
Computing by Carving with P Systems. A First
Approach?

José M. Sempere

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
Valencia, Spain
E-mail: jsempere@dsic.upv.es

Summary. In this work, we propose a P system which carries out computing by carving.
Computing by carving was proposed by Gh. Păun as a technique to generate formal
languages which can even be non recursively enumerable. Hence, it can be considered
a hypercomputational technique. Here, we propose a first scheme based on P systems
in order to perform computing by carving any formal language. So, the paper shows
indirectly that these systems, under certain assumptions, can be considered a model for
hypercomputation.

1 Introduction

Computing by carving is a computational strategy to generate formal languages
proposed by Gh. Păun in 1999 [4]. This technique has been proved to generate
even non recursively enumerable languages, hence it can be considered a hyper-
computational technique. Furthermore, in the same work, Păun proved that it can
be a used as a solution to language approximation problems. Here, we will pro-
pose a membrane system architecture to perform computing by carving. Hence,
we indirectly prove that membrane systems can be considered hypercomputational
models.

Hypercomputational models have been proposed along the time that solve some
problems proved to be unsolvable by classical Turing machines. Most of these
models need some kind of infinite resources (infinite tape alphabets, sets of states,
etc.) as pointed out in [10]. Here, we will introduce infinite membrane regions and
objects as a source for hypercomputing with P systems.

The structure of this work is as follows: In the following section, we will in-
troduce basic concepts about formal language theory and membrane computing.
Then, we will introduce the basic aspects and results about computing by carv-
ing. In section 4, we will propose a P system to perform computing by carving.
? Work supported by the Spanish Ministerio de Educación y Ciencia under project

TIN2007-60769

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

256 J.M. Sempere

We will discuss different approximations to make so by using membrane creation
and other ways to obtain potentially infinite resources. Finally, we will draw some
conclusions and we will point out new problems for future research.

2 Basic concepts on formal language theory and membrane
computing

We will introduce some basic concepts from formal language theory according to
[2, 7] and from membrane computing according to [5].

An alphabet Σ is a finite nonempty set of elements named symbols. A string
defined over Σ is a finite ordered sequence of symbols from Σ. The infinite set of
all the strings defined over Σ will be denoted by Σ∗. Given a string x ∈ Σ∗ we will
denote its length by |x|. The empty string will be denoted by λ and Σ+ will denote
Σ∗ − {λ}. A language L defined over Σ is a set of strings from Σ. The difference
between two languages L1 and L2 is defined by L1 − L2 = {x ∈ L1 : x /∈ L2}.

A generalized sequential machine can be defined by the tuple T =
(Σ, ∆, Q,R, q0, F), where Σ and ∆ are aphabets, Q is a finite states set, R ⊆
Q × Σ∗ × ∆∗ × Q is a finite transition relation, q0 ∈ Q is the initial state, and
F ⊆ Q is a set of final (or acceptance) states. The machine takes an initial string
x ∈ Σ∗ and, after applying the transitions defined by T , it obtains an output string
y ∈ ∆∗ whenever it finishes in a final state. Then, we will say that T performs a
function g such that g(x) = y.

A general P system of degree m is a construct

Π = (V, T, C, µ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

• V is an alphabet (the objects)
• T ⊆ V (the output alphabet)
• C ⊆ V , C ∩ T = ∅ (the catalysts)
• µ is a membrane structure consisting of m membranes
• wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated with the

region i
• Ri, 1 ≤ i ≤ m, is a finite set of evolution rules over V associated with the ith

region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u → v) where u is a string over V and
v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj | a ∈ V, 1 ≤ j ≤ m}
and δ is an special symbol not in V (it defines the membrane dissolving action).
From now on, we will denote the set tar by {here, out, ink | 1 ≤ k ≤ m}.

• i0 is a number between 1 and m and it specifies the output membrane of Π (in
the case that it equals ∞ the output is read outside the system).

Computing by Carving with P Systems 257

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system arranged in the leaving order (if several objects leave the
system at the same time, then all permutations are allowed). The set of numbers
that represent the objects in the output membrane i0 will be denoted by N(Π).
Obviously, both sets L(Π) and N(Π) are defined only for halting computations.

One of the multiple variations of P systems is related to the modification of
membrane structures. There have been several works in which these variants have
been proposed (see, for example, [1, 3, 6]).

In the following, we enumerate some kinds of rules which are able to modify
the membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′
2. Creation: a → [hb]h
3. Dissolving: [ha]h → b

The power of P systems with the previous operations and other ones (e.g.,
exocytosis, endocytosis, etc.) has been widely studied in the previously mentioned
works and other papers.

