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Largo Pontecorvo 3, 56127 Pisa, Italy.
{barbuti,caravagn,maggiolo,milazzo}@di.unipi.it

Summary. P Systems are computing devices inspired by the structure and the func-
tioning of a living cell. A P System consists of a hierarchy of membranes, each of them
containing a multiset of objects, a set of evolution rules, and possibly other membranes.
Evolution rules are applied to the objects of the same membrane with maximal par-
allelism. In this paper we present an extension of P Systems, called P Systems with
Endosomes (PE Systems), in which endosomes can be explicitly modeled. We show that
PE Systems are universal even if only the simplest form of evolution rules is considered,
and we give one application examples.

1 Introduction

P Systems were introduced by Pǎun in [10] as distributed parallel computing
devices inspired by the structure and the functioning of a living cell. A P System
consists of a hierarchy of membranes, each of them containing a multiset of objects,
representing molecules, a set of evolution rules, representing chemical reactions,
and possibly other membranes. For each evolution rule there are two multisets
of objects, describing the reactants and the products of the chemical reaction. A
rule in a membrane can be applied only to objects in the same membrane. Some
objects produced by the rule remain in the same membrane, others are sent out of
the membrane, others are sent into the inner membranes, which are identified by
their labels. Evolution rules are applied with maximal parallelism, meaning that
it cannot happen that some evolution rule is not applied when the objects needed
for its triggering are available.

Many variants and extensions of P Systems exist that include features to in-
crease their expressiveness and that are based on different evolution strategies.
Among the most common extensions we mention P Systems with dissolution rules
that allow a membrane to disappear and release in the environment all the ob-
jects it contains. We mention also P Systems with priorities, in which a priority
relationship exists among the evolution rules of each membrane and can influence
the applicability of such rules, and P Systems with promoters and inhibitors, in
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which the applicability of evolution rules depends on the presence of at least one
occurrence and on the absence, respectively, of a specific object. See [2, 11] for the
definition of these (and other) variants of P Systems and [13] for a complete list
of references to the bibliography of P Systems.

In this paper we present another extension of P Systems, called P Systems with
Endosomes (PE Systems), with these features:

• objects can be contained both inside and on the surfaces of the membranes (as
in P Systems with peripheral proteins [5, 9]);

• rules are contained on the surfaces of the membranes (they can rewrite objects
outside/on/into the membranes);

• endosomes can be explicitly created in order to model a biologically inspired
transportation mechanism.

The definition of this extension of P Systems has a biological inspiration. In
fact, the endocytosis of macromolecules is the process by which cells absorb mate-
rial (molecules such as proteins) from outside the cell by engulfing it with their cell
membrane. It is used by all cells of the body because most substances important to
them are large polar molecules that cannot pass through the hydrophobic plasma
membrane or cell membrane. There exist three kind of endocytosis: phagocytosis,
pinocytosis and receptor–mediated endocytosis. In particular, phagocytosis (liter-
ally, cell–eating) is the process by which cells ingest large objects, such as cells
which have undergone apoptosis, bacteria, or viruses. The membrane folds around
the object, and the object is sealed off into a large vacuole known as a phago-
some. Pinocytosis (literally, cell–drinking) is concerned with the uptake of solutes
and single molecules such as proteins, and, finally, receptor–mediated endocytosis
is a more specific active event where the cytoplasm membrane folds inward to
form coated pits. These inward budding vesicles bud to form cytoplasmic vesi-
cles. Figure 11 summarizes the kinds of endocytosis. By the point of view of the
modeler, these three processes are made possible by vesicles (in fact this trans-
portation mechanism is known as vesicle–mediated transportation) which, in the
most general case, engulf the macromolecules together with molecules from the
surface of the membranes (i.e. receptors). This leads to the creation of endosomes

containing the engulfed molecules. The endosomes transfer their content inside
the cell by possibly interacting with other components. The endosomes could also
be degraded by the interaction with the lysosomes. We define an extension of P
Systems (PE Systems) which can explicitly model the creation of endosomes and
their interaction inside the cells and, consequently, can easily model these three
kind of endocytosis.

