
Computing Backwards with P Systems

Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutier@us.es, marper@us.es

Summary. Searching all the configurations C′ such that produce a given configuration
C, or, in other words, computing backwards in Membrane Computing is an extremely
hard task. The current approximations are based in heavy hand-made calculus by consid-
ering the specific features of the given configuration. In this paper we present a general
method for characterizing all the configurations C′ such that produce a given configura-
tion C in transition P systems without cooperation and without dissolution.

1 Introduction

Given a computational model with a universal clock, where the time is considered
in a discrete way and the transition from a state to the next one is made by a set
of rules, it is usual to wonder about the previous state of a given one, or in other
words, to wonder about the possibility of computing backwards.

Note that the determinism of the model does not make the solution easier,
since the determinism of the computation does not lead to the determinism of the
reverse computation. One can go deterministically from S to S0 and from S′ to S0,
but given S0, the reversed computation is not deterministic. A special situation
is considered when the rules are reversible. In this case, it suffices to apply the
reversed rules to S1 according to the computational model to obtain the desired
states1.

In this paper we study the problem of characterizing the set of configurations
of a P systems that produce a given configuration in one computational step. We
study the case in which the P system is not necessarily deterministic and the rules
are not reversible in general. We will consider a restricted version of transition
P systems without cooperation where the membrane structure does not change
along the computation.

The paper is organized as follows: first we expose an example that shows the
necessity of finding a method for computing backwards, avoiding the heavy calculus

1 This case is studied for P systems in [1].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

212 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

based on specific features of the given configuration. Next, our P system model is
briefly introduced and we present our representation for configurations and rules
in such a P system. In Section 6 we prove our main result: The computation of all
the configurations C ′ such that produce a given configuration C can be reduced
to find solutions of a system of linear equations with values2 in N. In Section
7 we provide a general method of calculus based on our theorem. Finally, some
conclusions and new open research lines are presented.

2 Motivation

The reader is assumed to be familiar with basic elements of membrane computing,
e.g., from [4] Let us start with the P system Π with alphabet Γ = {a, b, c}, set of
labels H = {e, s}, membrane structure µ = [[]e]s and set of rules R

Rule 1: [a → b2c]e Rule 4: [b → a]s
Rule 2: [a]e → a []e Rule 5: a []e → [c]e
Rule 3: [b → c2]s Rule 6: [c → a]e

In Section 3, we will give a detailed description of the P system model studied
in this paper, but by now it is enough to know that all the rules are applied in
a non-deterministic maximal parallel way as usual in the general framework of
Membrane Computing.

Let us consider now configuration C ′ = [[a2b]e a2c]s, i.e., the configuration in
which the multiset placed in the membrane labeled by e is a2b and the multiset in
the membrane s is a2c. Our problem is to find the configuration (or configurations)
C such that we can go from C to C ′ in one computational step. In other words,
we want to compute backwards from C and characterize all the configurations C

such that produce C ′ in one computation step.
We can reason in the following way:

• We find two objects a in the membrane labeled by e in the configuration C ′.
Since rules 1 and 2 consume all the objects in the membrane e from the previous
configuration C, we conclude that such pair of objects a must be produced by
the application of rule(s) of Π. It is easy to check that only rule 6 produces
objects a in membrane e, then the number of objects c in configuration C

must be at least 2. If we look at the set of rules again, we observe that object
c in membrane e only triggers rule 6. Hence, if the number of objects c in e is
higher than 2 we conclude that the number of objects a in the membrane e in
the configuration C must be greater than 2. Therefore, we conclude that the
number of objects c in the membrane e in configuration C is equal to 2.

• We find one object b in the membrane labeled by e in configuration C ′. The
unique rule that can produce it is rule 1, but the application of the rule produces
at least two objects b in membrane e. Then we conclude that rule 1 is not

2 We represent by N = {0, 1, 2, . . . } the set of natural numbers.

Computing Backwards with P Systems 213

applied. The occurrence of such object b can only be explained by considering
its occurrence in configuration C. As one can check, no rule is triggered by
object b in the membrane e, then the number of objects b in membrane e in
the configuration C equals to 1.

• No object c are placed in the membrane e in C ′. All such objects from the
previous configuration C are consumed by rule 6, so no object c in the mem-
brane e imply that rules 1 and 5 have not been triggered. From the previous
paragraph, it is known that rule 5 has not been applied. Since all the objects
a in membrane s send objects e into membrane c by means of rule 5 and the
numbers of objects c in such membrane in configuration C ′ is zero, we conclude
that in configuration C no objects a are placed in the membrane s.

