity measures of the insertion-deletion systems.

Some combinations of parameters lead to systems which are not computation-
ally complete [14], [8] or even decidable [20]. It was shown that the operations of
insertion and deletion considered in P systems framework can easily increase the
computational power with respect to ordinary insertion-deletion systems [9], [10].

Traditionally, language generating devices having only insertion rules were
studied. Early computational models based only on insertion appear already
in [11], and are discussed in [17] and [16] (with membrane tree structure). It was

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

30 A. Krassovitskiy

proved that pure insertion systems having one letter context are always context-
free. Yet, there are insertion systems with two letter context which generate non-
semilinear languages (see Theorem 6.5 in [17]). On the other hand, it appears
that by using only insertion operation the obtained language classes with context
greater than one are incomparable with many known language classes. For exam-
ple there is a simple linear language {anban | n ≥ 1} which cannot be generated
by any insertion system (see Theorem 6.6 in [17]).

In order to overcome this obstacle one can use some codings to “interpret”
generated strings. In [17], in a natural way, there were used two additional string
operations: a morphism h and a weak coding ϕ. The result is considered as a
product of application h−1 ◦ ϕ on the generated strings. Clearly, the obtained
languages have greater expressivity and the corresponding language class is more
powerful. It appears that with the help of morphisms and codings one can obtain
every RE language if insertion rules have sufficiently large context. It is proved
in [17] that for every recursively enumerable language L there exists a morphism
h, a weak coding ϕ and a language L′ generated by an insertion system with
rules using the length of the contexts at most 7, such that, L = h(ϕ−1(L′)). The
result was improved in [2], showing that rules having at most 5 letter context are
sufficient to encode every recursively enumerable language. Recently, in [4] it was
shown that the same result can be obtained with the length of contexts equal to
3.

In this article we consider the encoding as a part of insertion P systems. The
obtained model is quite powerful and has the power of matrix languages if con-
texts of length one are used. We also show that if no encoding is used, then the
corresponding family is strictly included in MAT and equals CF if no membranes
are used. If an insertion of two symbols in two letters contexts is used, then all
recursively enumerable languages can be generated (of course, using the inverse
morphism and the weak coding).

2 Prerequisites

All formal language notions and notations we use here are elementary and stan-
dard. The reader can consult any of the many monographs in this area (see details,
e.g., in [18]).

We denote by |w| the length of a word w and by card(A) the cardinality of the
set A, and ε denotes the empty string.

An insertion-deletion system is a construct ID = (V, T, A, I, D), where V is an
alphabet, T ⊆ V , A is a finite language over V , and I, D are finite sets of triples
of the form (u, α, v), where u, α, and v are strings over V . The elements of T
are terminal letters (in contrast, those of V \T are called nonterminals), those of
A are axioms, the triples in I are insertion rules, and those from D are deletion
rules. An insertion rule (u, α, v) ∈ I indicates that the string α can be inserted
in between u and v, while a deletion rule (u, α, v) ∈ D indicates that α can be

On the Power of Insertion P Systems of Small Size 31

removed from the context (u, v). As stated otherwise, (u, α, v) ∈ I corresponds to
the rewriting rule uv → uαv, and (u, α, v) ∈ D corresponds to the rewriting rule
uαv → uv. We denote by =⇒ins the relation defined by an insertion rule (formally,
x =⇒ins y iff x = x1uvx2, y = x1uαvx2, for some (u, α, v) ∈ I and x1, x2 ∈ V ∗)
and by =⇒del the relation defined by a deletion rule (formally, x =⇒del y iff
x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D and x1, x2 ∈ V ∗). We refer by
=⇒ to any of the relations =⇒ins, =⇒del, and denote by =⇒∗ the reflexive and
transitive closure of =⇒ (as usual, =⇒+ is its transitive closure).

The language generated by ID is defined by

L(ID) = {w ∈ T ∗ | x =⇒∗ w, x ∈ A}.

A (pure) insertion systems of weight (n, m,m′) is a construct ID = (V, A, I),
where V is a finite alphabet, I ⊆ V ∗ is a finite set of axioms, I is a finite set of
insertion rules of the form (u, α, v), for u, α, v ∈ V ∗, and

n = max{|α| | (u, α, v) ∈ I},
m = max{|u| | (u, α, v) ∈ I},
m′ = max{|v| | (u, α, v) ∈ I}.

We denote by INSm,m′
n corresponding families of languages generated by in-

sertion systems.
An insertion P system is the following construct:

Π = (V, µ, M1, . . . ,Mk, R1, . . . , Rk),

where

• V is a finite alphabet,
• µ is the membrane (tree) structure of the system which has n membranes

(nodes). This structure will be represented by a word containing correctly
nested marked parentheses.

