
Mutation Based Testing of P Systems

Florentin Ipate1, Marian Gheorghe2

1 Department of Computer Science
Faculty of Mathematics and Computer Science
The University of Pitesti
Str Targu din Vale 1, 110040 Pitesti
florentin.ipate@ifsoft.ro

2 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

Summary. Although testing is an essential part of software development, until recently,
P system testing has been completely neglected. Mutation testing (mutation analysis) is
a structural software testing method which involves modifying the program in small ways.
Mutation analysis has been largely used in white-box testing, but only a few tentative
attempts to use this idea in black-box testing have been reported in the literature. In this
paper, we provide a formal way of generating mutants for systems specified by context-
free grammars. Furthermore, the paper shows how the proposed method can be used to
construct mutants for a P system specification, thus making a significant progress in the
area of P system testing.

1 Introduction

Membrane computing, the research field initiated by Gheorghe Păun in 1998 [12],
aims to define computational models, called P systems, which are inspired by the
behavior and structure of the living cell. Since its introduction in 1998, the P sys-
tem model has been intensively studied and developed: many variants of membrane
systems have been proposed, a research monograph [13] has been published and
regular collective volumes are annually edited – a comprehensive bibliography of P
systems can be found at [16]. The most investigated membrane computing topics
are related to the computational power of different variants, their capabilities to
solve hard problems, like NP-complete ones, decidability, complexity aspects and
hierarchies of classes of languages produced by these devices. In the last years
there have also been significant developments in using the P systems paradigm to
model, simulate and formally verify various systems [2]. Suitable classes of P sys-
tems have been associated with some of these applications and software packages
have been developed. Of the many variants of P systems that have been defined,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

232 F. Ipate, M. Gheorghe

in this paper we consider cell-like P systems without priority rules and membrane
dissolving rules [13].

Testing is an essential part of software development and all software appli-
cations, irrespective of their use and purpose, are tested before being released.
Testing is not a replacement for a formal verification procedure, when the former
is also present, but rather a complementary mechanism to increase the confidence
in software correctness [5]. Although formal verification has been applied to dif-
ferent models based on P systems [1], until recently testing has been completely
neglected in this context.

The main testing strategies involve either (1) knowing the specific function or
behavior a product is meant to deliver (functional or black-box testing) or (2)
knowing the internal structure of the product (structural or white-box testing).
In black-box testing, the test generation may be based on a formal specification
or model, in which case the process could be automated. There is a large class
of formal models used in software specification: finite state machines, Petri nets,
process algebras, Z, VDM etc. We can add now P systems as a formal approach
[2] to specifying various applications in linguistics, graphics and, more recently,
biology, especially for defining signalling pathways.

A number of recent papers devise testing strategies based on rule coverage [4],
finite state machine [8] and stream X-machine [7] conformance techniques. In this
paper, we propose an approach to P system testing based on mutation analysis.

Mutation testing (mutation analysis) is a structural software testing method
which involves modifying the program in small ways [14], [9]. The modified versions
of the program are called mutants.

Consider, for example, the following fragment of a Java program:

if (x ≥ 0)&&a then
y = y + 1

else
y = y + 2

Then mutants for this code fragment can be obtained by either

• substituting && with another logic operator, e.g., ||;
• substituting ≥ with another comparison operator, e.g., >, =;
• substituting + with another arithmetic operators, e.g., −;
• substituting one variable (e.g. x) with another one, e.g., y (we assume that the

two variables have the same type).

Some (not all) mutants of the above code fragment are given below.

if (x ≥ 0)||a then
y = y + 1

else
y = y + 2

Mutation Based Testing of P Systems 233

if (x > 0)&&a then
y = y + 1

else
y = y + 2

if (x ≥ 0)&&a then
y = y − 1

else
y = y + 2

if (x ≥ 0)&&a then
y = y + 1

else
y = y − 2

if (x ≥ 0)&&a then
x = y + 1

else
y = y + 2

if (x ≥ 0)&&a then
y = y + 1

else
x = y + 2

A variety of mutation operators (ways of introducing errors into the correct
code) for imperative languages are defined in the literature [9], [10] (a few examples
are given above). These are called traditional mutation operators. Beside these,
there are mutation operators for specialized programming environments, such as
object-oriented languages [10]. A popular tool for generating mutants for Java
programs is MuJava [15], [10].

