
On the Computational Efficiency of
Polarizationless Recognizer P Systems with
Strong Division and Dissolution

Claudio Zandron1, Alberto Leporati1, Claudio Ferretti1,
Giancarlo Mauri1, Mario J. Pérez-Jiménez2

1 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
E-mails: {zandron,leporati,ferretti,mauri}@disco.unimib.it

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: marper@us.es

Summary. Recognizer P systems with active membranes have proven to be very power-
ful computing devices, being able to solve NP-complete decision problems in a polynomial
time. However such solutions usually exploit many powerful features, such as electrical
charges (polarizations) associated to membranes, evolution rules, communication rules,
and strong or weak forms of division rules. In this paper we contribute to the study
of the computational power of polarizationless recognizer P systems with active mem-
branes. Precisely, we show that such systems are able to solve in polynomial time the
NP-complete decision problem 3-sat by using only dissolution rules and a form of strong
division for non–elementary membranes, working in the maximal parallel way.

1 Introduction

Membrane systems (also known as P systems) have been introduced in [11] as
a parallel, nondeterministic, synchronous and distributed model of computation
inspired by the structure and functioning of living cells. The basic model consists
of a hierarchical structure composed by several membranes, embedded into a main
membrane called the skin. Membranes divide the Euclidean space into regions,
that contain some objects (represented by symbols of an alphabet) and evolution
rules. Using these rules, the objects may evolve and/or move from a region to a
neighboring one. Usually, the rules are applied in a nondeterministic and maximally
parallel way; moreover, all the objects that may evolve are forced to evolve. A
computation starts from an initial configuration of the system and terminates

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

262 C. Zandron et al.

when no evolution rule can be applied. The result of a computation is the multiset
of objects contained into an output membrane, or emitted from the skin of the
system. An interesting subclass of membrane system is constituted by recognizer
P systems, in which: (1) all computations halt, (2) only two possible outputs
exist (usually named yes and no), and (3) the result produced by the system
depends only upon its input, and is not influenced by the particular sequence of
computation steps taken to produce it. For a systematic introduction on P systems
we refer the reader to [14], whereas the latest information can be found in [24].

Since the introduction of membrane systems, many investigations have been
performed on their computational properties: in particular, many variants have
been proposed in order to study the contribution of various ingredients (associ-
ated with the membranes and/or with the rules of the system) to the achievement
of the computational power of these systems. In this respect, it is known [19, 23, 5]
that the class of all decision problems which can be solved in polynomial time by
a family of recognizer P systems that use only basic rules, that is, evolution, com-
munication and rules involving membrane dissolution, coincides with the standard
complexity class P. Hence, in order to efficiently solve NP-complete problems by
means of P systems it seems necessary to be able to construct an exponential
workspace, expressed by the number of membranes, in polynomial time. In par-
ticular, two features have proven to be of paramount importance in establishing
whether a membrane system is able to solve NP-complete decision problems in
polynomial time: membrane division and dissolution. The former is inspired from
the biological process called mitosis: using division rules we can duplicate a given
membrane that contains one specified symbol, possibly rewriting this symbol in a
different way in each of the cells produced by the process. All the other symbols,
as well as the rules, which are contained in the original cell are copied unaltered
into each of the resulting cells. As for the membranes eventually contained in the
original cell, we can make the following distinctions. If no membrane occurs, the
we say that the division is elementary ; if at least one membrane occurs, then
the division is non elementary, and we have to specify how the membranes are
distributed to the resulting membranes. If all the membranes are copied to each
of the resulting membranes, then we have a weak (non-elementary) division; if,
on the other hand, we can choose what membranes are copied into each of the
resulting membranes, then we have strong (non-elementary) division. Membrane
dissolution is performed by rules that simply dissolve the surrounding membrane
when a specified symbol occurs.