This variant of P Systems, together with other modeling features such as the
modeling of exocytosis (the biologically counterpart of endocytosis), and enriched
with channel–mediated communication [1], would provide a powerful and complete
modeling language for naturally describing transportation mechanism of molecules
inside cells.

1 Pictures taken from http://cellbiology.med.unsw.edu.au/units/science/lecture0806.htm
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Fig. 1. Three kind of endocytosis: phagocytosis, pinocytosis and receptor–mediated en-

docytosis.

We show that PE Systems are universal even if only the simplest form of
evolution rules is considered, namely non–cooperative rules. Finally, we give one
application examples to show that endosomes can ease the description of biological
systems when PE Systems are used as a modeling formalism.

2 P Systems with Endosomes

In this section we recall the definition of standard P Systems, and then we define
their extension with endosomes. We will denote multisets over a finite alphabet as
strings of alphabet symbols. More precisely, let V ∗ be the set of all strings over
an alphabet V , including the empty one, denoted by λ. For a ∈ V and x in V ∗

we denote by |x|a the number of occurrences of a in x. If V = {a1, . . . , an} (the
ordering is important here), then the Parikh mapping of x is defined by ΨV (x) =
(|x|a1

, . . . , |x|an
). The definition is extended in the natural way to languages. A

string x represents the multiset over V with the multiplicities of objects a1, . . . , an

as given by ΨV (x).

2.1 P Systems

A P System consists of a hierarchy of membranes that do not intersect, with a
distinguishable membrane, called the skin membrane, surrounding them all. As
usual, we assume membranes to be labeled by natural numbers. Given a set of
objects V , a membrane m contains a multiset of objects in V ∗, a set of evolution

rules, and possibly other membranes, called child membranes (m is also called
the parent of its child membranes). Objects represent molecules swimming in a
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chemical solution, and evolution rules represent chemical reactions that may occur
inside the membrane containing them. For each evolution rule there is a multiset
of objects representing the reactants, and a multiset of objects representing the
products of the chemical reaction. A rule in a membrane m can be applied only
to objects in m, meaning that the reactants should be precisely in m, and not
in its child membranes. The rule must contain target indications, specifying the
membranes where the new objects produced by applying the rule are sent. The
new objects either remain in m, or can be sent out of m, or can be sent into one
of its child membranes, precisely identified by its label. Formally, the products of
a rule are denoted with a multiset of messages of the forms:

• (v, here), meaning that the multiset of objects v produced by the rule remain
in the same membrane m;

• (v, out), meaning that the multiset of objects v produced by the rule are sent
out of m;

• (v, inl), meaning that the multiset of objects v produced by the rule are sent
into the child membrane l.

Let TAR be the set of message targets {here, out} ∪ {ini | i ∈ N}. Given a set
of objects O we denote with Otar the corresponding set of messages O×TAR. As
a consequence, we denote with Vtar the set of all messages and we can define an
evolution rule as a rule u → v such that u ∈ V ∗ and v ∈ V ∗

tar.
The size of the left–hand side u of an evolution rule is also called the radius

of such a rule. If a P System contains rules of radius greater than one, then it is
called a cooperative system. Otherwise, it is called non–cooperative.

Application of evolution rules is done with maximal parallelism, namely at
each evolution step a multiset of instances of evolution rules is chosen non–
deterministically such that no other rule can be applied to the system obtained by
removing all the objects necessary to apply all the chosen rules.

A P System has a tree–structure in which the skin membrane is the root and the
membranes containing no other membranes are the leaves. We assume membranes
labels to be unique. A membrane structure can be represented as a balanced
sequence of labeled brackets and, graphically, as a Venn diagram.