• Mi, for each 1 ≤ i ≤ k, is a finite language associated to the membrane i.
• Ri, for each 1 ≤ i ≤ k, is a set of insertion rules with target indicators asso-

ciated to membrane i and which have the following form: (u, x, v; tar), where
(u, x, v) is an insertion rule, and tar, called the target indicator, is from the set
{here, inj , out}, 1 ≤ j ≤ k.

Any k-tuple (N1, . . . , Nk) of languages over V is called a configuration of Π. For
two configurations (N1, . . . , Nk) and (N ′

1, . . . , N
′
k) of Π we write

(N1, . . . , Nk) =⇒ (N ′
1, . . . , N

′
k) if we can pass from (N1, . . . , Nk) to (N ′

1, . . . , N
′
k)

by applying nondeterministically the insertion rules, to all possible strings from
the corresponding regions, and following the target indications associated with the
rules. We assume that every string represented in a membrane has arbitrary many
copies. Hence, by applying a rule to a string we get both arbitrary many copies of
resulted string as well as old copies of the same string. More specifically, if w ∈ Ni

32 A. Krassovitskiy

and r = (u, x, v; tar) ∈ Ri, such that w =⇒r w′ then w′ will go to the region
indicated by tar. If tar = here, then the string remains in Ni, if tar = out, then
the string is moved to the region immediately outside the membrane i (maybe, in
this way the string leaves the system), if tar = inj , then the string is moved to
the region j.

A sequence of transitions between configurations of a given insertion P system
Π, starting from the initial configuration (M1, . . . , Mn), is called a computation
with respect to Π. The result of a computation consists of all strings over V which
are sent out of the system at any time during the computation. We denote by
L(Π) the language of all strings of this type. We say that L(Π) is generated by
Π.

The insertion-deletion tissue P systems are defined in an analogous manner. As
the tissue P systems use arbitrary graph structure we write the target indicator in
the form tar = goj , j = 1, . . . , k. The result of a computation consists of all strings
over V which are sent to one selected output cell.

The weight of insertion rules (n,m,m′) and the membrane degree k describe
the complexity of an insertion P system. We denote by LSPk(insm,m′

n) (see, for
example [16]) the family of languages L(Π) generated by insertion P systems
of degree at most k ≥ 1 having the weight at most (n,m, m′). If some of the
parameters n,m, m′, or k is not specified we write “ * ” instead.

We say that a language L′ is from hINSm,m′
n (from hLSPk(insm,m′

n), corre-
spondingly) if there exist a morphism h, weak coding ϕ and L(Π) ∈ INSm,m′

n

(L(Π) ∈ LSPk(insm,m′
n) such that ϕ(h−1(L(Π))) = L′.

We write an instance of the system hLSP in the form

(V, µ, M1, . . . ,Mn, R1, . . . , Rn, h, ϕ),

where

• h is a morphism h : V → V +,
• ϕ is a weak coding ϕ : T → T ∪ {ε},
• other components are defined as for insertion P system.

We insert “t” before P to denote classes corresponding to the tissue cases (e.g.,
hLStP). Insertion (t) holds for both tissue and tree membrane structure.

We say that a letter a is marked in a sentential form waw′ if it is followed
by #, i.e., |w′| > 0, and # is the prefix of w′. In the following proofs we use a
marking technique introduced in [16]. The technique works as follow: in order to
simulate rewriting production A → B we add adjacently right from A the word
#B specifying that letter A is already rewritten. And, as soon as the derivation is
completed, every pair A# in the sentential form is subject to the inverse morphism.

On the Power of Insertion P Systems of Small Size 33

3 Main Results

Let us consider insertion systems (without membranes) with one letter context
rules hINS1,1

∗ . Applying the marking technique we get a characterization of
context-free languages.

Theorem 1 hINS1,1
∗ = CF

Proof. First we show that CF ⊆ hINS1,1
3 .

Let G = (V, T, S, P) be a context-free grammar in Chomsky normal form.
Consider the following system from hINS1,1

3

Π = (T ∪ V ∪ {#}, R, {S}, h, ϕ),

where R = {(A, #BC, α) | α ∈ T ∪ V, A → BC ∈ P}, the morphism h

h(a) = a#, if a ∈ V, and h(a) = a, if a ∈ T,

and the weak coding ϕ

ϕ(a) → ε, if a ∈ V, ϕ(a) → a, if a ∈ T.

We claim that L(Π) = L(G). Indeed, each rule (A,#BC, α) ∈ R can be
applied in the sentential form wAαw′ if A is unmarked (not rewritten). Thus, the
production A → BC ∈ P can be applied in the corresponding derivation G. Hence,
by applying the counterpart rules we get equivalent derivations.