• We find one object c in the membrane labeled by s in configuration C ′. The
unique rule that can produce it is rule 3, but the application of the rule produces
at least two objects c in membrane s. Then we conclude that rule 3 is not
applied. The occurrence of such object b can only be explained by considering
its occurrence in configuration C. As one can check, no rule is triggered by the
object c in the membrane s, then the number of objects c in membrane s in
the configuration C equals 1.

• Finally, we find two objects a in the membrane labeled by s in the configuration
C ′. Since rule 5 consumes all the objects in the membrane e from the previous
configuration C, we conclude that such objects a must be produced by the
application of rule(s) of Π. Rules 2 and 4 produce objects a in membrane s.
Rule 2 is triggered by an object a in the membrane e and rule 4 is triggered
by an object b in membrane s. We can also check that all the objects b in
s produce objects a. Nonetheless, an object a in the membrane e can trigger
rules 1 and 2. Fortunately, we have seen that rule 1 is not triggered, so can
conclude that all the objects a in membrane e trigger rule 2. We conclude that
the number of objects a in membrane e in the configuration C and the number
of objects b in the membrane s must be less than or equal to 2 and the sum of
both numbers must be equal to 2.

Bearing in mind these considerations, there are three configurations C such
that produce C ′ in one computation step:

• C1 = [[bc2]e b2c]s, i.e., we = bc2 and ws = b2c. It is easy to check that by
applying the rules 4 and 6 we obtain the configuration C ′ = [[a2b]e a2c]s.

• C2 = [[abc2]e bc]s, i.e., we = abc2 and ws = bc. In this case, C ′ is obtained by
applying the rules 2, 4 and 6.

• C3 = [[a2bc2]e c]s, i.e., we = a2bc2 and ws = c. In this case, C ′ is obtained by
applying the rules 2 and 6.

A question arises in a natural way: Could this reasoning be automatic? In other
words, given a P system and a configuration C ′, is there an algorithm such that
outputs the set C of configurations C and produce C ′ in one computational step?

We can even go beyond. We wonder if there exists an algorithm such that
it takes a P system Π as input and it outputs a mapping RΠ which, for every

214 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

configuration C ′ of Π, RΠ(C ′) is the set of all computations C such that C ′ is
obtained from C in one computational step. In this paper, we will give a positive
answer to both questions. Before, we need to recall the connections between P
systems and Linear Algebra.

3 The P System Model

Throughout this paper, we will consider a restricted form of transition P systems
without dissolution and without output membrane. Considering an output mem-
brane is irrelevant for our study, since we are not interested in the objects placed
in a particular membrane, but in the computation process itself. We also restrict
the type of rules. Cooperation is not allowed and then rules are triggered by only
one object.

Namely, along this paper a P system of degree m is a tuple

Π = (Γ,H, µ,w1, . . . , wm, R)

where:

• Γ is an alphabet whose elements are called objects;
• H is the set of m labels and m is called the degree of Π.
• µ is the membrane structure of the P system; membranes are bijectively labelled

with the elements of H;
• wh1

, . . . , whm
are strings that represent multisets over Γ associated with each

membrane of µ;
• R = {R1, . . . , Rm} is the set of sets of rules, where Ri with i ∈ {1, . . . ,m}

is a finite set of evolution rules over Γ . The type of evolution rules of Ri

depends on the membrane structure µ. Let j1, . . . , jr be the labels of membranes
immediately inside the membrane i. An evolution rule of Ri is of the form
a → v, where a is an object from Γ and v is an string over Γ i

tar, where Γ i
tar =

Γ × TARi, for TARi = {here, out} ∪ {injk
| k ∈ {1, . . . , r} }.

The symbols here, out and injk
are called target commands. The rules are

applied in a non-deterministic maximally parallel way. Given a rule a → v, the
effect of applying this rule in a compartment i is to remove the object a and to
insert the objects specified by v in the regions designated by the target commands
associated with the objects from v. In particular,

• if v contains (a, here), the object a will be placed in the same region where the
rule is applied;

• if v contains (a, out), the object a will be placed in the compartment that
surrounds the region where the rule is applied;

• if v contains (a, inj), the object a will be placed in compartment j, provided
that j is immediately inside i.

Computing Backwards with P Systems 215

In one step, each object in a membrane can only be used for one rule (non
deterministically chosen when there are several possibilities), but any object which
can evolve by a rule of any form must do it. All the elements which are not involved
in any of the rules to be applied remain unchanged. Several rules can be applied
to different objects in the same cell simultaneously.

Along the computation, the multisets associated with the membranes can
change, but the alphabet Γ , the set of labels H, the membrane structure µ and
the set of rules R are constant. We will call the 4-uple (Γ,H, µ,R) the skeleton of
the P system.