Definition 1. A P System is a tuple (V, µ,w1, . . . , wn, R1, . . . , Rn) where:

• V is a finite alphabet whose elements are called objects;
• µ ⊂ N × N is a membrane structure, such that (i, j) ∈ µ denotes that the

membrane labeled by j is contained in the membrane labeled by i;

• wi with 1 ≤ i ≤ n are strings from V ∗ representing multisets over V associated

with the membranes 1, 2, . . . , n of µ;

• Ri with 1 ≤ i ≤ n are finite sets of evolution rules associated with the mem-

branes 1, 2, . . . , n of µ;

A sequence of transitions between configurations of a given P System Π is called
a computation. A computation is successful if and only if it reaches a configuration
in which no rule is applicable. The result of a successful computation is the multiset
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1

EDa → (ED, here)(aa, in2)

aD → (#, here)

FDa → (FD, here)(a, out)

2

E → (G, here)(ED, in2)

# → (#, here)

a

EDa → (ED, here)(a, out)

aD → (#, out)

E → (G, here)(FD, out)

E → (G, here)(ED, out)

GD → λ

ED

GD → λ

Fig. 2. Example of P System that computes {a2
n

| n ∈ N}.

of objects sent out of the skin membrane during the computation. Unsuccessful
computations (computations which never halt) yield no result. Given a P System
Π whose set of object is V , the result x ∈ V ∗ of a computation of Π can be
represented as the vector of natural numbers ΦV (x). The set of all vectors of
natural numbers computed by Π is denoted Ps(Π).

In Fig. 2 we show an example of P System Π1 computing {a2n

| n ∈ N},
namely such that Ps(Π1) = {2n | n ∈ N}. Initially, only in membrane 2 there
are rules which are applicable and send either objects F and D or objects E and
D into membrane 1. In the former case the object a in membrane 1 is sent out
and the computation halts. In the latter case object a in membrane 1 is consumed
and two occurrences of a are sent into membrane 2. Subsequently, E is consumed
and sent into membrane 2 together with D. Note that the rule which sends ED

into membrane 2 cannot be applied while there are still objects a in membrane 1,
otherwise by the maximal parallelism also the rule producing # would be applied
giving rise to an infinite (unsuccessful) computation. Objects a sent into membrane
2 are then sent back into membrane 1. The process of doubling and sending into
membrane 2 we have explained, could be repeated an arbitrary number of times.
Note that all the rules consuming a act on a single occurrence of a at a time and
hence the time complexity of the computation is proportional to 2n+2.

2.2 Extension with Endosomes

In this section we formally define P Systems with endosomes (PE Systems). To this
extent, we start by assuming the same membrane structure µ of a P System. As
regards objects, similarly to P Systems with peripheral proteins [5, 9], we assume
that objects can be contained inside a membrane (as in classical P Systems) and
on the surface of a membrane. In order to qualify a position of an object with
respect to a membrane, we use in to identify the object inside the membrane, out

to identify the object outside the membrane and here to identify the object on the
surface of the membrane. Let TAR be the set of message targets {in, out, here};
given a set of objects O we denote with Otar the corresponding set of messages
O × TAR, and we denote with Vtar the set of all messages.
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We can now introduce the evolution rules of PE Systems; rules are conceptually
divided in evolutionary rules (in the same sense of P Systems) and rules for the
creation of endosomes. We recall that, differently from P Systems, the rules of
PE Systems are conceptually associated with the surfaces of the membranes of
the system. The former class of rules are of the form u → v where u ∈ V +

tar and
v ∈ V ∗

tar. The definition of cooperative and non–cooperative rules are the same as
for P Systems.

Notice that this format for evolutionary rules, which are syntactically different
from those of P Systems, may seem to be less expressive than the one of P Sys-
tems, in particular for rule moving objects into specific membranes (communica-
tion rules). In order to show that this is not the case, let us assume an hypothetical
membrane structure µ such that (l, l′) ∈ µ, namely a membrane structure in which
l′ is nested into l. In order to give a rule which moves an object inside membrane
l′ we cannot use the identifier inl′ in a rule of the surface of the membrane l (as in
P Systems) because we cannot use the identifier l′ as subscript to in. However, the
same behavior can be obtained by replacing the rule u → (v, inl′) in the membrane
l, as in usual P Systesm, with the PE System rule (u, out) → (v, in) on the surface
of the membrane l′. The behavior modeled by this rule, which is in some sense
an “attraction” by the nested membrane rather than the “sending” from the top
membrane, leads to result analogous to those obtained by P Systems, namely to
the transportation of the object inside the nested membranes.