Recognizer P systems with active membranes (using division rules and, even-
tually, polarizations associated to membranes) have thus been successfully used
to efficiently solve NP-complete problems. The first solutions were given in the
so called semi-uniform setting [13, 23, 7, 9], which means that we assume the
existence of a deterministic Turing machine that, for every instance of the prob-
lem, produces in polynomial time a description of the P system that solves such
an instance. The solution is computed in a confluent manner, meaning that the
instance given in input is positive if and only if every computation of the P system

Recognizer P Systems with Strong Division and Dissolution 263

associated with it is an accepting computation. Another way to solve NP-complete
problems by means of P systems is by considering the uniform setting, in which all
the instances of the problem are given in input — encoded in an appropriate way
— to the same P system and then solved by it. Sometimes, a uniform solution to
a decision problem Q is provided by defining a family {ΠQ(n)}n∈N of P systems
such that for every n ∈ N the system ΠQ(n) reads in input an encoding of any pos-
sible instance of size n, and solves it. P systems with active membranes have thus
been successfully used to design uniform polynomial-time solutions to some well-
known NP-complete problems, such as sat [20], Subset Sum [17], Knapsack
[18], Partition [6] and the Common Algorithmic Problem [21].

All the papers mentioned above deal with P systems with three polarizations
that use only division rules for elementary membranes (in [22] also division for
non–elementary membranes is permitted, and in this way a semi–uniform solution
to the PSPACE-complete problem qsat is provided), and working in the maximal
parallel way. As shown in [1], the number of polarizations can be decreased to two
without loss of efficiency.

Since by using all these features (membrane division, dissolution and polariza-
tions) we can solve NP-complete problems, we have a model of computation which
is considered too powerful from the point of view of traditional complexity theory.
Hence a research direction of a clear interest is to selectively remove one or more of
these features and see whether the computation power changes, that is, investigat-
ing for what combinations of features we are still able to obtain polynomial time
solutions to computationally hard problems and what features, once removed, only
allow to obtain polynomial time solutions to tractable problems, in the classical
sense. In this direction, in [15] a conjecture was formulated by Gh. Păun about
the computational power of polarizationless P systems with active membranes and
working in the maximally parallel mode, stating that such systems can only solve
decision problems that are in P (by using only elementary division), and some par-
tial answers were given in [8]. Also, in [4] the computational power of recognizer
P systems with active membranes but without electrical charges and dissolution
rules was investigated, establishing that they characterize the complexity class P.

In this paper we continue this research line, showing that polarizationless P
systems with active membranes that use strong division for non–elementary mem-
branes and dissolution rules, working in the maximal parallel way, are able to solve
in polynomial time the NP-complete problem 3-sat. This result provides fur-
ther partial answers to Păun’s conjecture, establishing that neither evolution nor
communication rules, and no electrical charges are needed to solve NP-complete
problems, provided that we can use strong division rules for non–elementary mem-
branes (as well as dissolution rules, otherwise we would fall in the case considered
in [4]).

The paper is organized as follows. In Sections 2 and 3 we recall the definition of
polarizationless recognizer P systems with active membranes, thus establishing our
model of computation, and we recall the definition of the NP-complete decision
problem 3-sat. In Section 4 we show how the systems we are considering are able

264 C. Zandron et al.

to solve the 3-sat problem. Finally, Section 5 contains the conclusions and some
directions for further research.

2 Polarizationless recognizer P systems with active
membranes

Usually, P systems with active membranes are defined in the literature with three
electrical charges (also called polarizations) associated with membranes (even
thought two charges suffice, as proved in [1]) to control the application of the
rules, which can be of the following types: evolution rules, by which single ob-
jects evolve to a multiset of objects, communication rules, by which an object is
introduced in or expelled from a membrane, and possibly changed to another ob-
ject while performing this operation, dissolution rules, by which a membrane is
dissolved under the influence of an object, that can also be modified during this
operation, and membrane division rules (both for elementary and non–elementary
membranes, or only for elementary membranes). However, in this paper we will
consider polarizationless P systems with active membranes, that is, P systems in
which no electrical charge is associated with any membrane.