Notice that the P system presented in Section 2 is a particular case of this P
system model with a slight change of notation in the rules

1. Notation [a → v]h where h ∈ H, a ∈ Γ and v is a string over Γ is a short
notation to indicate that the rule a → (v1, here) . . . (vn, here) belongs to the
set of rules Rh, with v = v1 . . . vn.

2. Notation a[]h → [v]h where h ∈ H, a ∈ Γ and v is a string over Γ is a short
notation to indicate that the rule a → (v1, inh) . . . (vn, inh) belongs to the set
of rules Rh∗ , with h∗ the label of the membrane surrounding the membrane h

and v = v1 . . . vn.
3. Notation [a]h → v[]h where h ∈ H, a ∈ Γ and v is a string over Γ is a short

notation to indicate that the rule a → (v1, out) . . . (vn, out) belongs to the set
of rules Rh, with v = v1 . . . vn.

4 Changing the Point of View

The key idea of the present paper is to consider an algebraic representation for the
configurations and the rules of a P system. The starting point is the representation
used in [2], but we introduce several changes.

First, our elementary objects are pairs of type (a, h) ∈ Γ × H meaning that
object a ∈ Γ is placed in the membrane (labeled by) h ∈ H. Roughly speaking,
transitions in P systems are performed by rules in which the occurrence of an
element a0 in a membrane h0 produces the occurrence of β1 copies of element a1

in membrane h1, β2 copies of element a2 in membrane h2, etc.
More formally, the rules in the P system model presented above can be refor-

mulated as follows:

(a0, h0) → (a1, h1)
β1(a2, h2)

β2 . . . (an, hn)βn

Note that, for all i ∈ {1, . . . , n}, if h0 = hi then, (ai, hi) is equivalent to the pair
(ai, here). Otherwise, if h0 6= hi both membranes must be adjacent (one membrane
is the father of the other one). If h0 is the father of hi, then the pair (ai, hi) is
equivalent to (ai, inhi

). Finally, if hi is the father of h0, then the pair (ai, hi) is
equivalent to (ai, out). For each i ∈ {1, . . . , n}, βi represents the multiplicity of
(ai, hi) in the right-hand side (RHS) of the rule.

216 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

The second basic idea in the representation appears in [3] too. It consists on
settling a total order in the set Γ × H. Along the paper, in order to simplify the
notation, given an alphabet Γ and a set of labels H, d will denote the cardinal
Γ ×H. Let us consider a total order O on the set Γ ×H, O : {1, . . . , d} → Γ ×H.
By using this order, we will represent Γ × H as the finite sequence 〈γ1, . . . , γd〉,
where γi is the i-th pair of Γ × H in the order O.

By using this order, each rule

(a0, h0) → (a1, h1)
β1(a2, h2)

β2 . . . (an, hn)βn

can be represented as
γ → γα1

1 γα2

2 . . . γαd

d

where (a0, h0) = γ and for all i ∈ {1, . . . , d}:

• If there exists j ∈ {1, . . . , n} such that γi = (aj , hj) then αi = βj .
• Otherwise αi = 0.

We will say that γ → γα1

1 γα2

2 . . . γαd

d is the pairwise representation of the rule.
The use of an order on Γ ×H leads us to a more homogeneous representation

of rule γ → γα1

1 γα2

2 . . . γαd

d . It can be represented by a pair 〈γ,~v〉 where γ (the LHS
of the rule) belongs to Γ × H, and ~v is a vector of dimension d whose arguments
are in N. Formally, we have the following definition:

Definition 1. Let us consider a P system Π with Γ the alphabet and H the set of

labels. Let Γ × H be the ordered set 〈γ1, . . . , γd〉. The algebraic representation of

the rule

γ → γα1

1 γα2

2 . . . γαd

d

is the pair (γ,~v) where ~v = (α1, . . . , αd). We will say that ~v represents the right-

hand side of the rule ri.

Remark 1: Given an order 〈γ1, . . . , γd〉 on Γ×H, a pair 〈γ,~v〉 where γ ∈ Γ×H

and ~v is a vector of dimension d (with values in N) defines a unique rule and vice-
versa, each rule having a unique algebraic representation.

Remark 2: If the P system is not deterministic, then there exists at least one
γ ∈ Γ × H such that there exists two different vectors ~v1 and ~v2 such that pairs
〈γ,~v1〉 and 〈γ,~v2〉 represent two different rules.

Let us see an example of this algebraic representation.