The rules for creating endosomes are of the form endoE(u ∈ V ∗, v ∈ V ∗) where:

• E is a set of evolutionary rules for the endosome;
• u is the multiset of objects that must appear on the surface of the membrane

containing the rule;
• v is the multiset of objects that must appear outside the membrane containing

the rule.

Notice that each endosome has got its own evolutionary rules in set E. These rules
model the behavior of the endosome. As regards the creation of an endosome, it is
necessary that objects in u are present on the surface of the membranes (in some
sense they can be seen as the receptors) and that objects in v are present outside
of the membrane creating the endosome (in some sense they can be seen as the
molecules to be engulfed). More formally, the applicability of the endosome rule is
possible in the following general case: let (j, i) ∈ µ and let endoE(u, v) be a rule
belonging to the surface of the membrane i, than it can be applied only if u is a
submultiset of the objects contained on the surface of the membrane i, and only
if v is a submultiset of the objects contained inside the membrane j. The result
of the application of such a rule is a creation of an endosome inside membrane i

containing u on its surface and containing v inside. The endosome itself behaves
like a membrane having on its surface rules E.

We can now formally define a PE System as follows.

Definition 2. A PE System is a tuple (V, µ,w1, . . . , wn, z1, . . . , zn, R1, . . . , Rn)
where:
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• V is an alphabet whose elements are called objects;
• µ ⊂ N × N is a membrane structure, such that (i, j) ∈ µ denotes that the

membrane labeled by j is contained in the membrane labeled by i;

• wi with 1 ≤ i ≤ n are strings from V ∗ representing multisets over V associated

with the content of membranes 1, 2, . . . , n of µ;

• zi with 1 ≤ i ≤ n are strings from V ∗ representing multisets over V associated

with the surfaces of membranes 1, 2, . . . , n of µ;

• Ri with 1 ≤ i ≤ n are finite sets of evolution rules associated with the surfaces

of the membranes 1, 2, . . . , n of µ.

The notions of (successful) computation and of result of computations of PE
Systems are the same as for standard P Systems.

3 Universality of PE Systems

In this section we prove a universality result for PE Systems by showing that any
matrix grammar with appearance checking can be simulated by a PE System.
As a consequence, before giving the result and its proof, we recall from [11] the
definition of such variant of matrix grammars and some related notions.

3.1 Matrix grammars with appearance checking

A (context-free) matrix grammar with appearance checking is a tuple G =
(N,T, S,M,F ), where N and T are disjoint alphabets of non–terminals and ter-
minals, respectively, S ∈ N is the axiom, M is a finite set of matrices, namely
sequences of the form (A1 → x1, . . . , An → xn) of context–free rules over N ∪ T

with n ≥ 1, and F is a set of occurrences of rules in the matrices of M . For a string
w, a matrix m : (r1, . . . rn) can be executed by applying its rules to w sequentially
in the order in which the appear in m. Rules of a matrix occurring in F can be
skipped during the execution of the matrix if they cannot be applied, namely if
the symbol in their left–hand side is not present in the string.

Formally, given w, z ∈ (N ∪ T )∗, we write w =⇒ z if there is a matrix (A1 →
x1, . . . , An → xn) in M and the strings wi ∈ (N ∪ T )∗ with 1 ≤ i ≤ n + 1 such
that w = w1, z = wn+1 and, for all 1 ≤ i ≤ n, either (1) wi = w′

iAiw
′′

i and
wi+1 = w′

ixiw
′′

i , for some w′

i, w
′′

i ∈ (N ∪T )∗, or (2) wi = wi+1, Ai does not appear
in wi and the rule Ai → xi appears in F . We remark that F consists of occurrences

of rules in M , that is, if the same rule appears several times in the matrices, it is
possible that only some of these occurrences are contained in F .