The underlying idea behind mutation testing is that, in practice, an erroneous
program either differs only in a small way from the correct program or, alterna-
tively, a bigger fault can be expressed as the summation of smaller (basic) faults
and so, in order to detect the fault, the appropriate mutants need to be generated.
If the test suite is able to detect the fault (i.e., one of the tests fails), then the
mutant is said to be killed. Two kinds of mutation have been defined in the liter-
ature: weak mutation requires the test input to cause different program states for
the mutant and the original program; strong mutation requires the same condition
but also the erroneous state to be propagated at the end of the program (and
hence produce an incorrect output). Obviously, the generation of a weak mutation
test suite is less complex; on the other hand, a strong mutation test suite is easier
to apply as only the program outputs need to be measured.

Mutation analysis has been largely used in white-box testing, but only a few
tentative attempts to use this idea in black-box testing have been reported in the
literature [11]. Offutt et al. propose a general strategy for developing mutation

234 F. Ipate, M. Gheorghe

operators for a grammar based software artefact, but the ideas that outline the
proposed strategy for mutation operator development are rather vague and general
and no formalization is provided.

In this paper we provide a formal way of generating mutants for systems spec-
ified by context-free grammars. Given such a specification, a derivation (or parse)
tree can be associated with. Based on it, we formally describe the process of gen-
erating the mutants for the given tree. Furthermore, the paper shows how the
proposed method can be used to construct mutants for a P system specification.

2 Preliminaries

Before proceeding we introduce the notation to be used in this paper. For an
alphabet V = {a1, . . . , ap}, V ∗ denotes the set of all strings over V . λ denotes the
empty string. For a string u ∈ V ∗, |u|ai

denotes the number of ai occurrences in u.
Each string u has an associated vector of non-negative integers (|u|a1 , . . . , |u|ap

).
This is denoted by ΨV (u).

2.1 Context-free grammars

In this section basic concepts and results related to context-free grammars are
introduced. For more details on automata, grammars and languages we refer to a
classical textbook [6]. A context-free grammar is a system G = (V, T, P, S), where

• V is the set of variables (nonterminals);
• T is the set of terminals;
• P is the set of production rules of the form A → w; where A is a single

nonterminal symbol, and w is a string of terminals and/or nonterminals;
• S is the start symbol.

For any strings u, v ∈ (V ∪ T)∗, we write u =⇒ v if there exists a production
rule A → w and α, β ∈ (V ∪ T)∗ such that u = αAβ and v = αwβ. That is, v is
the result of applying the rule A → w to u.

The =⇒ relation can be extended to a sequence of zero or more production
rules: for any u, v ∈ (V ∪ T)∗, we write u =⇒∗ v if there exist u1, · · · , uk, k ≥ 1
such that u = u1, v = uk and ui =⇒ ui+1, 1 ≤ i ≤ k− 1. We say that u derives v.
If the derivation has at least one step (i.e., k > 1) then we denote u =⇒+ v.

The language described by the context-free grammar G is the set L(G) =
{v ∈ T ∗ | S =⇒∗ v}. A language L ⊆ T ∗ is said to be context-free if there is a
context-free grammar G such that L = L(G).

A context-free grammar is said to be proper if

• it has no useless symbols (inaccessible symbols or unproductive symbols), i.e.,
∀A ∈ V , ∃α, β ∈ (V ∪ T)∗, v ∈ T ∗ such that S =⇒∗ αAβ and A =⇒∗ v;

• it has no λ-productions, i.e., A → λ;
• it has no renaming production rules, i.e., A → B, for A, B ∈ V .

Mutation Based Testing of P Systems 235

For every context-free language L, if λ /∈ L then there exists a proper context-free
grammar that describes L. For simplicity, in the sequel we consider only proper
context-free grammars.

A derivation (parse) tree for a (proper) context-free grammar G = (V, T, P, S)
is a tree that satisfies the following conditions:

• each non-leaf node is labeled by a nonterminal in V ;
• each leaf node is labeled by a terminal in T ;
• if a non-leaf node is labeled A and its children are labeled X1, . . . , Xk then

A → X1 . . . Xk is a production rule of G.