Formally, a P system with polarizationless active membranes of the initial
degree n ≥ 1 is a tuple of the form Π = (Γ, H, µ,M1, . . . ,Mn, R, h0), where:

1. Γ is the alphabet of objects;
2. H is a finite set of labels for membranes;
3. µ is a membrane structure, consisting of n membranes being labelled with

elements of H;
4. M1, . . . ,Mn are strings over Γ , describing the multisets of objects placed in

the n initial regions of µ;
5. R is a finite set of developmental rules, of the following forms:

(a) [a → v]h, for h ∈ H, a ∈ Γ , v ∈ Γ ∗ (object evolution rules);
(b) a[]h → [b]h, for h ∈ H, a, b ∈ Γ (in communication rules);
(c) [a]h → b[]h, for h ∈ H, a, b ∈ Γ (out communication rules);
(d) [a]h → b, for h ∈ H, a, b ∈ Γ (dissolution rules);
(e) [a]h → [b]h[c]h, for h ∈ H, a, b, c ∈ Γ (weak division rules for elementary

or non–elementary membranes);
(f) h0 ∈ H or h0 = env indicates the output region (in the latter case, usually

h0 does not appear in the description of the system).

We can also consider rules of the form [[]h1 []h2]h3 → [[]h1]h3 [[]h2]h3 ,
where h1, h2, h3 are labels from H: if the membrane with label h3 contains other
membranes than those with labels h1, h2, these membranes and their contents are
duplicated and placed in both new copies of the membrane h3; all membranes and
objects placed inside membranes h1, h2, as well as the objects from membrane
h3 placed outside membranes h1 and h2, are reproduced in the new copies of
membrane h3. These rules are called strong division rules for non–elementary
membranes.

Recognizer P Systems with Strong Division and Dissolution 265

As usual, a computation starts in the initial configuration, which is given by
the membrane structure µ and the strings (multisets) M1, . . . ,Mn of objects
initially present in the n regions of µ. Using the maximally parallel manner, at each
computation step (a global clock is assumed) in each region of the system we apply
the rules in such a way that no further rule can be applied to the remaining objects
or membranes. In each step, each object and each membrane can be involved in
only one rule. The application of a maximal set of rules during a computation
step produces a new configuration of the system. A computation is a sequence
C0, C1, . . . of configurations such that C0 is the initial configuration described
above, and for all i ≥ 1 the configuration Ci is obtained from Ci−1 by applying a
maximal set of rules as described above. Note that a computation may be finite
or infinite; in the former case we require that the last element of the sequence is
an halting configuration, that is, a configuration in which no rule can be applied
anywhere in the system. A halting computation provides a result encoded by the
objects present in region h0 at the end of the computation; this is a region of the
system if h0 ∈ H (and in this case, for a computation to be successful, exactly one
membrane with label h0 should be present in the halting configuration), or it is
the environment if h0 = env. An infinite computation produces no result.

A recognizer P system with active membranes is obtained from the definition
given above by assuming that the system halts on every computation and pro-
duces one of two possible outputs, that are usually denoted by yes and no. A
further requirement is that the system is confluent, that is, for any given input
configuration, all the computations that can start with such a configuration end
by producing the same output. In this way, we can say that a recognizer P system
with active membranes recognizes the language which is composed by the strings
that encode the initial configurations that produce yes as a result. By considering
the trivial bijection existing between these languages and decision problems, we
can also say that a recognizer P system solves the decision problem whose positive
instances are associated with initial configurations of the system that produce the
output yes in h0.

We denote by AM0 the class of polarizationless recognizer P systems with
active membranes, and we denote by AM0(α, β, γ, δ), where α ∈ {−d, +d}, β ∈
{−ne, +new, +nes}, γ ∈ {−ev, +ev}, and δ ∈ {−comm, +comm} the class of
all recognizer P systems with polarizationless active membranes such that: (a) if
α = +d (resp., α = −d) then dissolution rules are permitted (resp., forbidden); (b)
if β ∈ {+new, +nes} (resp., β = −ne) then division rules for elementary and non–
elementary membranes, weak or strong (resp., only division rules for elementary
membranes) are permitted; (c) if γ = +ev (resp., γ = −ev) then evolution rules
are permitted (resp., forbidden); (d) if δ = +comm (resp., δ = −comm) then
communication rules are permitted (resp., forbidden).