The language generated by a matrix grammar with appearance checking G is
defined as L(G) = {w ∈ T ∗ | S =⇒∗ w}, where =⇒∗ w is the reflexive and tran-
sitive closure of =⇒. The family of languages of this form is denoted by MATλ

ac,
when rules having the empty string λ as right hand side (λ–rules) are allowed, and
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by MATac when such rules are not allowed. Moreover, the family of languages gen-
erated by matrix grammars without appearance checking (i.e. with F = ∅) is de-
noted by MATλ, when λ–rules are allowed, and by MAT , when such rules are not
allowed. It is known that (i) MAT ⊂ MATac ⊂ CS; (ii) MATλ ⊂ MATλ

ac = RE,
where CS and RE are the families of languages generated by context–sensitive
and arbitrary grammars, respectively.

Let ac(G) be the cardinality of F in G and let |x| denote the length of the
string x. A matrix grammar with appearance checking G = (N,T, S,M,F ) is said
to be in the strong binary normal form if N = N1 ∪ N2 ∪ {S,#}, with these sets
mutually disjoint, and the matrices in M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2;
2. (X → Y,A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2;
3. (X → Y,A → #), with X,Y ∈ N1, A ∈ N2;
4. (X → λ,A → x), with X ∈ N1, A ∈ N2, x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1, F consists exactly of all rules A → #
appearing in matrices of type 3 and ac(G) ≤ 2. We remark that # is a trap symbol,
namely once introduced it cannot be removed, and a matrix of type 4 is used only
once, in the last step of a derivation.

For each matrix grammar (with or without appearance checking) there exists
an equivalent matrix grammar in the strong binary normal form. Consequently, for
each language L ∈ RE there exists a matrix grammar with appearance checking
G satisfying the strong binary normal form and such that L(G) = L.

Conventions

A matrix grammar with appearance checking in the strong binary normal form
is always given as G = (N,T, S,M,F ), with N = N1 ∪ N2 ∪ {S,#} and with
n + 1 matrices in M , injectively labeled with m0,m1, . . . ,mn. The matrix m0 :
(S → XinitAinit) is the initial one, with Xinit a given symbol from N1 and Ainit

a given symbol from N2; the next k matrices are without appearance checking
rules, mi : (X → α,A → x), with 1 ≤ i ≤ k, where X ∈ N1, α ∈ N1 ∪ {λ}, A ∈
N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2 (if α = λ, then x ∈ T ∗); the last n − k matrices have
rules to be applied in the appearance checking mode, mi : (X → Y,A → #), with
k + 1 ≤ i ≤ n,X, Y ∈ N1, and A ∈ N2.

Since the grammar is in the strong binary normal form, we have (at most)
two symbols B(1) and B(2) in N2 such that the rules B(j) → # appear in
matrices mi with k + 1 ≤ i ≤ n. For j ∈ {1, 2}, we denote with ℓj the set
{i | the matix mi contains the rule B(j) → #}. For uniformity, we also denote
ℓ0 = {1, 2, . . . , k} and ℓ = ℓ0 ∪ ℓ1 ∪ ℓ2 = {1, 2, . . . , n} (note that 0 6∈ ℓ). Clearly,
the sets ℓ0, ℓ1 and ℓ2 are disjoint.

We remark that in matrix grammars in strong binary normal forms we can
assume that all symbols X ∈ N1 appear as the left-hand side of a rule from
a matrix: otherwise, the derivation is blocked after introducing such a symbol,
hence we can remove these symbols and the matrices involving them.
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3.2 Universality

We prove that PMC Systems are universal by showing that the family, denoted
PsE2(ncoo), of sets Ps(Πe) of results computed by PE Systems with at least two
membranes and with non–cooperative rules is equivalent to the family, denoted
PsRE, of the images of all the languages in RE obtained through the Parikh
mapping (this is the family of recursively enumerable sets of vectors of natural
numbers). As P Systems with non-cooperative rules are not universal, our result
implies that universality is due to the presence of endosomes.