If the root node is labeled by S then the yield of the tree is the string of
terminals obtained by concatenating the leaves from left to right. For any string
of terminals w ∈ T ∗, S =⇒∗ w if and only if w is the yield of some derivation
(parse) tree with root S [6]. Consequently, w ∈ L(G) if and only if w is generated
by some parse tree with root S. Parse trees have very high practical value as they
are used by compilers to represent the structure of the source code.

A grammar is said to be ambiguous if there exists a string and in any leftmost
derivation (always the leftmost nonterminal is rewritten) this can be generated
by more than one derivation (parse) tree. Usually, ambiguity is a feature of the
grammar, not of the language and unambiguous grammars can be found to describe
the same context-free language. However, there are certain context-free languages
which can only be generated by ambiguous grammars; such languages are called
inherently ambiguous. An ambiguous grammar presents a practical problem since
a string may be associated with more than one parse tree. However, there are
well-known techniques for eliminating the causes of ambiguity which are used in
compiler construction.

In the sequel we will consider (possibly ambiguous) context-free grammars
which describe languages that are not inherently ambiguous. We will tacitly assume
that mechanisms for solving the causes of ambiguity exist and so there is a one-
to-one mapping between a string and its parse tree.

2.2 P systems

A basic cell-like P system is defined as a hierarchical arrangement of membranes
identifying corresponding regions of the system. With each region there are asso-
ciated a finite multiset of objects and a finite set of rules; both may be empty. A
multiset is either denoted by a string u ∈ V ∗, where the order is not considered,
or by ΨV (u). The following definition refers to one of the many variants of P sys-
tems, namely cell-like P system, which uses non-cooperative transformation and
communication rules [13]. We will call these processing rules. Since now onwards
we will refer to this model as simply P system.

Definition 1. A P system is a tuple Π = (V, µ, w1, . . . , wn, R1, . . . , Rn), where

• V is a finite set, called alphabet;

236 F. Ipate, M. Gheorghe

• µ defines the membrane structure; a hierarchical arrangement of n compart-
ments called regions delimited by membranes; these membranes and regions
are identified by integers 1 to n;

• wi, 1 ≤ i ≤ n, represents the initial multiset occurring in region i;
• Ri, 1 ≤ i ≤ n, denotes the set of processing rules applied in region i.

The membrane structure, µ, is denoted by a string of left, [, and right,],
brackets, each with the label of the membrane it points to; µ also describes
the position of each membrane in the hierarchy. For instance, a structure of
three membranes in which membrane 1 contains membranes 2 and 3 can be
described by either [1[2]2[3]3]1 or [1[3]3[2]2]1. The rules in each region have the
form u → (a1, t1) . . . (am, tm), where u is a multiset of symbols from V , ai ∈ V ,
ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a rule is applied to a multiset u in
the current region, the symbol a is replaced by the symbols ai with ti = here;
symbols ai with ti = out are sent to the outer region or outside the system when
the current region is the external compartment and symbols ai with ti = in are
sent into one of the regions contained in the current one, arbitrarily chosen. In the
following definitions and examples all the symbols (ai, here) are used as ai. The
rules are applied in maximally parallel mode which means that they are used in
all the regions in the same time and in each region all the symbols that may be
processed, must be.

A configuration of the P system Π, is a tuple c = (u1, . . . , un), where ui ∈ V ∗,
is the multiset associated with region i, 1 ≤ i ≤ n. A derivation of a configuration
c1 to c2 using the maximal parallelism mode is denoted by c1 =⇒ c2. In the set of
all configurations we will distinguish terminal configurations; c = (u1, . . . , un) is a
terminal configuration if there is no region i such that ui can be further derived.

For the type of P systems we investigate in this paper multi-membranes can
be equivalently collapsed into one membrane through properly renaming symbols
in a membrane. Thus, for the sake of convenience, in this paper we will only focus
on P systems with only one membrane.

2.3 Kripke structures

Definition 2. A Kripke structure over a set of atomic propositions AP is a four
tuple M = (S, H, I, L), where

• S is a finite set of states;
• I ⊆ S is a set of initial states;
• H ⊆ S × S is a transition relation that must be total, that is, for every state

s ∈ S there is a state s′ ∈ S such that (s, s′) ∈ H;
• L : S → 2AP is an interpretation function, that labels each state with the set

of atomic propositions true in that state.

