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Summary. Recently it has been shown that simulations of complex biological systems
using conformon P systems and cellular automata do not necessarily give the same pre-
dictions. To further elucidate these differences we simulate a simple model of intracellular
reactions involving a single bimolecular reaction occurring on a biological membrane us-
ing conformon P systems.

We find that the predictions broadly agree with results from both the theory of ran-
dom walks in low-dimensional environments and with previously published simulations
using cellular automata. Moreover, a re-analysis of the data enables us to deduce novel
rate laws for the kinetics of reactions occurring on biological membranes.

1 Introduction

A recent publication [3] reported that simulations of HIV dynamics differ in their
results according to the simulation platform used. In particular it is found that
cellular automata (CA) models produce qualitatively correct dynamics only for a
narrow range of rule probabilities and for particular initial conditions whereas con-
formon P (cP) models [2] derived from the CA model display significant robustness
of qualitatively correct dynamics over a wide range of conditions.

Presently the reasons for these differences are not understood. The complexity
of the system under study precludes a rigorous analysis of these discrepancies.

In this paper we consider a much simpler biological process at the base of an
simpler model. For such model its rigorous analytical results are known for some
cases.

The paper is divided as follows: in Section 2 we describe the biology behind
the model and its implementation using CA and cP, in Section 3 we analyze the
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data generated by cP, compare with theory and CA results and also deduce some
new biologically relevant kinetic laws and in Section 4 we draw some conclusion.

2 A Simple Biological Model: Implementation Using CA
and cP

There is growing evidence of the importance of reaction kinetics for the structural
organization of the intracellular environment, which is far from the homogeneous,
well mixed solution typical of in wvitro experiments. A high degree of molecular
crowding as well as the presence of indigenous obstacles in cellular media have
important consequences in the physico-chemistry of the cell. The consequences
of this in some process are only now becoming to be more generally understood.
One of these consequences is that it is not clear what are the rate laws governing
reactions occurring in vivo [7]. To tackle this problem biochemists have been us-
ing various computational frameworks to extract rate laws or empirical reaction
equations from direct numerical simulations. Among these approaches, simulations
based on CA are the most popular (see, for example, [5]).

The biological process we considered in our investigations regards biochem-
ical reactions occurring on cell membranes. It in known that about half of the
proteins inside cells are membrane-associated [8] and thus biochemical reactions
must necessarily function within the constraints imposed by the two-dimensional
environment of the biological membrane. Prominent examples of such reactions
are those involving enzymes called lipases which play key roles in fat metabolism
and digestion and which occur on two-dimensional interfaces rather than in three-
dimensional solution. The simplest model of such dimensionally-restricted reaction
kinetics consists of two types of particles, denoted with A and B, which perform
random walks on a two-dimensional plane and which upon encounter react with
some probability and produce a single new inert particle C'. This mathematical
construct represents the physical process of the reaction of two molecules of two
different types which normally perform Brownian motion (modelled by the ran-
dom walks) and which react upon encounter to form some new product molecule
[4]. Such elementary reactions form the backbone of all biochemical reaction net-
works, independent of their complexity and are particularly ideal for a comparison
between CA and cP models because of the existence of rigorous analytical results
from the theory of random walks in low-dimensions.

The biological process indicated above simplifies the biological membrane to
a homogeneous quasi-two dimensional environment. In reality it is found that
the heterogeneous micro-structure of the membrane significantly hinders the free
diffusion of molecules on its surface. In particular it is known that transmembrane
proteins (denoted with B in the above) impose relatively static barriers to the
smaller and more mobile molecules (denoted with A in the above). This is due
because transmembrane proteins are anchored to the cytoskeleton of the cell. These
obstacles are incorporated in the models considered by us by making some parts
of the plane inaccessible to particle motion.
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A general CA model which describes both cases above (with and without ob-
stacles to particle motion) has been described in [4]. The algorithm is the follows.
Initially, particles of two different kinds A and B are uniformly distributed on
a two-dimensional lattice with unit spacing and periodic boundary conditions (a
torus). Particles A can move, while particles B are static. One A and one B parti-
cle can react when in the same location of the lattice and produce one particle C.
Particles C are static and inert. Some of the tests considered another type of static
and inert particle, an obstacle, uniformly distributed in the lattice in the initial
configuration. At each time step, a particle of type A or B is randomly chosen and
either moved or subject to a reaction according to the following:

the particle can move from the location in the lattice in which it is to a randomly
chosen neighbor location only if the chosen neighbor location does not contain
any other particle of the same kind or an obstacle;

if instead the chosen neighbor lattice location contains a particle of the other kind
(that is, if A is subject to be moved, then B is the other kind; if B is subject
to be moved, then A is the other kind), then the particle can react with the
particle of the other kind with probability P. If this occurs both particles A
and B are removed and a C particle is placed in the chosen neighbor location,
otherwise nothing occurs.

It is important to note that the algorithm does not allow more than one particle
of any type to be in the same location of the lattice, thus enforcing a hard-sphere
molecular repulsion. The above two steps are repeated n;y(t) times, where nq (t)
is the current number of distinct particles on the lattice (excluding obstacles) at
time t. After one such sequence the time is incremented by one. The simulations are
performed with two different lattice types: square (von Neumann) and triangular
neighborhoods.

Models of cP systems have been derived by the just described CA model.
Particles of type A and B have been modeled with [A, 1] and [B, 1] conformons,
respectively. Their eventual interaction (with probability P) creates [B, 2] confor-
mons representing the C particles. A lattice location of the CA has been modeled
with a (membrane) compartment in the cP model. The presence of obstacles has
been modeled with compartments in the lattice having no incoming edge (in this
way no conformon could move in these compartments). The simulations have been
performed using the c¢P simulator available from [9] modifying it in a way that in-
teraction rules have priority on passage rules. Moreover, ad hoc programs to create
the lattices and to analyze the data have been also used. These programs can be
requested to the authors. The cP models and the simulations are such that more
than one particle can be at the same time in one compartment.

3 Data Analysis

Data produced by the simulations consisted of the number of A and B particles as
a function of time. For each set of parameter values, ten independent simulations
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were run on 300x300 lattices until the time (denoted by T') at which there remained
only 1% of the minority particle species (that is, the one whose initial concentration
is the smallest, which in our case are particles of type A [4]). The majority species
is static, the minority species is mobile and their probability of interaction is P.
We run the tests with two different values of P: 1 and 0.1. We consider two cases:
presence and absence of obstacles uniformly distributed throughout the lattice so
to occupy at most 0.4 of the available lattice locations (denoted by [O] = 0.4).
The data from these ten copies were then averaged to reduce the inherent noise,
yielding an array of values [A(t)], [B(¢)],t,t = 0..T.

The simulation data for the absence of obstacles case can be directly compared
to rigorous theoretical results from the theory of random walks [1]. Here it is shown
that in a two-dimensional space where the majority particle species is immobile
(B) and minority species is mobile (A) and the reaction probability is 1, then
for sufficiently long time runs, the rate of change of the concentrations of mobile
particles is described by the effective ordinary differential equation:

d[A(t)])/dt ~ —t"2LA@)][B(1)], (1)

where [A(t)] denotes the total number of particles of type A at time ¢ divided by
the total number of lattice locations defining the two-dimensional space. Thus the
most basic test of our cP simulations is to use the data obtained for the case of
no obstacles and P = 1 to extract the time exponent in the above equation.

The method used to obtain this exponent is the one reported in [4] where
it is shown that for general differential equations of the type d[A(t)]/dt ~
—t=(=P)[A(t)][B(t)], the exponent p is equal to the gradient of the graph of
G = Log|—Log(Bo[A(t)]/(Ao(Bo — Ao + [A(¢)])))] versus Log(t). Figure 1, bottom
curve, shows the variation of the slope (that is, p) with time for the just indicated
cP simulations. It is found that p = 0.6. This implies that the ordinary differential
equation satisfied by the cP simulation data is d[A(t)]/dt ~ —t=O4[A(t)][B(t)].
This result is fairly close to the rigorous theoretical value given above and also
agrees with previous CA simulations giving p = 0.5.