Theorem 1. PsE2(ncoo) = PsRE.

Proof. It is enough to show that for a G in strong binary normal form there is a
PE System ΠG such that Ps(ΠG) = ΨT (L(G)). We assume that the output of this
PE System is given by the objects sent out from the skin membrane. The alphabet
we take into consideration is given by T ∪N1 ∪N2 ∪{c}∪ {ci, di, d

′

i | i = 1, 2}. We
build ΠG as a system with a root membrane, labeled 1, and one child membrane
labeled 2. All the objects encoding the grammar will be stored inside membrane
1 and the matrixes will be simulated by membrane 2. The initial configuration is
given by the objects corresponding to Xinit and Ainit contained in membrane 1,
namely objects of w1, and by the token c contained on the surface of membrane
2, namely z2 = {c}.

This PE System works as follows: it has a cyclic behavior such that, at the
beginning of the cycle, at most one endosome in membrane 2 can be created and, if
possible, all terminal symbols inside membrane 1 are sent out as output symbols.
The created endosome can start a series of steps resulting in the interpretation
of the application of a matrix or, differently, it can start a checking phase to
model the fact that, if there exist non terminal symbols which cannot be rewritten
by any grammar, than the computation has not to halt. In the case in which
it starts the interpretation of a matrix of type 2 or 4 (a matrix mi with 1 ≤
i ≤ k), the involved non terminals are taken by the endosome which contains as
rules the ones interpreting the matrix. Objects will be sent into membrane 2 by
these rules creating the result of applying the corresponding matrix to the non
terminals. Subsequently, these objects are sent out to membrane 1 to restart the
cyclic behavior. We recall that during this process no other endosomes can be
created, so no other matrixes can be simulated. Differently, in the case in which a
matrix of type 3 (a matrix mi with k+1 ≤ i ≤ n) is applied, the single non terminal
of N1 is taken into the endosome. The endosome will work in the same sense of
the endosomes interpreting matrixes of type 2 and 4 even though, at the end
of the application of this matrix, instead of restarting with the cyclic behavior,
a checking process is started. This process checks, by creating endosomes, the
presence of the proper non terminal symbol B(j). If this symbol is found, a special
endosome is created which will introduce a trap symbol in this PE System so that
the computation will not halt. Analogously, if it is not found, an endosome will
restore the configuration of this PE System so that the cyclic behavior can start
again.
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We list now the rules of ΠG. Membrane 1 contains just one single set of rules
to create the output of the PE System:

1. {(a, here) → (a, out) | ∀a ∈ T} . All terminal objects in membrane 1 are sent
out as output.

All the interpretation of any matrix is done by the rules of the membrane 2
which are the following:

1. ∀X ∈ N1 ∪ N2. endo(X,in)→(#,out)(c,X). If any non terminal is present in
membrane 1, ΠG will always be able to create, by using an endosome, a trap
symbol inside membrane 2. This will ensure that, if a derivation of G reaches
a deadlock configuration, then ΠG can always enter an endless configuration.

2. ∀a ∈ N1 ∪N2 ∪T. (a, in) → (a, out). Every terminal and non terminal present
inside membrane 2 is sent out to membrane 1.

3. (c, in) → (c, here). Object c inside membrane 2 is restored on the surface of
membrane 2 so that other endosomes can be created.

4. (#, in) → (#, in). The trap symbol lets this computation not to be recognized
such.

5. ∀(X → α,A → x) ∈ {mi | 1 ≤ i ≤ k}.
endo(X,in)→(α,out),(A,in)→(x,out),(c,here)→(c,out)(c,XA). For any rule of type 2
and 4, we create an endosome by taking XA from membrane 1 and c from
the surface of membrane 2 (this locks the creation of other endosomes). The
endosome contains rules to rewrite X and A with the result of applying the
matrix. Object c is not consumed and sent out to membrane 2 together with
α and x.

