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Abstract

A new edge-based partition for triangle meshes is presented, the Seven Triangle Quasi-Delaunay partition (7T-QD). The proposed 
partition joins together ideas of the Seven Triangle Longest-Edge partition (7T-LE), and the classical criteria for constructing 
Delaunay meshes. The new partition performs similarly compared to the Delaunay triangulation (7T-D) with the benefit of being 
more robust and with a cheaper cost in computation. It will be proved that in most of the cases the 7T-QD is equal to the 7T-D. In 
addition, numerical tests will show that the difference on the minimum angle obtained by the 7T-QD and by the 7T-D is negligible.
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1. Introduction

Longest edge-based refinement has become popular in last decade in the context of mesh refinement [9,11,14]. A
well accepted acronym used to name this class of mesh subdivision is nT-LE, where n is the number of new triangles
(T) produced after a single subdivision and LE stands for longest edge. So, we found in the literature well studied
longest-edge partition as 2T-LE, 3T-LE, 4T-LE and 7T-LE, see [14,15,9] and the references therein. It should be noted
that the iterative application of these partitions yields good-quality meshes, in the sense that they do not degenerate.
Additionally, longest edge refinements have the advantage of its propagation, i.e., if we subdivide a triangle, we know
how to subdivide its adjacent triangles in order to obtain a conforming triangulation.

Of course, if we add some points to a triangle, and we want to obtain a subdivision with the best quality (in the
sense that we want to maximize the minimum angle), the optimal solution is the Delaunay triangulation (see, for
example [1,2]). Mesh generation algorithms based on Delaunay refinement have been effective tools both in theory
and in practice in the last 20 years [3,19,5]. The first provably good Delaunay refinement algorithm is due to Chew [4].

Much attention has received this class of algorithms afterwards, in particular thanks to authors like Ruppert [16] and
Shewchuk [17,18] among others. Longest-edge based algorithms have been used together with Delaunay triangulation
for the quality triangulation problem by Rivara and co-workers [8,13].
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Unfortunately, Delaunay refinement algorithms present some disadvantages from a practical point of view: on one
and they require a considerable amount of computation, and, on the other hand, they are not robust dealing with
oint sets that are not in general position (a point set is in general position if no three of them lie on the same straight
ine and no four lie on the same circle). It should be noted here that longest edge refinements always present point
ets that are not in general position (we will discuss this topic in the next section). In order to solve these inconve-
iences, some refinements that perform only comparisons of distances have been presented (see [14,15,9]. Of course,
o measure a distance between pairs of points is easier and far more robust than compare angles or doing circumcircle
ests, and so in the mentioned works (and in many others) the authors avoid the theoretical advantages of Delaunay
riangulations for the sake of the simplicity and robustness. In this way, many methods appear as those mentioned
bove [14,15,9].

In this work, we try to obtain the best of both worlds, we propose a longest edge refinement (the 7T-QD refine-
ent) that can be obtained performing only lengths comparisons, and that in most of the cases, actually more

han in 97% of the triangles, coincides with the Delaunay triangulation. Even in the cases that the 7T-QD is not
Delaunay triangulation, we are not far from that optimal refinement in the following ways: five out of seven of

he triangles that are obtained with the 7T-QD refinement from a original triangle are Delaunay triangles, and the
inimum angle of the other two triangles are, in the worst case, only a 20% worse than the minimum angle of the
elaunay refinement, but the refinement presented is better if we measure the average of the minimum angle of the two

riangles.
The structure of this paper is as follows: Section 2 gives a short background of the class of refinement methods

reated in this paper, Section 3 introduces the Seven Quasi-Delaunay partition for triangles and gives a comprehensive
omparison with the pure Delaunay triangulation and the Seven Triangles Longest-Edge partition. In Section 4, we
rovide a numerical study considering the min angle that stress the quality of 7T-QD. Finally some useful conclusions
egarding the new introduced partition are offered.

. Triangulation with n aligned points

By locating midpoints on the edges of the triangle we can compute some quality triangulations in the plane, see [9]
nd the references therein. This can be viewed as triangulation with n aligned points. One of the interesting points of
uch family of triangulations is the low cost for obtaining the subdivision.

In last decade, subdivision methods inserting one point per edge – based on the longest edge or not – have been
ufficiently explored. Some of these partitions are: “red–green”, longest edge bisection (2T-LE), and four triangles
ongest edge bisection (4T-LE). Less attention has been given to subdivisions based on the insertion of two points per
dge.