Usually, the Kripke structure representation of a system results by giving values
to every variable in each configuration of the system. Suppose var1, . . . , varn are

Mutation Based Testing of P Systems 237

the system variables, V ali denotes the set of values for vari and vali is a value from
V ali, 1 ≤ i ≤ n. Then the states of the system are S = {(val1, . . . , valn) | val1 ∈
V al1, . . . , valn ∈ V aln}, and the set of atomic predicates are AP = {(vali = val) |
1 ≤ i ≤ n, val ∈ V ali}. Naturally, L will map each state (given by the values of
variables) onto the corresponding set of atomic propositions. Additionally, a halt
(sink) state is needed when H is not total and an extra atomic proposition, that
indicates that the system has reached this state, is added to AP . For convenience,
in the sequel AP and L will be omitted from the definition of a Kripke structure.

Definition 3. An infinite path in a Kripke structure M = (S,H, I, L) from a
state s ∈ S is an infinite sequence of states π = s0s1 . . . , such that s0 = s and
(si, si+1) ∈ H for every i ≥ 0. A finite path π is a finite prefix of an infinite path.

3 Mutation Testing from a Context-Free Grammar

In this section we provide a way of constructing mutants for systems specified by
context-free grammars. Given the system specification, in the form of a parse tree,
we formally describe the generation of mutants for the given specification.

Consider a context-free G = (V, T, P, S) and L(G) the language defined by G.
We assume that, for every production rule p of G of the form A → X1 . . . Xk,
we have defined a set Mut(p), called the set of mutants of p. A mutant p′ of p is
a production rule of the form A → X ′

1 . . . X ′
n such that each symbol X ′

1, . . . , X
′
n

is either a terminal or is found among X1, . . . , Xk. Furthermore, p′ is either a
production rule of G itself or has the form A → A, A ∈ V ; this condition ensures
that the yield of the mutated tree is syntactically correct.

Among the mutants of p, the following types of mutants can be distinguished:

• A terminal replacement mutant is a production rule of the form A → X ′
1 . . . X ′

k

if there exists j, 1 ≤ j ≤ k, such that Xj , X
′
j ∈ T , Xj 6= X ′

j and X ′
i = Xi,

1 ≤ i ≤ n, i 6= j.
• A terminal insertion mutant is a production rule of the form A → w where w is

obtained by inserting one terminal into the string X1 . . . Xk (at any position).
• A string deletion mutant is a production rule of the form A → w where w is

obtained by removing one or more symbols from X1 . . . Xk.
• A string reordering mutant is a production rule of the form A → w where w is

obtained by reordering the string X1 . . . Xk.

Given any parse tree Tr for G, the set of mutants of Tr is defined as follows:

• A one-node tree has no mutants.
• Let Tr be the tree with root A and subtrees Tr1, . . . , T rk having root nodes

X1, . . . , Xk, respectively and p ∈ P the corresponding production rule of G, of
the form A → X1 . . . Xk. This is denoted by Tr = MakeTree(A, Tr1, . . . , T rk).
Let Tr′ denote a mutant of Tr. Then either

238 F. Ipate, M. Gheorghe

– (subtree mutation) Tr′ = MakeTree(A, Tr′1, . . . , T r′k), where there ex-
ists j, 1 ≤ j ≤ k, such that Tr′j is mutant of Trj and Tr′i = Tri, 1 ≤ i ≤ k,
i 6= j, or

– (rule mutation) Tr′ = tree(A, Tr′1, . . . , T r′n), where there exists a mutant
p′ of p of the form A → X ′

1 . . . X ′
n such that for every i, 1 ≤ i ≤ n, there

exists j, 1 ≤ j ≤ n, such that Tr′i = Trj .

According to [11] these operations can be made such as to keep the result
produced by them in the same language or in a larger one. In the first case a
much simpler approach can be considered whereby each rule having a certain
nonterminal in the left hand side is replaced by another different rule having the
same nonterminal as left hand side. However the above set of operations provide
a two stage method which generates mutants by considering first the rule level
and then the derivation (parse) tree. If these operations are restricted to produce
strings in the same language then we have the following result.

Lemma 1. Every mutant of a parse tree for G is also a parse tree from G.

Proof. Follows by induction on the depth of the tree.