At the end of derivation, by applying the inverse morphism h−1 we warranty
that every nonterminal is marked. Finally, we delete every nonterminal by the
weak coding ϕ. Hence L(Π) = L(G), and we get CF ⊆ hINS1,1

3 .
The equivalence of the two classes follows from Theorem 6.4 in [17] stating

INS1,1
∗ ⊆ CF and the fact that context-free languages are closed under inverse

morphisms and weak codings.

Now we consider insertion systems with contexts controlled by membranes (P sys-
tems). It is known from Theorem 5.5.1 in [16] that LSP2(ins1,1

2) contains non
context-free languages. We show that this class is bounded by matrix grammars:

Lemma 2 LStP∗(ins1,1
∗) ⊂ MAT .

Proof. The proof uses the similar technique presented in [17], Theorem 6.4 for
context-free grammars.

Let Π = (V, µ,M1, . . . , Mn, R1, . . . , Rn) be a system from LStPn(ins1,1
∗) for

some n ≥ 1.
Consider a matrix grammar G = (D ∪ Q ∪ {S}, V, S, P), where

Q = {Qi | i = 1, . . . , n} , D = {Da,b | a, b ∈ V ∪ {ε}}, and P is constructed
as follows:

34 A. Krassovitskiy

1. For every rule (a, b1 . . . bk, c, goj) ∈ Ri, a, b1, . . . , bk, c ∈ V ∪ {ε}, k > 0 we add
to P (Qi → Qj , Da,c → Da,b1Db1,b2 . . . Dbk−1,bk

Dbk,c), where

a =
{

a, if a ∈ V,
t,∀t ∈ V ∪ {ε}, if a = ε

c =
{

c, if c ∈ V,
t, ∀t ∈ V ∪ {ε}, if c = ε

2. For every rule (a, ε, c, inj) ∈ Ri, a, c ∈ V ∪ {ε}, k > 0 we add to P
(Qi → Qj , Da,c → Da,c), where a and c defined as in the previous case.

3. Next, for every w = b1 · · ·k ∈ Mi, i = 1, . . . , n, k > 0 we add to P the matrix
(S → QiDε,b1Db1,b2 . . . Dbk−1,bk

Dbk,ε).
4. In special case if ε ∈ Mi we add (S → QiDε,ε) to P.
5. Also, for every Da,b ∈ D, a, b ∈ V ∪ {ε} we add (Da,b → a) to P.
6. Finally, we add (p1 → ε) to P (we assume that the first cell is the output cell).

The simulation of Π by the matrix grammar is straightforward. We store the
label of current cell by nonterminals Q. Every nonterminal Da,c ∈ D, a, c ∈ V ∪{ε},
represents a pair of adjacent letters, so we can use them as a context. A rule
(a, b1 . . . bk, c, inj) ∈ Ri, a, c ∈ V, b1 . . . bk ∈ V k, can be simulated by the grammar
iff the sentential form contains both Qi and Da,c. It results the label of current cell
is rewritten to Qj and Da,c is rewritten to the string Da,b1Db1,b2 . . . Dbk−1,bk

Dbk,a.
Clearly, the string preserves one symbol context. In order to treat those rules
which have no context we introduce productions that preserve arbitrary context
(a ∈ V ∪ {ε} and c ∈ V ∪ {ε}).

The simulation of the grammar starts with a nondeterministic choice of the
axiom. Then, during the derivation any rule corresponding to the context (a, b)
have to be applied (in a one to one correspondence with grammar productions).
Finally, the string over V is produced by the grammar iff Q1 has been deleted
from the simulated sentential form. The deletion of Q1 specifies that Π reached
the output cell. So, we obtain L(Π) = L(G). Hence, LStP∗(ins1,1

∗) ⊆ MAT.
The strictness of the inclusion follows from the fact there are languages from

MAT which cannot be generated by any insertion P system from
LStP∗(ins1,1

n), for any n ≥ 1. Indeed, consider La = {cakcakc | k ≥ 1}. One
may see that the matrix grammar ({Sl, Sr, S}, {a, b}, S, P ′) generates La, where

P ′ ={(S → cSlcSrc),
(Sl → ε, Sr → ε),
(Sl → aSl, Sr → aSr)}.

On the other hand, La /∈ LStP∗(ins1,1
n), for any n ≥ 1. For the contrary, assume

there is such a system. We note that the system cannot delete or rewrite any letter
so every insertion is terminal. And, as the language of axioms is finite, we need
an insertion rule of letter a. Consider alternatives for a final insertion step in a
derivation which has at most one step and derives a word cakcakc, for some k > n:
(1) the last applied rule inserts the central letter c, or (2) it does not insert the

On the Power of Insertion P Systems of Small Size 35

central letter c. (1) The central c can be inserted between any two letters a. So we
get a contradiction because the prefix capc may not be equal to the suffix caqc.
(2) The last applied rule can (2.1) either insert the letter c(at the end or start of
the string) or, (2.2) no c is inserted by the final rule.
(2.1) We get a contradiction because c can be alternatively inserted in between
two a as we assumed k > n.
(2.2) The last rule cannot distinguish whether to insert a before the central c or
after the central c. So, again, we get a contradiction because the prefix capc may
not be equal to the suffix caqc.