Lastly, the Seven Triangle Longest-Edge partition (7T-LE) has been presented in [9]. The 7T-LE partition of a

riangle t is obtained by putting two equally spaced points per edge. After cutting off three triangles at the corners, the
emaining hexagon is subdivided further by joining each point of the longest-edge of t to the base points of the opposite
ub-triangle. Finally, the interior quadrangle is subdivided into two sub-triangles by the shortest diagonal, see Fig. 1.

Fig. 1. Scheme for the 7T-LE partition of triangle t0 and new class of triangles generated, t1 and tn1.
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Fig. 2. Schemes for 7T-LE and 7T-D partitions.

It has been proved in [9] that this partition is superior to 2T-LE and 4T-LE in terms of the quality of new triangles
generated.

Some other partitions also based in the trisection of the edges may be considered. We call 7T-D partition of a triangle
t the Delaunay triangulation of the cloud of points formed by the three vertices of t and the two equally spaced points
per edge (Fig. 2).

It is clear that Delaunay based triangulations in 2D are optimal, maximize the minimum angle. The main cost to
compute a Delaunay triangulation is that the circle circumscribing any Delaunay triangle does not contain any other
input points in its interior. This test can be achieved for example by computing a matrix determinant. Although some
efficient algorithm to obtain Delaunay refinements are known, they take O(nlogn), in part, due to the circumcircle test.

A known problem with the triangulation of n aligned points is the case of collinearity or degenerated cases. For a set
of points on the same line there is no Delaunay triangulation, in the sense that the notion of triangulation is degenerate
for this case. Some recent cases have been reported by the authors in which some implementations of Delaunay
algorithm fails in triangulating a given triangle with equally spaced points per edge. One case is the implementation of
CGAL in Matlab R2009b. We try the triangulation of a set of points p, with coordinates X = p(1, :) and Y = p(2, :), see
Fig. 3. The output of Delaunay command in Matlab for that set of points reveals a triangle with collinear coordinates,
triangle �423. It should be pointed out that when introducing a point in the middle of an edge inevitable floating point
errors would make the three points not perfectly collinear paving the way to the creation of degenerate triangles. A
numerical technique to cope with this problem is the Simulation of Simplicity (SoS) [6,10]. Intuitively, it simulates a
conceptual perturbation of the input data that eliminates all degeneracies. The basic idea of SoS is to perturb the given
objects slightly, which amounts to changing the numbers that represent the objects. In our case this perturbation means
changing the coordinates of the aligned points.
A class of triangulation algorithms that help to overcome such problems are edge-refinement methods, based in the
insertion of n aligned points. In practice one can expect to introduce one or two points per edge, but a greater number
of points may produce degeneracy of the triangulation.

Fig. 3. A failed output triangulation using CGAL in Matlab R2009b.
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Fig. 4. A mapping diagram for normalized triangles.

. The Seven Triangle Quasi-Delaunay partition

Taking into account the superiority of the Delaunay triangulation on the maximizing the minimum angle, our goal
n this paper is to introduce a simple and robust partition as similar as possible to the Delaunay triangulation of the
loud of points formed by the three vertices and two equally spaced points per edge in each triangle. At the same time,
e should be able to overcome the collinearity problem above mentioned. Following our idea of subdividing triangles

nserting two aligned points, we present here the Seven Triangle Quasi-Delaunay (7T-QD) partition. This new partition
ill be equivalent to the Delaunay partition except for an small region of triangles which amounts less that 3% of the

rea of the geometric diagram for the triangles. On addition, the computation of the different patterns used by the new
aradigm is simpler than the circumcircle test. Finally, in most of the cases the new introduced partition will be also
uperior to the previous Seven Triangle Longest-Edge partition. Only for less than 0.4% of the triangles the minimum
ngle of the 7T-LE will be greater than the minimum angle of the new 7T-QD partition.

Before giving a definition of such partition we use here a mapping diagram to normalize triangles [12], that facilitates
he understanding of the method and its comparison with other partitions.