Thus, the yield of any mutant constructed as above belongs to the language
described by G and so only syntactically correct mutants will be generated. Syn-
tactically incorrect mutants are useless (they do not produce test data) and so the
complexity of the testing process is reduced by making sure that these are ruled
out from the outset.

Example 1. Let G = (V, T, P, S) where

• V = {S};
• T = {0, . . . , N} ∪ {+,−} where N is a fixed upper bound;
• P = {p1, p2} ∪ {pi

3 | 0 ≤ i ≤ N}, where p1 : S → S + S, p2 : S → S − S,
pi
3 : S → i, 0 ≤ i ≤ N .

Suppose we have the following rule mutants:

• Mutants for p1 : S → S − S (terminal replacement), S → S (string deletion)
• Mutants for p2 : S → S + S (terminal replacement), S → S (string deletion)
• Mutants for pi

3 : S → i − 1 and S → i + 1 if 1 < i < N , S → 1 if i = 0
and S → N − 1 if i = N . The mutants of pi

3 are of terminal replacement type
and are based on a technique widely used in software testing practice, called
boundary value analysis. According to practical experience, many errors tend
to lurk close to boundaries; thus, an efficient way to uncover faults is to look
at the neighboring values

Consider the string 1 + 2− 3 and a parse tree for this string as represented in
Figure 1 (leaf nodes are in bold). The construction of mutants for the given parse
tree is illustrated in Figures 2, 3 and 4. Thus, the mutated strings are 0 + 2 − 3,
2 + 2 − 3, 1 + 1 − 3, 1 + 3 − 3, 1 − 3, 2 − 3, 1 + 2 − 2, 1 + 2 − 4, 1 + 2 + 3,

Mutation Based Testing of P Systems 239

1 − 2 − 3, 1 + 2, 3. Some of these produce the same result as the original string;
these are called equivalent mutants. Since no input value can distinguish these
mutants from the correct string, they will not affect the test suite when strong
mutation is considered.

S + S

S

3

1 2

-

S

S

Fig. 1. Example parse tree

4 P System Mutation Testing

Consider a 1-membrane P-system Π = (V, µ, w, R), where R = {r1, . . . , rm}; each
rule ri, 1 ≤ i ≤ m, is of the form ui → vi, where ui and vi are multisets over
the alphabet V . In the sequel, we treat the multisets as vectors of non-negative
integers, that is each multiset u is replaced by ΨV (u) ∈ Nk, where k denotes the
number of symbols in V .

In order to keep the number of configuration finite we will assume that each
component of a configuration u cannot exceed an established upper bound denoted
Max. We denote u ≤ Max if ui ≤ Max for every 1 ≤ i ≤ k and Nk

Max = {u ∈
Nk | u ≤ Max}. Analogously to [3], the system is assumed to crash whenever
u ≤ Max does not hold (this is different from the normal termination, which
occurs when u ≤ Max and no rule can be applied). Under these conditions, the
1-membrane P system Π can be described by a Kripke structure.

In order to define the Kripke structure equivalent of Π we use two predi-
cates, MaxParal and Apply, defined by: MaxParal(u, u1, v1, n1, . . . , um, vm, nm),
u ∈ Nk

Max, n1, . . . , nm ∈ N signifies that a derivation of the configuration u in
maximally parallel mode is obtained by applying rules r1 : u1 → v1, . . . , rm : um →
vm for n1, . . . , nm times, respectively; Apply(u, v, u1, v1, n1, . . . , um, vm, nm), u ∈

240 F. Ipate, M. Gheorghe

S

1

S

2

S

3

Tree 1st Level Mutants

S

0

S

1

S

2

S

2

S

3

S

4

Fig. 2. 1st level mutants

Nk
Max, n1, . . . , nm ∈ N, denotes that v is the result of applying rules r1, . . . , rm

for n1, . . . , nm times, respectively.
Then the Kripke structure equivalent M = (S,H, I, L) of Π is defined as

follows:

• S = Nk
Max ∪ {Halt, Crash} with Halt, Crash /∈ Nk

Max, Halt 6= Crash;
• I = w;
• H is defined by:

– (u, v) ∈ H, u, v ∈ Nk
Max, if ∃n1, . . . , nm ∈ N ·MaxParal(u, u1, v1, n1, . . . ,

um, vm, nm) ∧Apply(u, v, u1, v1, n1, . . . , um, cm, nm);
– (u,Halt) ∈ H, u ∈ Nk

Max, if ¬∃v ∈ Nk
Max, n1, . . . , nm ∈ N · Apply(u, v,

u1, v1, n1, . . . , um, vm, nm);
– (u,Crash) ∈ H if ¬∃v ∈ Nk

Max ∪ {Halt} · (u, v) ∈ H;
– (Halt, Halt) ∈ H;
– (Crash,Crash) ∈ H.