So we proved La /∈ LStP∗(ins1,1
n), for any n ≥ 1 and hence

LStP∗(ins1,1
∗) ⊂ MAT.

Corollary 3 LSP∗(ins1,1
∗) ⊂ MAT.

Proof. A tree is a special case of a graph.

Lemma 4 MAT ⊆ hLSP∗(ins1,1
2).

Proof. We prove the theorem by a direct simulation of a matrix grammar
G = (N,T, S, P). We assume that G is in binary normal form, i.e., every ma-
trix has the form i : (A → BC, A′ → B′C ′) ∈ P , where A,A′ ∈ N, B, B′, C, C ′ ∈
N ∪ T ∪ {ε} and i = 1, . . . , n.

Consider a system Π ∈ hLSPn+3(ins1,1
2),

Π = (V, [1 [2 [3

 ∏

i=1,...,n

[i+3]i+3

]3]2]1, {S$}, ∅, . . . , ∅, R1, . . . , Rn+3, h, ϕ),

where V = N ∪ T ∪ {Ci, C
′
i | i = 1, . . . , n} ∪ {#, $}.

For every matrix i : (A → BC, A′ → B′C ′) we add

r.1.1 : (A, #Ci, α, in2), to R1;
r.2.1 : (Ci, BC, α, in3), r.2.2 : (C ′i, #, α, out) to R2;
r.3.1 : (Ci, #, α, ini+3), r.3.2 : (C ′i, B

′C ′, α, out) to R3;
r.i + 3.1 : (A′, #C ′i, α, out), to Ri+3

for every α ∈ V \{#}. In addition we add (ε, $, ε, out) to R1.
We also define the morphism h and the weak coding ϕ by:

h(a) =
{

a, if a ∈ T,
a# if a ∈ V

ϕ(a) =
{

a, if a ∈ T,
ε if a ∈ V ∪ {$}.

We claim that L(Π) = L(G). To do so it is enough to prove that w ∈ L(G) iff
w′ ∈ L(Π) and w′ = ϕ(h−1(w)).

36 A. Krassovitskiy

First we show that for every w ∈ L(G) there exists w′ ∈ L(Π) and
w′ = ϕ(h−1(w)). Consider the simulation of the i-th matrix (A → BC,
A′ → B′C ′) ∈ P. The simulation is controlled by letters Ci and C ′i. First,
we insert #Ci in the context of a unmarked A and send the obtained string to
the second membrane. Then we use Ci as a context to insert adjacently right the
word BC. After that, we mark the control letter Ci and send the sentential form
to the i + 3 membrane. Here we choose nondeterministically one letter A′, mark
it, write adjacently right new control letter C ′i, and, after that, send the obtained
string to the third membrane. We mention that it is not possible to apply the rule
r.i + 3.1 : (A′,#C ′i, α; out)e in the i + 3 membrane and to reach the skin mem-
brane if the sentential form does not contain the unmarked A′. So, this branch of
computation cannot influence the result and may be omitted in the consideration.
Next, in the third membrane, B′C ′ is inserted in the context of unmarked C ′i and
the sentential form is sent to the second membrane. Finally, we mark C ′i and send
the resulting string back to the skin membrane.

We assume that at the beginning of this simulation the sentential form in
the skin membrane does not contain unmarked Ci, C

′
i. Hence, the insertions in

the second and third membranes are deterministic. The derivation preserves the
assumption, as after the sentential form is sent back to the skin membrane the
introduced Ci, and C ′i are marked. At the end of computation we send the obtained
sentential form out of the system by the rule (ε, $, ε, out).

Let w be a string in the skin region which contains some unmarked A and A′. If
the letter A precedes B, then we can write w = w1Aα1w2A

′α1w3. The simulation
of the matrix is the following

w1Aα1w2A
′α1w3

r.1.1,r.2.1,r.3.1
=⇒ w1A#Ci#BCα1w2A

′α1w3
r.3+i.1,r.3.2,r.2.2

=⇒
w1A#Ci#BCα1w2A

′#C ′i#B′C ′α1w3,

where w1, w2, w3 ∈ V ∗, α1, α2 ∈ V \{#}. We can write the derivation similarly if
B precedes A.