Example 1. Let us consider the skeleton of the P system considered in Section 2
with Γ = {a, b, c}, H = {e, s}, µ = [[]e]s and R the set of rules

Rule 1: [a → b2c]e Rule 4: [b → a]s
Rule 2: [a]e → a []e Rule 5: a []e → [c]e
Rule 3: [b → c2]s Rule 6: [c → a]e

The set of objects is Γ = {a, b, c} and the set of labels is H = {e, s}. Let us
consider the following total order in Γ × H

Computing Backwards with P Systems 217

〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉

The six rules of the P system can be settled as

r1: (a, e) → (b, e)2(c, e) r4: (b, s) → (a, s)
r2: (a, e) → (a, s) r5: (a, s) → (c, e)
r3: (b, s) → (c, s)2 r6: (c, e) → (a, e)

By using the previous total order in Γ ×H, these rules have the following algebraic
representation

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉

4.1 Configurations

A configuration of such a P system is the description of the multiset placed in
the membranes of the P system in a given instant. Formally, given a P system
with working alphabet Γ and set of labels H, a configuration C is a multiset over
Γ × H, C : Γ × H → N, and we denote by C(a,m) the multiplicity of object a in
the membrane labeled by m of that configuration. The support of C, supp(C), is
defined as supp(C) = {(a,m) ∈ Γ × H |C(a,m) 6= 0} and, as usual in multisets
theory, C will be represented as {(a,m)C(a,m) | (a,m) ∈ supp(C)}. For example,
the configuration of our example [[b]e c3]s can be represented as {(b, e), (c, s)3}.

From the idea of setting an order on Γ×H, the representation of a configuration
via a vector is quite natural.

Definition 2. Let us consider a P system Π with Γ the alphabet, H the set of labels

and order 〈γ1, . . . , γd〉 on Γ × H. An algebraic representation of a configuration

C : Γ × H → N is a vector

~C = (C(γ1), . . . , C(γd))

that is, the j-th element in ~C is a number representing the multiplicity of the j-th

element of Γ × H.

Let us remark that, if the order on Γ × H is set, then there exists a bijective
correspondence between a configuration C and its algebraic representation ~C.

Example 2. As we saw before, the initial configuration [[b]e c3]s can be expressed
as the multiset C = {(b, e), (c, s)3}. If we consider order

〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉

then the algebraic representation of the configuration is ~C = (0, 1, 0, 0, 0, 3).

218 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

In order to formalize the concept of computation with this new representation,
we will fix some notations. We denote by RHSr the right-hand side of rule r and
for all σ ∈ Γ ×H, |RHSr(σ)| denotes the multiplicity of σ in the multiset RHSr.

Example 3. Let us consider the pairwise representation of the rule r1 : (a, e) →
(b, e)2(c, e), then RHSr1

= (b, e)2(c, 2) and |RHSr1
|(b, e) = 2.

Definition 3. Let us consider an alphabet Γ , a set of labels H and the set of rules

R of a P system. We will denote by LHS(R) the set of all the pairs from Γ × H

that are the left-hand side of a rule from R. Formally

LHS(R) = {γ ∈ Γ × H | ∃r ∈ R (γ = LHS(r))}

Example 4. Let us consider Γ = {a, b, c}, H = {e, s} and R the set of rules

r1: (a, e) → (c, e)2 r2: (a, e) → (a, s) r3: (b, e) → (c, e)
r4: (a, s) → (b, s) r5: (a, s) → (b, s)(c, s)2

In this case LHS(R) = {(a, e), (b, e), (a, s)}.

Definition 4. Let us consider an alphabet Γ and a set of labels H of a P sys-

tem Π and let R = 〈r1, . . . , rp〉 be an enumeration of its set of rules with

rj = (LHS(rj), ~vj). Let C : Γ × H → N be a configuration of Π.

A partition of C with respect to R is a p-uple

P = 〈(r1, k1), . . . , (rp, kp)〉

such that for all j ∈ {1, . . . , p}, kj ≥ 0 and for all γ ∈ LHS(R)
∑

LHS(rj)=γ

kj = C(γ)

Example 5. Let us consider an alphabet Γ = {a, b, c} a set of labels H = {e, s},
µ = [[]e]s and R the set of rules from the example 4

r1: (a, e) → (c, e)2 r2: (a, e) → (a, s) r3: (b, e) → (c, e)
r4: (a, s) → (b, s) r5: (a, s) → (b, s)(c, s)2

Let us consider a configuration with algebraic representation ~C =
〈3, 0, 1, 7, 4, 1〉 associated with order 〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉 of Γ×H.
In this case, one possible partition of C with respect to R is

P = 〈(r1, 2), (r2, 1), (r3, 0), (r4, 2), (r5, 5)〉

the number associated to each rule is a natural number and LHS(R) =
{(a, e), (b, e), (a, s)}, so in order to check that P is a partition it suffices to check

∑

LHS(rj)=(a,e) kj = k1 + k2 = 2 + 1 = 3 = C(a, e)
∑

LHS(rj)=(b,e) kj = k3 = 0 = C(b, e)
∑

LHS(rj)=(a,s) kj = k4 + k5 = 2 + 5 = 7 = C(a, s)