The mapping diagram is as follows: for a given triangle we scale the longest edge to have unit length. This forms
he base of the diagram. It follows that the set of all triangles is bounded by this horizontal segment (longest edge)
efined by the points (0, 0), (1, 0), and by two bounding exterior circular arcs of unit radius, centered, respectively, at
1, 0) and at (0, 0), as shown in Fig. 4. In the figure it is showed the boundary curves for the diagram and a sample
riangle represented with apex labeled by “O”. It is not difficult to see that the diagram and the triangles represented
herein have symmetry with respect to x = 1/2. For this reason, in the following we will consider only the left half part
f the diagram.

efinition 1. Let �MON be a triangle of longest edge MN and apex O, with coordinates M = (0, 0), N = (1, 0) and
= (x, y), with x ≤ 1/2. The Seven Triangle Quasi-Delaunay (7T-QD) partition is defined as follows, see Fig. 5:

1) Position two equally spaced points per edge (let us name such points as indicated in Fig. 5).
2) Construct triangles �MPD, �ADP, �BCQ and �CNQ.
3) Subdivide the interior pentagon, depending on the location of the apex, as follows:

(a) Case I: |AB| < |OD|. Construct triangles �ABO, �ABD and �BCD.
(b) Case II: |AB| > |OD| and |BD| < |OC|. Construct triangles �ADO, �BDO and �BCD.
(c) In other case, construct triangles �ADO, �CDO and �BCO.
Notice that the three possibilities at dividing the interior pentagon ABCDO correspond respectively to three different
egions into the mapping diagram: region I, II and III in Fig. 6. The boundary curves between these regions correspond
o circular arcs of equations (x − 1/3)2 + y2 = 1/9, and (x − 6/5)2 + y2 = 16/25. As we did note above, by reflection around
he vertical line x = 1/2 in the mapping diagram, it is enough to consider the left half of the diagram, which is equivalent
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Fig. 5. Scheme for the 7T-Quasi-Delaunay partition.

to positioning the smallest angle at point (1, 0) and the second largest angle at point (0, 0). We can formulate new
conditions that let us extend the partition to the right part of the diagram (not treated here for the sake of brevity). Fig. 4
shows the interior curves delimiting regions of interest.
It is worth to note that the 7T-QD partition introduces seven triangles, from which four of them are formed in a
fixed way independently of the targeted triangle. These four triangles are Delaunay as will be shown below. The other
three triangles are constructed depending on the length of the diagonals of the interior pentagon ABCDO, see Fig. 5.

Fig. 6. Regions of different patterns for the 7T-QD partition.
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emma 1. The corner triangles on the longest edge, �MPD and �CNQ in Fig. 5, are Delaunay triangles.

roof. To prove this result, the circumcircle test is going to be used. That is, given triangles �MPD and �CNQ,
hose circumcircles do not contain any other point of the initial set.
First of all, consider triangle t0 = �MPD and denote Ct0 the circumcenter of t0.
By the initial conditions in the construction of the 7T-QD partition, M = (0, 0), D = ((1/3), 0) and P = ((x/3), (y/3)),

o Ct0 = ((1/6), ((x2 − x + y2)/(6y))).
It is obvious that points C, N, A and O are outside the circumcircle of t0, so it only must be proved that points B and
are also outside it. Consider then

B =
(

1 + 2x

3
,

2y

3

)
and Q =

(
2 + x

3
,
y

3

)
.

In order to show that B is outside the circumcircle of t0, it is going to be proved that d(M, Ct0 ) ≤ d(B, Ct0 ).
Now,

d(M, Ct0 ) =
√(

1

6

)2

+
(

x2 − x + y2

6y

)2

and

d(B, Ct0 ) =
√(

1 + 2x

3
− 1

6

)2

+
(

2y

3
− x2 − x + y2

6y

)2

so d(M, Ct0 ) ≤ d(B, Ct0 ) if

(
1

6

)2

+
(

x2 − x + y2

6y

)2

≤
(

1 + 2x

3
− 1

6

)2

+
(

2y

3
− x2 − x + y2

6y

)2

,

0 ≤
(

1 + 2x

3

)2

− 1 + 2x

9
+ 4y2

9
− 2

9
(x2 − x + y2),

Therefore, d(M, Ct0 ) ≤ d(B, Ct0 ) if 0 ≤ x2 + y2 + 2x. But, by the initial conditions x, y ≥ 0, so B is outside the
ircumcircle of t0.

In the same way, to prove that Q is outside the circumcircle of t0, it must be proved that d(M, Ct0 ) ≤ d(Q, Ct0 ).
onsider then

d(Q, Ct0 ) =
√(

x + 2

3
− 1

6

)2

+
(

y

3
− x2 − x + y2

6y

)2

.