The class of all decision problems which can be solved in uniform (resp., semi–
uniform) way, and in polynomial time by a family R of recognizer membrane
systems is denoted by PMCR (resp., PMC∗

R). The following inclusions directly
follow from these definitions.

266 C. Zandron et al.

Proposition 1. For all α ∈ {−d, +d}, β ∈ {−ne,+new, +nes}, γ ∈ {−ev, +ev},
δ ∈ {−comm,+comm} and ε ∈ {∗, λ}:
1. PMCAM0(α,β,γ,δ) ⊆ PMC∗

AM0(α,β,γ,δ)

2. PMCε
AM0(−d,β,γ,δ) ⊆ PMCε

AM0(+d,β,γ,δ)

3. PMCε
AM0(α,−ne,γ,δ) ⊆ PMCε

AM0(α,+new,γ,δ)

4. PMCε
AM0(α,−ne,γ,δ) ⊆ PMCε

AM0(α,+nes,γ,δ)

5. PMCε
AM0(α,β,−ev,δ) ⊆ PMCε

AM0(α,β,+ev,δ)

6. PMCε
AM0(α,β,γ,−comm) ⊆ PMCε

AM0(α,β,γ,+comm)

where ε = ∗ (resp., ε = λ, the empty string) means that the complexity classes are
associated with semi–uniform (resp., uniform) solutions.

Also, using this notation, Păun’s conjecture (problem F in [15]) can be restated
as follows:

P = PMCAM0(+d,−ne,+ev,+comm) = PMC∗
AM0(+d,−ne,+ev,+comm)

As stated in the Introduction, results in [4] and [8] proved the following the-
orem, considering a reachability problem (is the state in which the symbol yes
is expelled to the environment reachable?) defined on the so called dependency
graph. We refer the reader to [4] and [8] for further details on the proofs.

Theorem 1. For all β ∈ {−ne,+new, +nes},
P = PMCAM0(−d,β,+ev,+comm) = PMC∗

AM0(−d,β,+ev,+comm)

This result holds for systems working in the maximal parallel manner; in [8] also
systems working with minimal parallelism were considered, but in this paper we
will not address them.

3 The 3-sat problem

Let us now consider the NP-complete decision problem 3-sat [3, p. 46]. The
instances of 3-sat depend upon two parameters: the number n of variables, and
the number m of 3-clauses. We recall that a clause is a disjunction of literals,
occurrences of xi or ¬xi, built on a given set X = {x1, x2, . . . , xn} of boolean
variables. A 3-clause is a clause that contains exactly three literals. In what follows
we will require that no repetitions of the same literal may occur in any clause.
Without loss of generality we can also avoid the clauses in which both the literals
xi and ¬xi, for any 1 ≤ i ≤ n, occur. An assignment of the variables x1, x2, . . . , xn

is a mapping a : X → {0, 1} that associates to each variable a truth value. The
number of all possible assignments to the variables of X is 2n. We say that an
assignment satisfies the clause C if, assigned the truth values to all the variables
which occur in C, the evaluation of C (considered as a boolean formula) gives 1
(true) as a result.

We can now formally state the 3-sat problem as follows.

Recognizer P Systems with Strong Division and Dissolution 267

Problem 1. Name: 3-sat.

• Instance: a set C = {C1, C2, . . . , Cm} of 3-clauses, built on a finite set {x1, x2,
. . . , xn} of boolean variables.

• Question: is there an assignment of the variables x1, x2, . . . , xn that satisfies
all the clauses in C?

In what follows we will sometimes equivalently say that an instance of 3-sat
is a propositional formula γn,m = C1 ∧C2 ∧ · · · ∧Cm, expressed in the conjunctive
normal form as a conjunction of m clauses, where each clause is a disjunction of
three literals built using the boolean variables x1, x2, . . . , xn. With a little abuse of
notation, from now on we will denote by 3-sat(n,m) the set of instances of 3-sat
which have n variables and m clauses.