Computing Backwards with P Systems 219

The different possible partitions capture the idea of different choice of rules in
the case of non-deterministic P system. Notice that in the case of a deterministic
P system, there exists only one partition

P = 〈(r1, C(LHS(r1))), (r2, C(LHS(r2))), . . . , (rp, C(LHS(rp)))〉

In order to obtain a new configuration C ′ from a given configuration C and from
the set of rules {r1, . . . , rp}, we need to describe the multiplicity of any σ ∈ Γ ×H

in C ′. For the calculus of such multiplicity we need

• A partition P = 〈(r1, k1), . . . , (rp, kp)〉 of C with respect to R.
• The set LHS(R)

In such multiplicity, each rule ri : γi → RHSri
adds the multiplicity of σ in

the right hand side of the rule multiplied by the value ki in the partition P. If the
object is not consumed by any rule, we also add the multiplicity in the original
configuration.

Formally, for every σ ∈ Γ × H we have:

C ′(σ) =

{∑i=p
i=1 ki · |RHSri

(σ)| if σ ∈ LHS(R)
∑i=p

i=1 ki · |RHSri
(σ)| + C(σ) if σ 6∈ LHS(R)

Example 6. Let us come back again to our P system Π with alphabet Γ = {a, b, c},
set of labels H = {e, s}, membrane structure µ = [[]e]s and the set of rules R

Rule 1: [a → b2c]e Rule 4: [b → a]s
Rule 2: [a]e → a []e Rule 5: a []e → [c]e
Rule 3: [b → c2]s Rule 6: [c → a]e

Let us consider configuration C1 = [[bc2]e b2c]s, i.e., we = bc2 and ws = b2c.
It is easy to check that by applying rules 4 and 6 we obtain configuration
C ′ = [[a2b]e a2c]s. Such configuration can also be obtained by considering
the multiplicity of each pair in Γ × H and using the previous formula. First
we consider the partition P = 〈(r1, 0), (r2, 0), (r3, 0), (r4, 2), (r5, 0), (r6, 2)〉 and
LHS(R) = {(a, e), (b, s), (a, s), (c, e)}. Then, for example,

C ′(a, s) = k1 · 0 + k2 · 1 + k3 · 0 + k4 · 1 + k5 · 0 + k6 · 0 = 2 · 1 = 2
C ′(b, e) = k1 · 2 + k2 · 0 + k3 · 0 + k4 · 0 + k5 · 0 + k6 · 0 + C(b, e) = 0 · 2 + 1 = 1

the remaining multiplicities in configuration C ′ can be obtained in a similar way.

5 Matrix Associated with the Skeleton

After defining the algebraic representation of rules and configurations, we will
define a numerical matrix associated with the skeleton of a P system. The next
definition of extended set of rules will be used in the definition of the matrix.

220 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

Definition 5. Let Γ be the alphabet, H the set of labels and R the set of rules of a

P system where R is a set of rules in its pairwise form. The extended set of rules

of R in this skeleton, R∗ is the set of rules R together with the identity rule γ → γ

for all the γ ∈ Γ × H such that there is no rule in R with γ in its left-hand side.

Considering identity rules, we obtain P systems whose computations never
stop. In this paper, we are interested only in the evolution of computation in time
and not in halting conditions. Let us remark two important considerations related
with the extended set of rules:

• If R∗ is the extended set of rules of R, then LHS(R∗) = Γ × H.
• Consequently, if C is a configuration of a P system Π with 〈γ1, . . . , γd〉 an order

on Γ × H and P∗ = 〈(r1, k1), . . . , (rp, kp)〉 is a partition of a configuration C

of a P system with respect to its extended set of rules, then configuration C ′

that can be obtained from C in one computation step following such partition
is C ′(γj) =

∑i=p
i=1 ki · |RHSri

(γj)| for all j ∈ {1, . . . , d}.

Example 7. Let us consider again the skeleton of example 1, and its set of rules,

r1: (a, e) → (b, e)2(c, e) r4: (b, s) → (a, s)
r2: (a, e) → (a, s) r5: (a, s) → (c, e)
r3: (b, s) → (c, s)2 r6: (c, e) → (a, e)

Note that the pairs γ from Γ ×H such that there is no rule in R with γ as its
left-hand side are (b, e) and (c, s), therefore to obtain R∗ we have to add to R the
rules

r7: (b, e) → (b, e) r8: (c, s) → (c, s)

Obviously, the set of rules R∗ has also an algebraic representation

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 7: 〈(b, e), (0, 1, 0, 0, 0, 0)〉
Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉 Rule 8: 〈(c, s), (0, 0, 0, 0, 0, 1)〉

With the help of the concept of extended set of rules, we define the matrix
associated with a skeleton.