6. ∀(X → Y,A → #) ∈ {mi | k + 1 ≤ i ≤ n}.
endo(X,in)→(Y,out),(c,here)→(ci,out)(c,X). For any rule with appearance check-
ing, we create an endosome by taking only X from membrane 1 and c from
the surface of membrane 2 (this locks the creation of other endosomes). The
endosome contains rules to rewrite X with Y and c with ci. Both the objects
are sent out to membrane 2.

7. (ci, in) → (ci, here)(di, here). Object ci, together with a new object di, is
moved on the surface of membrane 2.

8. endo(B(i),in)→(#,out)(ci, B
(i)). This implements the appearance checking of

grammar G. We create, if possible, an endosome by taking only B(i) from
membrane 1 and ci from the surface of membrane 2. The endosome creates a
trap symbol in membrane 2; this will make ΠG start an endless computation.

9. (di, here) → (d′i, here). The symbol di is rewritten in the same place as d′i.
This is done even if also rule 8 can be applied. However, in the case that rule
8 cannot be applied (namely B(i) was not present), this completes the appear-
ance checking operation and lets ΠG start an operation which will restart its
cyclic behavior.

10. endo(ci,here)→(c,out),(d′

i
,here)→λ(cid

′

i, ∅). This endosome lets ΠG restart its cyclic
behavior. We create an endosome by simply taking both the control symbols
only c1 and d′i from the surface of membrane 2. The endosome destroys d′i and
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Fig. 3. The EGF signaling pathway.

rewrites ci with c in membrane 2 (restarting ΠG will be obtained by applying
rule 3).

It is clear that these rules, applied in a proper order, provide the correct inter-
pretation of the application of any matrix to the starting symbols of the grammar
and, consequently, we get Ps(ΠG) = ΨT (L(G)) which concludes the proof.

4 An Application: the EGF Signaling Pathway

In this section we give an application of PE systems to the description of the initial
phases of the EGFR signalling cascade.

In Biology, signal transduction refers to any process by which a cell converts
one kind of signal or stimulus into another. Signals are typically proteins that
may be present in the environment of the cell. In order to be able to receive
the signal, namely to recognize that the corresponding protein is available in the
environment, a cell exposes some receptors on its external membrane. A receptor
is a transmembrane protein that can bind to a signal protein on its extracellular
end. When such a binding is established, the intracellular end of the receptor
undergoes a conformational change that enables interaction with other proteins
inside the cell. This typically causes an ordered sequence of biochemical reactions
inside the cell, usually called signalling pathway, that are carried out by enzymes
and may produce different effects on the cell behavior.

A complex signal transduction cascade, that modulates cell proliferation, sur-
vival, adhesion, migration and differentiation, is based on a family of receptors
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Fig. 4. A PE systems model of the EGF signaling pathway.

called epidermal growth factor receptors (EGFRs). While EGFR signalling is es-
sential for many normal morphogenic processes, the aberrant activity of these re-
ceptors has been shown to play a fundamental role in proliferation of tumor cells.
Epidermal growth factor receptors (EGFR) are produced by specific genes in the
DNA (through the RNA) and they are located on the cell surface. Receptors are
activated by the binding with a specific ligand (epidermal growth factor, EGF ) to
form a EGFR (ligand-receptor) complex (COM). Upon activation, EGFR under-
goes a transition from a monomeric form to an active dimeric one (DIM). EGFR
dimerization stimulates its intracellular phosphorylation (DIMp) which activates
signalling proteins. These activated signalling proteins (effector proteins) initiate
several signal transduction cascades, leading to DNA synthesis and cell prolifera-
tion. After the activation of effector proteins, ligand-receptor dimers are internal-
ized in endosomes. An ubiquitin ligase, known as Cbl, binds an ubiquitin protein
(UB) to the dimer (ubiquitination). The ubiquitin protein targets the dimers for
lysosomal degradation (see Figure 3).