Figure 1, above curve, shows the results of the simulations for P = 0.1. No
rigorous theory exists for this case, but CA simulations [4] give p ~ 0.85 whereas
with cP simulations we obtain p ~ 0.92. Hence for the case of no obstacles, for
both high and low values of reaction probability P, the results of CA and cP
are in good quantitative agreement, though there is a consistent tendency of the
exponent for cP to be slightly larger than that of CA. The latter discrepancy could
be due to the fact that CA simulations impose the condition that only one particle
is allowed at a site whereas cP simulations make no such assumption. The lack of
such an assumption would necessarily imply a larger amount of “particle mixing”
inside each spatial element of cP simulations which from physical considerations
[4] would necessitate the exponent p to be closer to one, as observed.

To test this hypothesis we developed a cP model in which at most one particle
per compartment is allowed. Figure 2 shows the curve comparing the data obtained
by the cP models in which more than one particle and at most one particle per
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2D Simulations with zero obstacles
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Fig. 1. Variation of the slope with no obstacles in the cP model

compartment is allowed. No discernible differences are observed between the two
models. This implies that either the effect occurs only in lower dimensions or the
possibility to have more than one particle in the same compartment is not the
reason for the small discrepancies between CA and cP simulations.

There are no rigorous analytical results for the case in which obstacles are
present. Anyhow, it has been traditionally assumed that the dynamics in this
case would be captured by an effective ordinary differential equation as (1), but
with a time exponent p which varies somewhere between 0 and 1. This is often
referred to as fractal kinetics [5, 7]. However, in [4] it is shown that this is not
the case. It is found from CA simulations that the slope is not constant but varies
considerably with time and apparently does not approach a constant value in the
limit of long time runs. Our c¢P simulations also confirm this result (Figure 3),
once again showing no evidence of a discrepancy between CA and cP simulations.

In the present paper we go one step beyond the work reported in [4] and, for
the case in which obstacles are present, we find a new effective ordinary equation
which captures the dynamics of the reaction. It can be shown [4] that the solution
of an ordinary differential equation of the type d[A(t)]/dt ~ —k(¢)[A(t)][B(t)] for
long time runs is of the form:

(A0 exp — (B — ) | t ko) )
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Fig. 2. Curves comparing results from cP simulations. Blue and pink curves for A and
B when at most 1 particle per compartment is allowed. Yellow and cyan curves for A and
B when more than one particle per compartment is allowed. The graph shows that the
variation of particle concentration with time is independent of the one-particle constraint.

It is also known that k(t) = dS/dt where S is the mean number of distinct lattice
locations visited by a particle moving in a random walk [5]. It is found that S ~
t%/2 for long time runs in a fractal space of spectral dimension d,. This would
imply (for long time runs) the dynamics to follow an effective equation of the form
d[A(t)]/dt ~ —t=(1=4=/2)[A(t)][B(t)] which implies a constant time exponent p.
However note that to arrive at this conclusion one implicitly assumes that the
long time regime is being observed. Actuality one may only observe the early and
intermediate time regimes since the simulation halts after 99% of the particle A
has been consumed.

Inspired by the theoretical results reported in [4], we surmise that the interme-
diate time scaling for S would be of the general form: S ~ t*Ln(1/Ln(t*)) where
the exponent « is introduced to take into account the heterogeneity of space im-
posed by the presence of obstacles. Interestingly, it is found that the cP data is in
good agreement with this conjectured law, see Figure 4.

Thus our simulations and data analysis suggest a new kinetic equation for
describing bimolecular reactions in obstacle-ridden low dimensional media, namely
dl[A@)]/dt ~ —k(t)[A(t)][B(t)] with k(t) = 0/0tt*Ln(1/Ln(t*)) instead of the
customary k(t) = t*.
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Fig. 3. G value for the cP tests with more than one particle per compartment and no
obstacles

4 Conclusion

In this paper we report a preliminary study aiming to understand what kind of
biological processes are better fit to be modeled with CA or with cP. In particular,
we focused on the possibility offered by cP to model the presence of more than one
particle in a compartment. From the tests we run we conclude that this possibility
does not always make a difference in the obtained results.

Some differences between the results obtained by similar CA and cP models
occurs only if obstacles, locations in the lattice limiting the mobility of the par-
ticles, are present. Anyhow, the found differences are not yet sufficient to draw
general conclusions.

One line of further research is to compare the fluctuations from the average
values in CA and c¢P simulations.
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Fig. 4. Results for the cP tests with more than one particle per compartment and
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