Definition 6. Let us consider skeleton Sk = (Γ,H, µ,R) of a P system and let

〈r1, . . . , rp〉 be an enumeration of the extended set of rules R∗ of R in its algebraic

form. The matrix associated with skeleton Sk, MSk is the matrix whose rows are

vectors ~v1, . . . , ~vp, where for each i with 1 ≤ i ≤ p, ~vi is the vector which represents

the right-hand side of rule ri.

Before showing an example, some remarks are necessary.

Computing Backwards with P Systems 221

• The matrix associated with a skeleton depends on the skeleton, as well as on
the enumeration of the rules of the extended set and the order on Γ × H. A
different enumeration produces a different order in the rows of the matrix.

• In case of deterministic P systems, the number of rules in the extended set,
p, and the number of pairs in Γ × H, d are the same and we have a square
matrix3. In general, MSk is a d × p matrix with d ≤ p.

Example 8. If we consider the skeleton of example 7 and the enumeration
of the eight rules of the extended set R∗ and the usual order on Γ × H,
〈(a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉

Rule 1: 〈(a, e), (0, 2, 1, 0, 0, 0)〉 Rule 5: 〈(a, s), (0, 0, 1, 0, 0, 0)〉
Rule 2: 〈(a, e), (0, 0, 0, 1, 0, 0)〉 Rule 6: 〈(c, e), (1, 0, 0, 0, 0, 0)〉
Rule 3: 〈(b, s), (0, 0, 0, 0, 0, 2)〉 Rule 7: 〈(b, e), (0, 1, 0, 0, 0, 0)〉
Rule 4: 〈(b, s), (0, 0, 0, 1, 0, 0)〉 Rule 8: 〈(c, s), (0, 0, 0, 0, 0, 1)〉

we have the following matrix

MSk =

























0 2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 2
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

























6 Computing Backwards

The definition of these algebraic objects allows us to define an algebraic method
to characterize the set of configurations C which can produce a given configuration
C0 in one computation step. First, we need to find the solutions of a system of
linear equations.

Definition 7. Let Π be a P system, 〈r1, . . . , rp〉 a enumeration of its set of ex-

tended rules, MSk the matrix associated with the skeleton of Π based on that enu-

meration of R∗ and let ~C0 be the vectorial representation of a configuration C0. We

will define the solution set of MSk and ~C0 and we will denote it by SOL(MSk, ~C0)

the set of real-valued vectors ~x with dimension p such that ~C0 = ~x · MSk.

Notice that according to the definition, SOL(MSk, ~C0) can be the empty set.
It is well known in Linear Algebra that if the range of the matrix MSk and the

3 This kind of matrices were studied in [3].

222 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

range of the matrix MSk augmented with the vector of coefficients ~C0 is not the
same, then the system of equations has no solution.4

SOL(MSk, ~C0) is a manifold of dimension p minus the range of the matrix
MSk embedded in a vectorial space of dimension p, but the study of the algebraic
properties of such manifold is out of the scope of this paper.

Example 9. Let us come back to our main example. If we take the matrix MSk

from example 8, configuration C ′ = [[a2b]e a2c]s from Section 2 and algebraic

representation ~C ′ = (2, 1, 0, 2, 0, 1), then in order to get SOL(MSk, ~C ′) we need to
solve the system

(2, 1, 0, 2, 0, 1) = (x1, x2, x3, x4, x5, x6, x7, x8)

























0 2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 2
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

























or equivalently,
x6 = 2 x2 + x4 = 2

2x1 + x7 = 1 2x3 + x8 = 1
x1 + x5 = 0

Then, SOL(MSk, ~C ′) is the following 3-dimensional manifold embedded in an 8-
dimensional vectorial space

SOL(MSk, ~C ′) = {(α, β, γ, 2 − β,−α, 2, 1 − 2α, 1 − 2γ) : α, β, γ ∈ R }

Definition 8. Let Π be a P system and an order 〈γ1, . . . , γd〉 on Γ×H, 〈r1, . . . , rp〉
a enumeration of its set of extended rules, MSk the matrix associated with the skele-

ton of Π based on that enumeration of R∗ and let ~C be the vectorial representation

of a configuration C. We define the constructor mapping as

ψΠ : SOL(MSk, ~C) → R
d

such that for all (x1, . . . , xp) ∈ SOL(MSk, ~C ′), ψΠ((x1, . . . , xp)) = (y1, . . . , yd)
verifying for all i ∈ {1, . . . , d},

yi =
∑

γi=LHS(rk)

xk

4 This result is called the Rouche-Frobenius theorem, especially in the Spanish speaking
world. This is almost certainly because the Spanish mathematician Julio Rey Pastor
referred to the theorem by this name.