The reason for which we are here interested into 3-sat (rather that with the
more generic problem sat, see [3, p. 39], where we put no upper bound on the
number of literals that may appear in each clause) is that the number of possible 3-
clauses which can be built using n boolean variables is 2n·(2n−2)·(2n−4) ∈ Θ(n3),
a polynomial quantity with respect to n. This quantity is obtained by looking at a
3-clause as a triple, and observing that each component of the triple may contain
one of the 2n possible literals, with the constraints that we do not allow neither
the repetition of literals in the clauses, nor the use of the same variable two or
three times in a clause. On the other hand, an instance of sat may have a number
of clauses which is exponential in n, since for every i ∈ {1, 2, . . . , n} either variable
xi or its negation (or none of them) can appear in a clause, yielding to 3n possible
combinations.

4 Solving 3-sat with strong division and dissolution rules

In this section we propose a semi–uniform family {Π3SAT (γn,m)}γn,m∈3SAT (n,m)

of polarizationless recognizer P systems with active membranes that solves the
NP-complete decision problem 3-sat by using only membrane dissolution rules
and a form of strong division rules for non–elementary membranes. Precisely, for
every instance γn,m of 3-sat(n,m) we show how to build the system Π3SAT (γn,m)
that solves such an instance. Our result can be summarized by the statement of
the following theorem.

Theorem 2. 3-sat ∈ PMC∗
AM0(+d,+nes,−ev,−comm).

Proof. Let γn,m = C1∧C2∧ . . .∧Cm be an instance of 3-sat(n,m), built using the
boolean variables x1, x2, . . . , xn, and let Π3SAT (γn,m) be the recognizer P system
associated (in the semi–uniform framework) to γn,m, whose initial configuration
is illustrated in Figure 1. The system is composed by m outer membranes (not
counting the skin membrane) which are associated with the clauses of γn,m. Pre-
cisely, the membrane immediately contained in the skin is associated with clause
Cm and contains membrane Cm−1, which is associated with the namesake clause;

268 C. Zandron et al.

Fig. 1. Initial configuration of the system Π3SAT (γn,m) that solves the instance γn,m of
3-sat(n, m)

on its turn, membrane Cm−1 contains a membrane labelled with Cm−2, and so
on, until we reach membrane C1 that contains a membrane labelled with A, that
will be used to generate all the possible assignments to x1, x2, . . . , xn. Membrane
A contains the object x1 (that represents the namesake variable) as well as n hier-
archies of nested membranes. As depicted in Figure 2, the notation xi

k
di

that we

Fig. 2. The hierarchies of nested membranes used in the system depicted in Figure 1 to
perform the correct sequence of membrane divisions

have adopted in Figure 1 indicates that symbol xi is surrounded by k membranes,
nested one into the other, all labelled by di. In this way, we can operate on mem-
brane A through a rule which is activated by x1 and, in the meanwhile, dissolve
one membrane in each of the subsystems contained in A. After m + 1 steps x2

emerges and activates another rule of A, and so on, until symbol s emerges and
starts another phase of computation.

Recognizer P Systems with Strong Division and Dissolution 269

The computation of the system is composed by two phases: the generation
stage and the verification stage. During the generation stage, 2n copies of the
subsystem contained into the skin of the initial configuration depicted in Figure 1
are produced, where in each copy membrane A contains an encoding of one of the
possible assignments to x1, x2, . . . , xn. Such a phase is performed by the following
rules:

1. [[]A[]A]C1 → [[]A]C1 [[]A]C1

2. [[]Ci−1 []Ci−1]Ci
→ [[]Ci−1]Ci

[[]Ci−1]Ci
for all i = 2, 3, . . . , m

3. [xj]A → [tj]A [fj]A for all j = 1, 2, . . . , n
4. [xj]dj

→ xj for all j = 1, 2, . . . , n
5. [s]ds

→ s
6. [s]A → yes
7. [tj]Ci

→ tj if xj ∈ Ci, [fj]Ci
→ fj if ¬xj ∈ Ci, where 1 ≤ i ≤ m

Rules 1 and 2 are strong division rules for non–elementary membranes: whenever a
membrane Ci contains two membranes at their immediately inner level, it divides
and each of the resulting copies contains one of the previous inner membranes. Rule
3 is used to generate the assignments: when the symbol xj , for j ∈ {1, 2, . . . , n},
occurs in membrane A then A divides; in one of the resulting copies the symbol xj