Hence, as a result of the simulation of i-th matrix we get both A and A′

marked and BC, B′C ′ inserted in the right positions. The derivation in Π may
terminate by the rule (ε, $, ε, out) only in the first membrane. This guarantees that
the simulation of each matrix has been finished. According to the definition of Π
the string w′ belongs to the language if w′ = ϕ(h−1(w)), where w is the generated
string. This is the case only if the resulting output of Π does not contain unmarked
nonterminals. Hence we proved L(G) ⊆ ϕ(h−1(L(Π))).

The inverse inclusion is obvious since every rule in Π has its counterpart in
G. The case when the derivation in Π is blocked corresponds to the case a matrix
cannot be finished.

Hence, we get MAT ⊆ hLSP∗(ins1,1
2).

Remark 5 One can mention that a similar result can be obtained with a smaller
number of membranes at the cost of increasing the maximal length of inserted

On the Power of Insertion P Systems of Small Size 37

words. I.e., for any grammar G′ from MAT there is a P insertion system Π ′

corresponding to hLSPn+1(ins1,1
3) such that L(G) = L(Π ′), and n is the number

of matrices in G′. To prove this we can use the same argument as in the previous
theorem and replace rules (r. ∗ .∗) by

(A,#BC, α, ini+1), α ∈ V \{#} to R1

(A′, #B′C ′, α, in1), α ∈ V \{#} to Ri+1.

Corollary 6 MAT ⊆ hLStP∗(ins1,1
2).

Proof. Obvious, since a tree is a special case of a graph.

Taking into account Lemma 4, Lemma 2, and the fact that the class of matrix
grammars is closed under inverse morphisms and weak codings we get the following
characterization of MAT :

Theorem 7 hLS(t)P∗(ins1,1
∗) = MAT .

Next we consider computationally complete insertion P systems. In order to use
concise representations of productions in 0-type grammars we need an auxiliary
lemma.

Lemma 8 For every 0-type grammar G′ = (N ′, T, S′, P ′) there exists a grammar
G = (N, T, S, P) such that L(G) = L(G′) and every production in P has the form

AB → AC or AB → CB or (1)
A → AC or A → CA or (2)

A → δ, (3)

where A,B and C are from N and δ ∈ T ∪N ∪ {ε}.
Proof. To prove the lemma it is enough to show that for any grammar in Pentton-
nen normal form there is an equivalent grammar having productions of the form
(1)–(3). To do so it is enough to simulate the context-free productions A → BC
by productions of the form (1)–(3).

Let G = (N, T, S, P) be a grammar in Penttonnen normal form whose produc-
tion rules in P are of the form:

AB → AC or
A → BC or

A → α

where A,B, C and D are from N and α ∈ T ∪N ∪ {ε}.
Let PCF ⊆ P denotes the set of all context-free productions A → BC ∈ P

such that B 6= C. Suppose that rules in PCF are ordered and n = card(PCF).
Consider a grammar G′ = (N ′, T, S, P ′), where N ′ = N ∪

{Xi, Yi, Zi | i = 1, . . . , n}, P ′ = (P\PCF) ∪ P ′CF , and P ′CF is constructed as
follows: for every i : A → BC ∈ PCF add to P ′CF the following productions

38 A. Krassovitskiy

r.i.1 : A → Xi, r.i.2 : Xi → XiYi,

r.i.3 : XiYi → ZiYi, r.i.4 : ZiYi → ZiC

r.i.5 : ZiC → BC

Clearly, the obtained grammar has the form specified by (1)–(3). Now we prove
that L(G) = L(G′). The inclusion L(G) ⊆ L(G′) is obvious as for every derivation
in G we use its counterpart derivation in G′ replacing i-th context-free production
from PCF by the sequence of productions r.i.1, r.i.2, r.i.3, r.i.4, r.i.5:

wAw′ r.i.1=⇒ wXiw
′ r.i.2=⇒wXiYiw

′ r.i.3=⇒
wZiYiw

′ r.i.4=⇒ wZiCw′ r.i.5=⇒ wBCw′.

In order to prove that L(G′) ⊆ L(G) we show that for every terminal derivation
in G′ we can construct a derivation in G so that they both produce the same word.
We use the counterpart productions from P\PCF to mimic analogous production.
For the productions PCF ′ we show that any deviation from the above defined
sequence does not produce any new terminal derivation. First, we mention that
the sequence of productions corresponding to i : A → BC starts by rewriting A
on the new nonterminal, so, other productions not in r.i.∗ cannot interfere the
sequence. Yet, the production rule r.i.2 may generate extra Yi (for simplicity, we
assume one extra Yi generated).

wAw′ r.i.1=⇒ wXiw
′ (r.i.2)2

=⇒ wXi(Yi)2w′
r.i.3,r.i.4

=⇒
r.i.5=⇒ wBCYiw

′.