The PE system modeling the EGF is given in Figure 4. The rules which describe
its behaviour are the following for membrane 2:

1. (EGFR, in) → (EGFR, here)
2. (EGF, out)(EGFR, here) → (COM,here)
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3. (COM,here)(COM,here) → (DIM,here)
4. (DIM,here)(P, in) → (DIMp, here)
5. (DIMp, here)(SHC, in) → ...

6. (rna, in) → (EGFR, in)
7. endo(DIMp,here)(UB,out)→(P,out),(DIMp,here)→(EGFR2,out)(DIMp, ∅)

Notice that rule 5 is not complete in the sense that it should rewrite the DIMp

on the surface of the membrane and the contained SHC into a complex in order
to start a sequence of intra–cellular events leading to the duplication of the cell.
However, for the explanatory aim of this application example, it is not of interest
to fully describe this part of the model.

Finally, membrane 3 contains just one rule (dna, in) → (dna, in)(rna, out).
The behavior of this PE System is straightforward, membrane 1 models the

environment external to the cell, membrane 2 represents the cell surface and mem-
brane 3 is the nucleus. In the external environment EGF corresponds to the epi-
dermal growth factor EGF which can bind the receptor on the surface of the cell.
The receptor is modeled by EGFR in membrane 2, which can move on the surface
of the membrane. The complex of EGF with the receptor is obtained by rewriting
EGF and EGFR with the complex COM on the surface of membrane 2. After
the binding of two complexes we can bind them leading to a dimer DIM . Such a
dimer, present on the surface of the membrane, can be phosphorylated by a phos-
phorus P inside the cell. Such phosphorilated dimer DIMp could start a chain
of actions we do not model here. Furthermore, it can be enclosed in an endosome
which could, in presence of ubiquitin UB, reproduce the phosphorus inside the cell
or, differently, the two receptors. The nucleus of the cell (membrane 3) is responsi-
ble for the production of EGFR through the DNA and RNA (dna and rna). The
rna reaches the cell cytoplasm and there it produces EGFR which is sent, again,
to the cell surface.

5 Future Work and Conclusions

In this paper we presented an extension of P Systems, called P Systems with En-
dosomes (PE Systems), in which endosomes can be explicitly modeled. P Systems
are computing devices inspired by the structure and the functioning of a living cell.
A P System consists of a hierarchy of membranes, each of them containing a mul-
tiset of objects, a set of evolution rules, and possibly other membranes. Evolution
rules are applied to the objects of the same membrane with maximal parallelism.
PE Systems extend P Systems maintaining the main features of the formalism but
adding the possibility of explicitly modeling endosomes. Modeling endosomes is
the basis for modeling vesicle–mediated transportation mechanisms, in particular
endocytosis, which can be divided in three main forms (pynocytosis, phagocytosis
and receptor–mediated endocytosis) can be clearly modeled by using PE Systems.
PE Systems uses some ideas taken from other variants of P Systems, in particular
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as regards objects which can be stored on the surface of the membranes we got in-
spiration by the works on P System with peripheral proteins [5, 9]. Furthermore, as
regards other calculi, operations for modeling transportation mechanism already
have been introduced in Brane Calculi [3]. Although similar, PE Systems permit
to model in a clearer way these mechanisms. An analysis of PE Systems and Brane
Calculi [3] (and also some of their variants like projective Brane Calculi [6]) could
be done along the line of the one done in [4, 12] for P Systems and Brane Calculi.

As regards expressiveness of this formalism, we showed that PE Systems are
universal even if only the simplest form of evolution rules is considered, namely
non–cooperative rules. This expressiveness is achieved by the use of endosomes as
classical P Systems with this kind of rules are shown not to be universal [10].

At the end of the paper we have given an application example describing the
modeling of the of the initial phases of the EGFR signalling cascade.
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