It can be observed that the relation H is total.

Mutation Based Testing of P Systems 241

S

S + S

1 2

Tree 2nd Level Mutants

S

S + S

0 2

S

S + S

2 2

S

S + S

0 1

S

S + S

2 3

S

S + S

1 2

S

S

1

S

S

2

Fig. 3. 2nd level mutants

A multi-membrane P system without dissolving rules can be collapsed into
a 1-membrane P system so, without loss of generality we will only consider 1-
membrane P systems.

In order to use mutation analysis in P system testing we first have to describe
an appropriate context-free grammar, such that the P system specification can be
written as a string accepted by this grammar. The parse tree for the string is then
generated and the procedure presented in the previous section is used for mutant
construction.

242 F. Ipate, M. Gheorghe

S

S

3

- Left Tree
Mutant

S + S

1 2

-

S

S Right Tree
Mutant

S + S

S

3

1 2

+

S

S

S

S

3 S + S

1 2

S

S

3rd Level Mutants of the original tree

Fig. 4. 3rd level mutants

The grammar definition will depend on the level at which testing is intended
to be performed. At a high level (for instance in integration testing) the predicates
MaxParal and Apply will normally be assumed to be correctly implemented and
so they will be presented as terminals in the grammar; obviously, they can be
themselves described by context-free grammars and appropriate mutants will be
generated in a similar fashion at lower level of testing. On the other hand, it is
possible to incorporate the definitions of the two predicates into the definition of
the transition relation H; in this case the corresponding grammar will be much
more complex and system testing will be performed in one single step. Naturally,

Mutation Based Testing of P Systems 243

for complexity reasons, in practice a multi-phase testing strategy is normally pre-
ferred.

The following (simplified) example illustrates the above strategy for high-level
testing of P systems.

Example 2. Consider a 1-membrane P-systems with 2 rules r1 : u1 → v1, r2 : u2 →
v2. Then the transition of the Kripke structure representation of Π is given by the
formulae:

• (u, v) ∈ H, u, v ∈ N2
Max, if ∃n1, n2 ∈ N ·MaxParal(u, u1, v1, n1, u2, v2, n2) ∧

Apply(u, v, u1, v1, n1, u2, c2, n2);
• (u,Halt) ∈ H, u ∈ N2

Max, if ¬∃v ∈ N2
Max, n1, n2 ∈ N · Apply(u, v, u1,

v1, n1, u2, v2, n2);
• (u,Crash) ∈ H if ¬∃v ∈ N2

Max ∪ {Halt} · (u, v) ∈ H;
• (Halt, Halt) ∈ H;
• (Crash, Crash) ∈ H.

Then such a system can be described by a context-free grammar G = (V, T, P, S)
where

• V = {S, S1, S2, U, V, U1, V1, U2, V2};
• T contains (bounded) vectors from N2, the additional states Hal and

Crash, predicates MaxParal and Apply, the “true” logical value, logi-
cal operators, quantifiers and other symbols, i.e., T = N2

Max ∪ {Halt,
Crash,MaxParal, Apply, true,∧, ,∨,¬, ∃, ∀, n1, n2, ·, (,)};

• The production rules are:
– p1 : S → ¬S;
– p2 : S → S ∧ S;
– p3 : S → S ∨ S;
– p4 : S → true;
– p5 : S → ∃n1 · S1;
– p6 : S1 → ∃n2 · S2;
– p7 : S2 → S2 ∧ S2;
– p8 : S2 → Apply(U, V, U1, V1, n1, U2, V2, n2);
– p9 : S2 → MaxParal(U,U1, V1, n1, U2, V2, n2);
– rules that transform nonterminals U,U1, V1, U2, V2 into vectors from N2.