is rewritten to tj , indicating the fact that we are assigning the value true to the
boolean variable xj . Similarly, in the other copy of A the symbol xj is rewritten to
fj , indicating that the boolean value false is assigned to xj . In order to control
the order of application of division rules during the generation phase, only one
symbol xj occurs in membrane A every m + 1 computation steps. In this way we
first divide membrane A, assigning the two boolean values true and false to xj

as described above; then, rule 1 can be applied, thus duplicating membrane C1.
In the subsequent m − 1 computation steps, membranes C2, C3, . . . , Cm are

duplicated exactly in this order thanks to rules 2. Figure 3 depicts the first steps
of this process for an instance containing n = 2 variables and m = 2 clauses (note
that this example is conceived only for illustrative purposes, since at least three
boolean variables are needed to build valid 3-clauses).

The rules are applied in the maximal parallel manner. In particular, at every
computation step one membrane labelled with dj , for each j ∈ {1, 2, . . . , n} such
that membrane dj still occurs in the system, is dissolved. In this way, a symbol xj

emerges in membrane A just after the assignment to xj−1 and all the subsequent
duplications of membranes C1, C2, . . . , Cm have been performed. By using the
same mechanism, symbol s emerges in membrane A after n(m + 1) steps, that is,
after all the assignments to x1, x2, . . . , xn and all the duplications of membranes
C1, C2, . . . , Cm have been performed. In practice, the construct composed by n(m+
1) nested membranes, all labelled with ds, together with the symbol s into the
innermost membrane and the dissolution rule [s]ds → s, implement a counter
whose initial value is nm and which is decremented each time the dissolution rule
is applied.

When the symbol s appears in A then n(m + 1) computation steps have been
performed, that is, the generation stage has ended and the verification stage can

270 C. Zandron et al.

Fig. 3. First steps of the generation stage of a system designed to work on two clauses,
built using two boolean variables. For reasons of space, also in this figure we have used
the abbreviation depicted in Figure 2

start. All the copies of membrane A are dissolved by executing rule 6 (which
also changes s to yes), so that all the objects tj and fj that represent the truth
values of x1, x2, . . . , xn can reach the corresponding membrane C1 and activate its
rules. These rules, of type 7, depend upon the instance γn,m of 3-sat(n,m) we are
solving. For example, assume that the first clause of γn,m is C1 = x1 ∨ ¬x3 ∨ x4.
Then, membranes C1 will contain the following dissolution rules:

Recognizer P Systems with Strong Division and Dissolution 271

[t1]C1 → t1

[f3]C1 → f3

[t4]C1 → t4

In this way, a membrane labelled with C1 is dissolved if and only if at least one of
the objects tj and fj that encode the assignment satisfy the clause. If no object
satisfy the clause then the computation in that subsystem halts; on the contrary,
if the assignment under consideration satisfies C1 then by dissolving membrane
C1 the objects tj and fj that encode the assignments are released to membrane
C2. Then, the rules that correspond to clause C2 are executed; if the assignment
satisfies also C2 then the corresponding membrane is dissolved and the computa-
tion continues in membrane C3, otherwise membrane C2 is not dissolved and the
computation halts in that subsystem. If an assignment satisfies all the clauses of
γn,m then it will dissolve all the membranes C1, C2, . . . , Cm, and the objects that
represent the assignment will reach the skin membrane, that we consider as the
output membrane. Hence, the instance γn.m of 3-sat(n,m) solved by the system
is positive if and only if in the halting configuration (in which no rule can be
applied) at least one symbol occurs in the region enclosed by the skin membrane
(equivalently, if at least one copy of symbol yes occurs in such a region).