Computing Backwards with P Systems 223

Notice that the set SOL(MSk, ~C) depends on the way in which the set of ex-

tended rules is enumerated, but ψΠ(SOL(MSk, ~C)) is independent of such enumer-

ation. Obviously, if all the coordinates of ~x ∈ SOL(MSk, ~C ′) are natural numbers,
then all the coordinates of ψ(~x) are also natural numbers.

Example 10. Following with the set SOL(MSk, ~C ′) from Example 9 and order
〈((a, e), (b, e), (c, e), (a, s), (b, s), (c, s)〉 on Γ × H, we have

y1 =
∑

(a,e)=LHS(rk) xk = x1 + x2 = α + β

y2 =
∑

(b,e)=LHS(rk) xk = x7 = 1 − 2α

y3 =
∑

(c,e)=LHS(rk) xk = x6 = 2

y4 =
∑

(a,s)=LHS(rk) xk = x5 = −α

y5 =
∑

(b,s)=LHS(rk) xk = x3 + x4 = 2 + γ − β

y6 =
∑

(c,s)=LHS(rk) xk = x8 = 1 − 2γ

Therefore ψΠ(SOL(MSk, ~C)) is a 3-dimensional manifold embedded in an 6-
dimensional vectorial space

ψΠ(SOL(MSk, ~C)) = {(α + β, 1 − 2α, 2,−α, 2 + γ − β, 1 − 2γ) |α, β, γ ∈ R}

Finally, we only consider the elements of SOL(MSk, ~C) such that all its coor-
dinates are natural numbers. We will prove below that the image of such vectors
by means of the constructor mapping represent the searched configurations.

Definition 9. Let Π be a P system, 〈r1, . . . , rp〉 a enumeration of its set of ex-

tended rules, MSk the matrix associated with the skeleton of Π based on that

enumeration of R∗ and let ~C be the vectorial representation of a configuration C.

We define

• NSOL(MSk, ~C)) = {(x1, . . . , xp) ∈ SOL(MSk, ~C)) | ∀i ∈ {1, . . . , p} (xi ∈ N)}

• A constructed configurations C1 of Π is a configuration such that ~C1 ∈
ψΠ(NSOL(MSk, ~C)).

Example 11. If we take ψΠ(SOL(MSk, ~C)) from Example 10

ψΠ(NSOL(MSk, ~C)) =































(α + β, 1–2α, 2,−α, 2 + γ–β, 1–2γ) |

α, β, γ ∈ R

α + β ∈ N

1 − 2α ∈ N

−α ∈ N

2 + γ − β ∈ N

1 − 2γ ∈ N































The set ψΠ(NSOL(MSk, ~C)) has only three elements

~C1 = (0, 1, 2, 0, 2, 1) ~C2 = (1, 1, 2, 0, 1, 1) ~C3 = (2, 1, 2, 0, 0, 1)

which correspond to the three configurations obtained in Section 2. Next we prove
that the result holds in the general case.

224 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

Theorem 1. Let Π be a P system with skeleton Sk = (Γ,H, µ,R) and let C be

a configuration of Π. Let 〈γ1, . . . , γd〉 be an order on Γ × H and 〈r1, . . . , rp〉 an

enumeration of the extended set of rules R∗ of R. Let MSk be the matrix associated

with the skeleton Sk following such order and enumeration. Then, the configuration

C1 produces C in one computation step if and only if ~C1 ∈ ψΠ(NSOL(MSk, ~C)).

Proof. Let us consider a configuration C1 such that ~C1 ∈ ψΠ(NSOL(MSk, ~C)).
Such configuration is a multiset C1 on the set Γ×H such that for all i ∈ {1, . . . , n},
C1(γi) ∈ N.

~C1 ∈ ψΠ(NSOL(MSk, ~C)) if and only if there exist (x1, . . . , xp) ∈

SOL(MSk, ~C) with xi ∈ N for all i ∈ {1, . . . , p} such that ψΠ(x1, . . . , xn) =
(C1(γ1), . . . , C1(γd)). By definition of the constructor mapping ψΠ :

SOL(MSk, ~C) → R
d we have for all i ∈ {1, . . . , d},

C1(γi) =
∑

γi=LHS(rk)

xk

On the other hand, we also know that (x1, . . . , xp) ∈ SOL(MSk, ~C), i.e.,

(C(γ1), . . . , C(γd)) = (x1, . . . , xd) · MSk

By construction of the matrix MSk, the previous equality means that for all i ∈
{1, . . . , n},

C(γi) =

p
∑

j=1

xj · |RHSrj
(γi)|

To sum up, ~C1 ∈ ψΠ(NSOL(MSk, ~C)) if and only if there exist (x1, . . . , xp) such
that for all i ∈ {1, . . . , p}

(a) xi ∈ N

(b) C1(γi) =
∑

γi=LHS(rk) xk

(c) C(γi) =
∑p

j=1 xj · |RHSrj
(γi)|

Since R∗ is a set of extended rules, LHS(R∗) is the set Γ × H. Bearing this
equality in mind, properties (a) and (b) claim that P∗ = 〈(r1, x1), . . . , (rp, xp)〉 is
a partition of C1 with respect to R∗ and property (c) claims that the configuration
C can be obtained from C1 by using the partition P∗.