Suppose the following rule mutants are defined:

• Mutants for p1 : S → S;
• Mutants for p2 : S → S ∨ S, S → S;
• Mutants for p3 : S → S ∧ S, S → S;
• Mutants for p4 : S → ¬true;
• Mutants for p5 : S → ∀n1 · S1;
• Mutants for p6 : S1 → ∀n2 · S2;
• Mutants for p7 : S1 → S ∨ S1, S1 → S1;

244 F. Ipate, M. Gheorghe

• Mutants for p8 : negate de predicate, change parameters such that the obtained
formula is syntactically correct, e.g. switch u and u1;

• p9 : negate de predicate, change parameters such that the obtained formula is
syntactically correct;

• remaining rules: change each integer value by adding or removing 1.

Now, consider the P system Π with rules r1 : a → ab, r2 : a → c. Among the
P-system mutants generated using the above procedure are the following:

• P systems in which one rules is changed: r1 can be replaced by any of λ →
ab (this is an invalid rule and the resulting mutant will have no P system
equivalent), aa → ab, ab → ab, ac → ab, a → a, a → b, a → c, a → a2b,
a → ab2, a → abc; r2 can be substituted in a similar manner. Note that only
one rule is mutated at a time.

• r1 and r2 are interchanged (this will result in an equivalent mutant).
• A system with rules r1 and r2, but which are not applied in a maximal parallel

mode (this is obtained by negating the maxParal predicate in the expression
of H).

• Other erroneous Kripke systems which may have no P system equivalent; these
can be obtained, for example, by negating the Apply predicate in the expression
of H or by changing one of its “state” parameters (u or v).

Note that in this example we have used a grammar that generates 1-membrane
P systems with (at most) two rules and so all generated mutants have this form.
More generally, we can use a grammar that describes any 1-membrane P system
(with any number of rules). Naturally, in this case the mutant generation process
will be much more complex.

5 Conclusions

In many applications based on formal specification methods the test sets are gen-
erated directly from the formal models. The same applies to formal models based
on grammars. However the approach presented in [11], although novel and with
many practical consequences, lacks a rigorous method of defining the process of
generating the mutants. In this paper a formal method based rigorously defined
operations with rules and subtrees of derivation trees is introduced for context-
free grammar formalisms and extended to P systems. Some examples illustrate the
approach.

Acknowledgment

Work supported by the CNCSIS grant IDEI 643/2009 (EvoMT).

Mutation Based Testing of P Systems 245

References

1. F. Bernardini, M. Gheorghe, F.J. Romero-Campero, N. Walkinshaw: A hybrid ap-
proach to modelling biological systems. Workshop on Membrane Computing 2007,
LNCS 4860, 138–159.

2. G. Ciobanu, Gh. Păun, M. J. Pérez-Jiménez, eds.: Applications of Membrane Com-
puting. Springer, 2006.

3. Z. Dang, O.H. Ibarra, C. Li, G. Xie: On the decidability of model-checking for P
systems. Journal of Automata, Languages and Combinatorics, 11, 3 (2006), 279–298.

4. M. Gheorghe, F. Ipate: On testing P systems. Workshop on Membrane Computing,
2008, LNCS 5391, 204–216.

5. M. Holcombe, F. Ipate: Correct Systems: Building a Business Process Solution.
Springer, 1998.

6. J.E. Hopcroft, R. Motwani, J.D. Ullman: Introduction to Automata Theory, Lan-
guages, and Computation (2nd Edition). Addison-Wesley, 2001.

7. F. Ipate, M. Gheorghe: Testing non-determinstic stream X-machine model and P
systems. Electronic Notes in Theoretical Computer Science, 227 (2009), 113–126.

8. F. Ipate, M. Gheorghe: Finite state based testing of P systems. Natural Computing,
2009, to appear.

9. J. Offutt: A practical system for mutation testing: Help for the common programmer.
International Test Conference, 1994, 824–830.

10. Y.-S. Ma, J. Offutt, Y.R. Kwon: MuJava – An automated class mutation system.
Software Testing, Verification and Reliability, 15, 2 (2005), 97–133.

11. J. Offutt, P. Ammann, G. Mason, L. (Ling) Liu: Mutation testing implements
grammar-based testing. Proceedings of the Second Workshop on Mutation Analysis,
2006.

12. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

13. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
14. http://en.wikipedia.org/wiki/Mutation testing
15. http://cs.gmu.edu/ offutt/mujava/
16. http://ppage.psystems.eu