As we need to consider only terminal derivations we may assume that Yi

will be necessary rewritten. The only rule to rewrite Yi is r.i.4. In order to per-
form it the letter Zi must precede by the letter Yi. It implies that the letter A
must appear adjacently left from the letter Yi. Then the sequence of productions
r.i.1, r.i.3, r.i.4, r.i.5 results to the same sentential form as if r.i.2 is applied once
per every rewriting of A.

wBCYiw
′ =⇒∗ w1AYiw

′
1

r.i.1=⇒
wXiYiw

′
1

r.i.3,r.i.4,r.i.5
=⇒ w1BCw′1.

Therefore, it can be produced by rules from PCF . We also mention that in
r.i.1− r.i.5 we start rewriting letters from N\N ′ by corresponding letters from N
only after the letter Xi is rewritten. This imply that after r.i.4, we cannot insert
additional Yi adjacently left from Ci. So, Zi can be rewritten unambiguously.

Finally, consider the case when the production r.i.4 is followed by some pro-
duction from P\PCF which rewrites C.

. . .
r.i.4=⇒ wZiCiw

′ =⇒∗ w2ZiCiw
′
2

r.i.5=⇒ w2BCiw
′
2.

On the Power of Insertion P Systems of Small Size 39

As Zi can be rewritten only if Ci appears to the right we may consider the equiva-
lent derivation with the production r.i.5 applied directly after r.i.4. So the deriva-
tion is equivalent to the derivation with i : A → BC ∈ PCF . Hence we proved
L(G′) ⊆ L(G), and hence L(G′) = L(G).

Every grammar in the normal form has the following property: every production
can rewrite/add at most one (nonterminal) letter.

Now we increase the maximal size of the context of insertion rules to two letters.
It is known from [17] that the class INS2,2

2 contains non-semilinear languages.
Considering these systems with membrane regulation we get

Theorem 9 hLSP3(ins2,2
2) = RE.

Proof. We prove the theorem by simulating a 0-type grammar in the normal form
from Lemma 8. Let G = (N,T, S, P) be such a grammar. Suppose that rules in P
are ordered and n = card(P).

Now consider the following insertion P system,

Π = (V, [1 [2 [3]3]2]1, {S$}, ∅, ∅, R1, R2, R3, h, ϕ), where

V = T ∪N ∪ F ∪ F ∪ {#, #, $}, F = {FA, |A ∈ N}, F = {FA, |A ∈ N}.
We include into R1 the following rules:

(AB, #C, α, here), if AB → AC ∈ P ;
(A, #C, Bα, here), if AB → CB ∈ P ;

(A,C, α, here), if A → AC ∈ P ;
(ε, C, Aα, here), if A → CA ∈ P ;
(A, #δ, α, here), if A → δ ∈ P ;

($, ε, ε, out),

where α ∈ V \{#}. It may happen that the pair of letters AB subjected to be
rewritten by a production AB → AC or AB → CB ∈ R is separated by letters
that have been marked. We use two additional membranes to transfer a letter over
marked ones. In order to transfer A ∈ N we add

r.1.1 : (A, #FA, α, in2), α ∈ V \{#}
to the skin membrane. Then we add to the second membrane

r.2.1 : (FA,#A,α′, out), r.2.2 : (FA, #A,α′, out),

r.2.3 : (FAX, #FA, #, in3), r.2.4 : (FAFB , #FA, #, in3)

r.2.5 : (FAX, #FA, #, in3), r.2.6 : (FA FB , #FA, #, in3)

r.2.7 : (FA#, FA, α, in3), r.2.8 : (FA#, FA, α, in3),

r.2.9 : (FA#, FA, #, in3), r.2.10 : (FA#, FA, #, in3),

r.2.11 : (FA#, FA, #, in3), r.2.12 : (FA#, FA, #, in3),

40 A. Krassovitskiy

for every

X ∈ F ∪N, FB ∈ F , α ∈ V \{#, #},
α′ ∈ {ab | a ∈ N ∪ T, b ∈ N ∪ T ∪ {$}} ∪ {$}.

Finally, we add to the third membrane the rules

r.3.1 : (FA, #, α, out), α ∈ V \{#}, r.3.2 : (FA,#, α, out), α ∈ V \{#}

The morphism h is defined by

h(a) =
{

a, if a ∈ V \N,
a# if a ∈ N.

The weak coding ϕ is defined by

ϕ(a) =
{

a, if a ∈ T,
ε if a ∈ V \T.

We simulate the productions of P in the skin membrane by marking nonterminals
from N and inserting corresponding letters of the productions. This is possible to
do with insertion rules of weight (2, 2, 2) since the grammar has such a form so
every production rewrite/add at most one letter.