In this case, d(M, Ct0 ) ≤ d(Q, Ct0 ) if

(
1

6

)2

+
(

x2 − x + y2

6y

)2

≤
(

x + 2

3
− 1

6

)2

+
(

y

3
− x2 − x + y2

6y

)2

,

0 ≤
(

x + 2

3

)2

− x + 2

9
+ y2

9
− 1

9
(x2 − x + y2),

Hence, d(M, Ct0 ) ≤ d(Q, Ct0 ) if x ≥ −1/2, that it is true by the initial conditions, so Q is outside the circumcircle
f t0 and triangle t = �MPD is a Delaunay triangle.

Finally, by symmetry, it can be proved that triangle �CNQ is a Delaunay triangle too. �
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Lemma 2. Triangles �ADP and �BCQ are Delaunay triangles.

Proof. To prove this result, the circumcircle test is going to be used as in the previous one.
First of all, consider triangle t1 = �ADP and denote Ct1 the circumcenter of t1.
By the initial conditions in the construction of the 7T-QD partition, A = (2x/3, 2y/3), D = (1/3, 0) and P = (x/3, y/3),

so

Ct1 = (xt1 , yt1 ) =
(

2x2 + 2y2 + 1

6
,
x(x2 + y2)(2x2 + 2y2 + 1)

36y

)
.

It is obvious that points M and O are outside the circumcircle of t1, so it must be proved that points B, C, N and Q
are also outside it. Consider then

B =
(

1 + 2x

3
,

2y

3

)
, C =

(
2

3
, 0

)
, N = (1, 0) and Q =

(
2 + x

3
,
y

3

)
.

It must be noted that any of these four points has the same y-coordinate than one of the three vertices of triangle t1,
so in order to prove that these four points are outside the circumcircle of t1, the point that determines its radius must
be chosen properly.

First of all, to show that B is outside the circumcircle of t1, it is going to be proved that d(A, Ct1 ) ≤ d(B, Ct1 ).
Now,

d(A, Ct1 ) =
√(

2x

3
− xt1

)2

+
(

2y

3
− yt1

)2

and

d(B, Ct1 ) =
√(

(1 + 2x)

3
− xt1

)2

+
(

2y

3
− yt1

)2

,

so d(A, Ct1 ) ≤ d(B, Ct1 ) if(
2x

3
− 2x2 + 2y2 + 1

6

)2

≤
(

(1 + 2x)

3
− 2x2 + 2y2 + 1

6

)2

,

0 ≤ (4x + 1)

9
− 2x2 + 2y2 + 1

9
.

Therefore, d(A, Ct1 ) ≤ d(B, Ct1 ) if (x − 1)2 + y2 ≤ 1, which it evident because point O = (x, y) is inside the mapping
diagram.

In analogous way it is proved that C is outside the circumcircle of t1 if x2 + y2 ≤ 1, that is, if point O = (x, y) is inside
the mapping diagram.

Similar arguments apply to demonstrate that N is outside the circumcircle of t1, which is equivalent to d(D, Ct1 ) ≤
d(N, Ct1 ); and also to show that Q is outside the circumcircle of t1, which is equivalent to d(P, Ct1 ) ≤ d(Q, Ct1 ).

By symmetry, it can be proved that triangle �BCQ is a Delaunay triangle too. �

To see that 7T-QD enjoys good properties in mesh generation it is necessary to compare it with other similar
partitions.

The mapping diagram for the 7T-QD partition reveals that, in terms of the minimum angle, and for those triangles
within the regions I and II, the partition is the same as the 7T-Delaunay partition. However, in a small subset of region
III they are different. This subset appears shaded in grey color in Fig. 7. The equation of the curve separating the region

2 2
in which these two partitions are different can be obtained using the circumcircle test: (x − 1) + y = 1/3. Notice that
the area of the shaded region is approximately 0.0091 which means that the ratio over the total area of the mapping
diagram results 0.0296796. This implies that less than 3% of the triangles yield different ways of dividing by the 7T-QD
and the 7T-D.
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Fig. 7. In color the subset of region III in which 7T-QD and 7T-D differ.

. Some numerical tests on 7T-Quasi-Delaunay partition

We present here some numerical studies that show the practice behavior of the 7T-QD partition in comparison with
T-LE and 7T-D partitions. The study consists in getting representative triangle cases from regions I, II, and III and
hen applying the partitions 7T-LE, 7T-QD and 7T-D to those triangles. Notice that for triangles in region I the three
artitions are the same. As we have mentioned before, for triangles in region II 7T-QD coincides with 7T-D. Also in
he central part of region III 7T-QD is equal than 7T-D. Therefore we will focus here the comparison for triangles in
he colored subset of region III. See Fig. 7.