As stated above, we have focused our attention on the 3-sat problem because
the number m of clauses is O(n3). It is apparent that the number of computation
steps of the system Π3SAT (γn,m) we have just described is Θ(n(m + 1) + m) ⊆
O(n4). The number of membranes in the initial configuration of the system is:

n∑

i=1

i(m + 1) + m + 2 = (m + 1)
n(n + 1)

2
+ m + 2

∈ Θ(n2m) ⊆ O(n5)

a polynomial quantity in n. The total number of rules is 2n + m + 3 ∈ O(n3), and
the initial number of objects is n + 1 ∈ Θ(n).

For the sake of completeness, please note that we could enlarge this system so
to always produce exactly one output, being it either yes or no, just by adding an
object b, initially put in the leaf membrane of a series of n(m+1)+1 membranes, a
second outermost membrane (we can call it “external skin”) enclosing our system
and this new series of nested membranes, and finally adding a set of rules which
first let b move toward the external skin and eventually change it to no. Notice
that, in case of a positive answer, the object yes arrives to skin membrane one
step before the object b does.

5 Conclusions and directions for future research

For every possible instance γn,m of 3-sat(n,m), having m clauses built on the
boolean variables x1, x2, . . . , xn, we have shown how to build a polarizationless

272 C. Zandron et al.

recognizer P system Π3SAT (γn,m) with active membranes that determines whether
γn,m is positive, that is, whether there exists an assignment to the variables
x1, x2, . . . , xn that satisfies all the clauses C1, C2, . . . , Cm of γn,m. The system
works in the maximal parallel manner and, besides using no electrical charges as-
sociated with the membranes, it does not use neither evolution nor communication
rules. However, it uses a form of strong division rules for non–elementary mem-
branes, that allow to divide the content of the membrane which is being duplicated
among the two resulting copies of the membrane. We can summarize the result
exposed in this paper by saying that 3-sat ∈ PMC∗

AM0(+d,+nes,−ev,−comm).
A first related question that comes to our mind is the following: is the

class PMC∗
AM0(+d,+nes,−ev,−comm) closed under polynomial reductions? If so,

any problem in NP could (at least, in principle) be transformed to 3-sat by
a polarizationless P system with active membranes that performs its compu-
tations without leaving this class. As a result, we could conclude that NP ⊆
PMC∗

AM0(+d,+nes,−ev,−comm). Another question of clear interest is: can we use
only weak division rules? Stated otherwise: is 3-sat (or some other NP-complete
problem) in PMC∗

AM0(+d,+new,−ev,−comm)?

Acknowledgements

The ideas exposed in this paper emerged during the Sixth Brainstorming Week on
Membrane Computing, held in Seville from February 4 to February 8, 2008.

The work of the authors was partially supported by the project “Azioni In-
tegrate Italia-Spagna - Theory and Practice of Membrane Computing” (Acción
Integrada Hispano-Italiana HI 2005-0194).

References

1. A. Alhazov, R. Freund. On efficiency of P systems with active membranes and two
polarizations. In G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salo-
maa (eds.), Membrane Computing, 5th International Workshop, WMC 2004, Revised
Selected and Invited Papers, LNCS 3365, Springer-Verlag, Berlin, 2005, pp. 81–94.

2. A. Alhazov, M.J. Pérez-Jiménez. Uniform solution to qsat using polarizationless
active membranes. In M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F.J.
Romero-Campero (eds.), Proceedings of the Fourth Brainstorming Week on Mem-
brane Computing, Volume I, Fénix Editora, Sevilla, 2006, pp. 29–40.

3. M.R. Garey, D.S. Johnson. Computers and Intractability. A Guide to the Theory on
NP–Completeness. W.H. Freeman and Company, 1979.

4. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero. On the power of dissolution in P systems with active membranes. In R.
Freund, Gh. Păun, G. Rozenberg, A. Salomaa (eds.) Membrane Computing, 6th In-
ternational Workshop, WMC 2005, Revised Selected and Invited Papers, LNCS 3850,
Springer-Verlag, Berlin, 2006, pp. 224–240.

Recognizer P Systems with Strong Division and Dissolution 273

5. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero, A. Romero-Jiménez. Characterizing tractability by cell-like membrane
systems. In K.G. Subramanian, K. Rangarajan, M. Mukund (eds.), Formal mod-
els, languages and applications, World Scientific, Series in Machine Perception and
Artificial Intelligence, Vol. 66, 2006, pp. 137–154.

6. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez. A fast P system for
finding a balanced 2–partition. Soft Computing, 9(9):673–678, 2005.

7. S.N. Krishna, R. Rama. A variant of P systems with active membranes: Solving
NP-complete problems. Romanian Journal of Information Science and Technology,
2(4):357–367, 1999.

8. G. Mauri, M.J. Pérez-Jiménez, C. Zandron. On a Păun conjecture in membrane
systems. In J. Mira and J.R. Álvarez (eds.), Second International Work-Conference
on the Interplay Between Natural and Artificial Computation, IWINAC 2007, Part
I, LNCS 4527, Springer-Verlag, Berlin, 2007, pp. 180–192.

9. A. Obtulowicz. Deterministic P systems for solving sat problem. Romanian Journal
of Information Science and Technology, 4(1–2):551–558, 2001.

10. C.H. Papadimitriou. Computational Complexity, Addison-Wesley, 1994.
11. Gh. Păun. Computing with membranes. Journal of Computer and

System Sciences, 1(61):108–143, 2000. See also Turku Centre for
Computer Science – TUCS Report No. 208, 1998. Available at:
http://www.tucs.fi/Publications/techreports/TR208.php

12. Gh. Păun. Computing with membranes. An introduction. Bulletin of the EATCS,
67:139–152, February 1999.

13. Gh. Păun. P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics, 6(1):75–90, 2001.

14. Gh. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.
15. Gh Păun. Further twenty six open problems in membrane computing. In M.A.

Gutiérrez-Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan (eds.), Pro-
ceedings of the Third Brainstorming Week on Membrane Computing, Fénix Editora,
Sevilla, 2005, pp. 249–262.

16. G. Păun, G. Rozenberg. A guide to membrane computing. Theoretical Computer
Science, 287(1), 2002, pp. 73–100.

17. M.J. Pérez-Jiménez, A. Riscos-Núñez. Solving the Subset Sum problem by active
membranes. New Generation Computing, 23(4):367–384, 2005.

18. M.J. Pérez-Jiménez, A. Riscos-Núñez. A linear–time solution to the knapsack prob-
lem using P systems with active membranes. In C. Mart́ın-Vide, Gh. Păun, G. Rozen-
berg, A. Salomaa (eds.), Membrane Computing, 4th International Workshop, WMC
2003, Revised Selected and Invited Papers, LNCS 2933, Springer-Verlag, Berlin, 2004,
pp. 250–268.

19. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini. The P versus NP
problem through cellular computing with membranes. In N. Jonoska, Gh. Păun,
G. Rozenberg (eds.), Aspects of Molecular Computing, LNCS 2950, Springer-Verlag,
Berlin, 2004, pp. 338–352.

20. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini. A polynomial com-
plexity class in P systems using membrane division. In E. Csuhaj-Varjú, C. Kintala,
D. Wotschke, G. Vaszil (eds.), Proceedings of the 5th Workshop on Descriptional
Complexity of Formal Systems, DCFS 2003, Computer and Automation Research
Institute of the Hungarian Academy of Sciences, Budapest, 2003, pp. 284–294.

274 C. Zandron et al.

21. M.J. Pérez-Jiménez, F.J. Romero-Campero. Attacking the Common Algorithmic
Problem by recognizer P systems. In M. Margenstern (ed.), Machines, Computa-
tions and Universality, LNCS 3354, Springer-Verlag, Berlin, 2005, pp. 304–315.

22. P. Sosik. The computational power of cell division. Natural Computing, 2(3):287–298,
2003.

23. C. Zandron, C. Ferretti, G. Mauri. Solving NP-complete problems using P systems
with active membranes. In I. Antoniou, C.S. Calude, M.J. Dinneen (eds.), Uncon-
ventional Models of Computation, Springer-Verlag, Berlin, 2000, pp. 289–301.

24. The P systems Web page: http://ppage.psystems.eu