The simulation of the transfer is done in the second and the third membranes.
The idea of the simulation is (1) to mark nonterminal we want to transfer, (2) jump
over the marked letters with help of one special letter, at the end (3) mark the
special letter and insert the original nonterminal. Since we use two letter contexts,
in one step we can jump only over a single letter. Also we need to jump over the
marking letter # as well as over marked nonterminals, and the letters inserted
previously. We use letters FA ∈ F and FA ∈ F to keep information about the
letter A we want to transfer. In order to jump over # we introduce one additional
marking symbol #. We mark letters from F by #, and all other letters in V \{#, #}
by #. E.g., in a words FA#, letter FA is unmarked.

(1) The rule r.1.1 : (A,#FA, α, in2), specifies that every unmarked letter from
N may be used for the transfer.

(2) The rules r.2.3 − r.2.12 in the second membrane specify that FA or FA is
copied to the right in such a way that the inserted letter would not be marked.
In order to do so, the appropriate rule chooses to insert either the overlined copy
FA or the simple copy FA. The rules r.2.3− r.2.6 describe the possible jumps over
one letter not in {#,#}, and r.2.7 − r.2.12 describe the possible jumps over the
marking letters #, #. These rules send the sentential form to the third membrane.
The rules in the third membrane mark one symbol FA ∈ F or FA ∈ F and send
the sentential form back to the second membrane.

(3) The rules r.2.1 and r.2.2 may terminate the transferring procedure and
send the sentential form to the first membrane if letter $ or two letters from
{ab | a ∈ N ∪ T, b ∈ N ∪ T ∪ {$}} appear in the the right context.

On the Power of Insertion P Systems of Small Size 41

For example, consider the transfer of A in the string AX#C$ (here, we under-
line inserting substrings)

AX#C$ r.1.1=⇒ A#FAX#C$ r.2.3=⇒ $A#FAX#FA#C$ r.3.1=⇒
A#FA#X#FA#C$ r.2.6=⇒A#FA#X#FA#FAC$ r.3.2=⇒

A#FA#X#FA ##FAC$ r.2.1=⇒A#FA#X#FA ##FA#AC$

The sentential form preserves the following invariant:

• The first membrane does not contain unmarked letters from F ∪ F.
• There is exactly one unmarked letter F ∪ F in the second membrane.
• There are always two unmarked letters from F ∪ F in the third membrane.

We mention that the invariant is preserved by every derivation. Indeed, we
start derivation from the axiom S$ that satisfies the invariant, then one unmarked
symbol is inserted by r.1.1. Rules r.2.3 − r.2.12 always add one more unmarked
letter. And rules r.2.1, r.2.2, r.3.1, r.3.2 always mark one letter from F ∪ F.

In order to verify that Π simulates the same language as G we note that every
reachable sentential form in G will be reachable also in Π by simulating the same
production.

Also we note that the derivation in Π may terminate by the rule ($, ε, ε, out)
only in the first membrane. Hence it guarantees that every transfer will be com-
pleted. It follows from the invariant that the simulation of the transfer is deter-
ministic in the second membrane. There is a nondeterministic choice in the third
membrane, where corresponding rules may mark one of the two unmarked letters.
In the case the rule marks the rightmost letter, the derivation has to “jump” again
over the inserted letter. The transfer satisfies the property that every terminating
sequence replaces a nonterminal via arbitrary large string of marked letters, if it
starts (by r.1.1) adjacently left from it. And in case the rule r.1.1 starts the trans-
fer of a letter next to unmarked letter then it produces two marked symbols which
do not affect on the result of the simulation.

The output string w is in the language only if w′ = ϕ(h−1(w)) is defined.
This is the case only if the resulting output of Π does not contain unmarked
nonterminals. On the other hand, every final derivation in Π has its counterpart
in G. By applying the inverse morphism h−1 we filter out every sentential form
with unmarked nonterminals from N . Hence, the corresponding derivation in G is
terminated. Finally, the weak coding ϕ filters away supplementary letters. Hence
we have L(G) = L(Π).

Remark 10 One may mention that there is a trade-off between the number of
membranes and the maximal length of productions. By introducing additional non-
terminals and fitting the grammar into the normal form we decrease the amount
of used membranes. It is also the case in the other way: by growing the number of
membranes we can simulate larger production rules.