On the other hand, if C1 produces C in one computation step, then there
exist a vector (x1, . . . , xn) such that 〈(r1, x1), . . . , (rp, xp)〉 is a partition of C1

with respect to R∗ verifying properties (a), (b) and (c) and therefore ~C1 ∈

ψΠ(NSOL(MSk, ~C)).

7 A General Method

After the proof of Theorem 1, we come back to the questions asked at the end of
Section 2. We wondered if there exists an algorithm such that it takes a P system

Computing Backwards with P Systems 225

Π as input and it outputs a mapping RΠ which, for every configuration C ′ of Π,
RΠ(C ′) is the set of all computations C such that C ′ is obtained from C in one
computational step. A method for computing such algorithm is the following:

Given a P system Π with skeleton Sk = (Γ,H, µ,R),

1. Fix an order 〈γ1, . . . , γd〉 for Γ × H.
2. Consider the pairwise representation of the rules in R according to such order.
3. Consider the extended set of rules R∗ from R and fix an enumeration

〈r1, . . . , rp〉 of the rules from R∗ in its algebraic representation.
4. Define matrix MSk following the orders 〈γ1, . . . , γd〉 and 〈r1, . . . , rp〉.

Matrix MSk is the same for all configurations. Next we provide a method for
finding all the configurations C ′ such that C ′ produce a given configuration C in
one computation step.

Given a configuration C of Π

1. Obtain the algebraic representation ~C of C according to the order 〈γ1, . . . , γd〉.

2. Find all the vectors ~x with natural coordinates such that ~C = ~x · MSk. The
set of all these vectors is called NSOL(MSk, ~C).

3. For each ~x ∈ NSOL(MSk, ~C), we consider C~x = (y1 . . . , yd) where, for all
i ∈ {1, . . . , n}

yi =
∑

γi=LHS(rk)

xk

4. The set {C~x | ~x ∈ NSOL(MSk, ~C)} is the set of the algebraic representations
of all the configurations such that produce C in one computation step.

8 Conclusions and Future Work

In this paper, we provide a general method for finding all the configurations that
produce a given one in one computational step. For that purpose, we have used an
algebraic representation of rules and configurations and a matrix associated with
the skeleton of the P systems.

The key step of the algorithm is to find all the vectors of natural numbers
that are solutions of a system of linear equations. In such a system, the number
of equations is the number of objects in the alphabet multiplied by the number of
labels. The number of variables in the system is the cardinal of the set of extended
rules which is at least the same as the number of equations and has no upper
bound.

The problem of finding the solutions with natural values of a system of linear
equations is a heavy problem, specially if we consider a high number of variables
and equations (which is the usual case for P systems). Nonetheless, currently there
exist some powerful software tools able to deal with large numerical matrices and
solve the corresponding systems under the restriction of finding natural-valued
vectors.

226 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

In this way, we hope that this method can be useful for researchers interested in
computing backwards in Membrane Computing, since it can consider the problem
of finding the previous configurations as a problem of Integer Programming.

Finally, this work can be extended in several ways. Not only by going deeper
in the concept of computing backwards along a computation (and not only in one
step) but exploring if these ideas can be extended to other P system models.

Acknowledgment

The authors acknowledge the support of the project TIN2006-13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the Project of Excellence with Investigador de Reconocida Vaĺıa of the
Junta de Andalućıa, grant P08-TIC-04200.

References

1. O. Agrigoroaiei, G. Ciobanu: Dual P Systems. Proceedings of Ninth Workshop on

Membrane Computing (P. Frisco, D. Corne, Gh. Păun, eds.), Technical report HW-
MACS-TR-0061, School of Mathematical and Computer Sciences, Heriot-Watt Uni-
versity, Edinburgh, UK, July 2008, 45–58.

2. A. Cordón-Franco, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez:
Exploring Computation Trees Associated with P Systems. In Membrane Computing,
LNCS 3365, Springer, 2005, 278–286.

3. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez: Efficient Computation in Rational-
Valued P Systems. Submitted, 2009.

4. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