Fig. 8(a) and (b) shows the minimum angle and its mean, for the triangles generated into the interior pentagon by
he three partitions 7T-QD, 7T-D and 7T-LE and when the initial triangle is chosen into the colored region of interest.
he triangles are taken inside this region from bottom to top and from left to right. Then, the resulting min angle and
ean min angle are sorted from lower to higher and graphed. Note that the minimum angle for the 7T-QD is close to
he minimum angle for the 7T-D partition. Fig. 9 shows in detail the distribution of the values for the minimum angles
orresponding to the 7T-QD and 7T-D partitions in gray levels. Triangles near to the right side of the region present
imilar values for the minimum angles generated, while triangles near to the left side show the higher differences. This

Fig. 8. Minimum angle comparison for 7T-QD, 7T-D and 7T-LE partitions.
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Fig. 9. Distribution of minimum angle for 7T-QD and 7T-D partitions.

is explained taking into account that 7T-QD and 7T-D partitions are the same out of the colored region and the pattern
for the 7T-QD changes precisely at the left side boundary of the colored region.

On the other hand, in comparison with the 7T-LE partition, the minimum angle obtained by the 7T-QD is higher.
Only for a small number of triangles the 7T-LE presents a minimum angle greater than the one of the 7T-QD. The
region of these triangles is given in Fig. 10. The area of this region is approximately 0.0014270 and the ratio with the
total area of the mapping diagram is 0.00464707.

In order to a deeper comparison we consider now the mean of the minimum angles. The results are shown in
Fig. 8(b). It is surprising that in most of the cases, the new introduced partition 7T-QD is better even than the 7T-D
partition. The region for these triangles is colored in black in Fig. 11. Note that in the only region in which the minimum
angle generated by the 7T-LE is greater than the generated by the 7T-QD, the mean of the minimum angles is lower.

It is clear that the partitions 7T-QD, 7T-D and 7T-LE perform differently depending on the triangle shapes and so,
on the region of study in the diagram. But it is also clear that this difference concentrates only on a small located area
that supposes the 3% of the total area in the diagram. To better clarify the behavior of min and mean min-angle we
collect in Table 1 the possible cases of regions in the diagram, Regions I, II and III with the 97% and regions C1, C2

and C3 with the other 3%. To indicate that a partition is better than other according to min or mean min-angle we use
symbol < and > otherwise. If partition is similar according to these values we use symbol =.

Fig. 10. Region C1 in which the minimum angle obtained by the 7T-LE partition is better than the obtained by the 7T-QD.
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Fig. 11. Region C2 (in black color) were the mean of minimum angles for 7T-QD are greater than for the 7T-D partitions.

Table 1
Comparison of 7T-QD, 7T-LE and 7D.

Region Area% Min-angle Mean (min-angle)

Region I 54% 7TLE = 7QD = 7D 7TLE = 7QD = 7D
Region II 38% 7TLE < 7QD = 7D 7TLE = 7QD = 7D
Region III 5% 7TLE < 7QD = 7D 7TLE = 7QD = 7D
Region C1 0.50% 7D > 7TLE > 7TQD 7QD > 7TD > 7TLE
Region C2 1.59% 7D > 7TQD > 7TLE 7QD > 7TD > 7TLE
Region C3 0.91% 7D > 7TQD > 7TLE 7D > 7QD > 7TLE
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. Conclusions

We have presented a new triangle partition, the 7T-Quasi-Delaunay partition, based on the longest edge of a triangle
nd Delaunay criterion. 7T-QD enjoys together properties of well-known longest edge and Delaunay triangulation.
he introduced scheme performs similarly compared to the well-known Delaunay triangulation with the benefit of a
heaper cost in computation. It has been proved that for any initial triangle four of the seven triangles produced by the
T-QD partition are Delaunay. Also it has been proved that in most of the cases the 7T-QD is equal to the 7T-D. In
ddition, numerical tests show that the difference on the minimum angle obtained by the 7T-QD and by the 7T-D is
egligible. Moreover, the mean of the minimum angles is greater for the 7T-QD than for the 7T-D partition.

On the other hand, the 7T-QD show greater minimum angle than the 7T-LE, except for a very small region of the
apping diagram. However considering the mean of the minimum angle the 7T-QD is also better.
In this paper, with the 7T-QD partition we show that there are simple and robust refinements at least almost as good

s Delaunay and with additional advantages as cheaper cost to obtain triangulations.
cknowledgements
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