42 A. Krassovitskiy

4 Conclusion

This article investigates the expressive power of insertion P systems with encod-
ings. The length of insertion rules and number of membranes are used as a measure
of descriptional complexity of the system. In the article we use the fact that mor-
phisms and weak codings are incorporated to insertion P systems. The obtained
family hLS(t)P∗(ins1,1

∗) serves to characterize matrix languages. When no mem-
branes are used, the class hINS1,1

∗ equals the family of context-free languages.
We proved the universality for the family hLSP∗(ins2,2

∗). More precisely, for every
recursively enumerable language we can construct an insertion P system of weight
(2, 2, 2) and degree 3, so that applying an inverse morphism and a weak coding we
generate the same language. Also, we want to mention that computational com-
pleteness of considered families indicates some trade-offs between descriptional
complexity measures. Moreover, the descriptional complexity used in the paper
may be extended by internal system parameters as, e.g., the size of alphabet, the
number of rules per membrane, etc.

Also, it seems quite promising to investigate decidable computational proper-
ties of the language family LS(t)P∗(ins∗,∗∗). We conjecture that it is incomparable
with many known language families.

We recall the open problem posed in [4], namely, whether hLSP1(ins2,2
∗) equals

RE One may see that in order to solve the problem by the technique used in the
article, it is enough to find a concise way to transfer a letter over a marked context.
In our case this can be reduced to the question whether it is possible to compute
the membrane regulation in the skin membrane.

Acknowledgments

The author acknowledges the support PIF program of University Rovira i Virgili,
and projectno. MTM2007-63422 from the Ministry of Science and Education of
Spain. The author sincerely thanks the help of Yurii Rogozhin and Seghey Ver-
lan without whose supervision the work would not been done. The author also
warmly thanks Gheorghe Păun and Erzsèbet Csuhaj-Varjú who draw attention,
during BWMC-09, to the possibility of using different normal forms of grammars
to simulate P insertion-deletion systems.

References

1. M. Daley, L. Kari, G. Gloor, R. Siromoney: Circular contextual insertions/deletions
with applications to biomolecular computation. Proc. SPIRE’99 , 1999, 47–54.

2. M. Mutyam, K. Krithivasan, A. Siddhartha Reddy: On characterizing recursively
enumerable languages by insertion grammars. Fundam. Inform., 64, 1-4 (2005), 317–
324

3. B.S. Galiukschov: Semicontextual grammars. Matematika Logica i Matematika Lin-
guistika, Tallin University, 1981 38–50 (in Russian).

On the Power of Insertion P Systems of Small Size 43

4. L. Kari, Petr Sośık: On the weight of universal insertion grammars. Theoretical Com-
puter Sci., 396, 1-3 (2008), 264–270.

5. L. Kari: From micro-soft to bio-soft. Computing with DNA. Proc. on Biocomputing
and Emergent Computations , 1997, 146–164.

6. L. Kari, Gh. Păun, G. Thierrin, S. Yu: At the crossroads of DNA computing and
formal languages: characterizing RE using insertion-deletion systems. Proc. of 3rd
DIMACS , 1997, 318–333.

7. L. Kari, G. Thierrin: Contextual insertion/deletion and computability. Information
and Computation, 131, 1 (1996), 47–61.

8. A. Krassovitskiy, Yu. Rogozhin, S. Verlan: Further results on insertion-deletion sys-
tems with one-sided contexts. LNCS 5196, 2008, 333–344.

9. A. Krassovitskiy, Yu. Rogozhin, S. Verlan: One-sided insertion and deletion. Tradi-
tional and P systems case. Proc. CBM08, 2008, Austria, 53–64.

10. A. Krassovitskiy, Yu. Rogozhin, S. Verlan: Computational power of P systems with
small size insertion and deletion rules. Proc. CSP08, Ireland, 2008, 137–148.

11. S. Marcus: Contextual grammars. Rev. Roum. Math. Pures Appl., 14 (1969), 1525–
1534.

12. M. Margenstern, Gh. Păun, Yu. Rogozhin, S. Verlan: Context-free insertion-deletion
systems. Theoretical Computer Sci., 330 (2005), 339–348.

13. C. Martin-Vide, Gh. Păun, A. Salomaa: Characterizations of recursively enumer-
able languages by means of insertion grammars. Theoretical Computer Sci., 205, 1–2
(1998), 195–205.

14. A. Matveevici, Yu. Rogozhin, S. Verlan: Insertion-deletion systems with one-sided
contexts. LNCS 4664, 2007, 205–217.

15. Gh. Păun: Marcus Contextual Grammars . Kluwer, Dordrecht, 1997.
16. Gh. Păun: Membrane Computing. An Introduction . Springer, Berlin, 2002.
17. Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing. New Computing Paradigms .

Springer, Berlin, 1998.
18. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages . Springer, Berlin,

1997.
19. A. Takahara, T. Yokomori: On the computational power of insertion-deletion sys-

tems. LNCS, 2568, 2003, 269–280.
20. S. Verlan: On minimal context-free insertion-deletion systems. Journal of Automata,

Languages and Combinatorics, 12, 1-2 (2007, 317-328.