3 Computing by carving

Păun introduced in [4] computing by carving as a technique to compute formal
languages inspired by the search of solutions by filtering conditions in DNA com-
puting. The main ingredients of computing by carving are the following:

1. A target language L
2. An initial couple of languages L0 and L1

3. An initial language M
4. A generalized sequential machine (gsm) g

The way of obtaining the target language L can be explained as follows: First,
select a broader (regular) language M and an initial couple of (regular) languages
L0 and L1 and calculate Li+1 = g(Li) for i ≥ 1. The ith iteration of g over L1

can be denoted by gi(L1) and g∗(L1) will denote the language
⋃

i≥0 gi(L1). Then
L can be calculated as L = M − (L0 ∪ g∗(L1). If the latter condition holds, then
L is said C-REG computable. Then, the triple (L0, L1, g) identifies the sequence
that allows the calculation of L. Observe that M can be assumed to be Σ∗.

The following results can be found in [4]

Theorem 1. Every recursively enumerable language L ⊆ T ∗ can be written in the
form L = g∗({a0}) ∩ T ∗) where g is a gsm, depending on L, and a0 is a fixed
symbol not in T .

Theorem 2. There are C-REG computable languages which are not recursively
enumerable.

258 J.M. Sempere

4 A P system for computing by carving

In this section, we propose a first approach to implement the components M , L0,
L1 and g in order to compute a language L by carving. In general, we will work
with sets of integers instead of languages of strings given that the connection of
languages to sets of integers are very common in P systems.

The general scheme that we will initially follow in the proposed P system is
shown in Fig. 1. First, the projections of the languages M , L0 and L1 can be
generated by using P systems ΠM , ΠL0 and ΠL1 . Observe that any recursively
enumerable language can be generated by a P system so they can be generated
too. Moreover, we can take L1 to be finite, even a singleton as shown in [4], so we
can define the set of initial objects in ΠL1 to be exactly L1. With respect to L0

we can fix it to be Σ∗ or the empty set. In both cases, it can be trivially generated
even in a lexicographic order.

Fig. 1. Initial scheme for the P system

Once, we have generated a string in ΠM , ΠL0 or ΠL1 it is sent to Πsubstract.
Observe that, if we generate L0 and L1 in lexicographic order then we can make
the difference in Πsubstract in lexicographic order too. The generalized sequential
machine g can be applied by using a P system Πg that receives objects from
Πsubstract. Once the generalized sequential machine has been applied in Πg two
different regions are created by using membrane division and membrane creation:
Πg2 and ΠL2 . Now, the new regions are used to calculate the second g iteration

Computing by Carving with P Systems 259

over L1 in Πg2 and the language L2 in ΠL2 . The second substraction over the set
M is performed again in Πsubstract.

This scheme can be generalized to obtain Lj . Observe that the P system struc-
ture in this case is shown in Figure 2.

Fig. 2. Calculating Lj through jth iteration for the generalized sequential machine g

Some remarks about the proposed architecture:

1. The region corresponding to Πsubstract always contains the updated approxi-
mation to L. That is, when the computation is in progress, some strings will be
sent from ΠM to Πsubstract and they will be deleted if the same string appears
in any ΠLi .

2. The whole process can be considered as an infinite time one, given that the
generation of every Li is infinite and so is for the updated approximation to
L.

3. Here, the resources needed to compute L are infinite. Think about the number
of regions and objects in every region. They will be unboundedly increased
over the time.

260 J.M. Sempere

5 Conclusions and future work

In this paper we have made a first approach to computing by carving with P
systems. Here, we have only sketched the general ideas behind the full definition.
So, we need to define the P systems carrying out the following tasks:

• The generation of any infinite (regular) language in lexicographic order.
• The application of the generalized sequential machine over strings and lan-

guages.
• The substraction between languages.

Every task referred before will be investigated in future works.

References

1. A. Alhazov, T.O. Ishdorj. Membrane operations in P systems with active membranes.
In Proc. Second Brainstorming Week on Membrane Computing. TR 01/04 of RGNC.
Sevilla University. pp 37-44. 2004.

2. J. Hopcroft, J. Ullman. Introduction to Automata Theory, Languages and Computa-
tion. Addison Wesley Publishing Co.,1979.

3. A. Păun. On P systems with active membranes. In Proc. of the First Conference on
Unconventionals Models of Computation (UMC2K). pp 187-201. 2000.

4. Gh. Păun. (DNA) computing by carving. Soft Computing 3, pp 30-36. 1999
5. G. Păun. Membrane Computing. An Introduction. Springer. 2002.
6. G. Păun, Y. Suzuki, H. Tanaka, T. Yokomori. On the power of membrane division on

P systems. Proc. Conf. on Words, Languages and Combinatorics (Kyoto). 2000.
7. G. Rozenberg, A. Salomaa (Eds.). Handbook of Formal Languages Vol. 1. Springer.

1997.
8. J.M. Sempere. P systems with external input and learning strategies. In Preproceedings

of the Workshop on Membrane Computing (July 2003). A. Alhazov, C. Mart́ın-Vide
and Gh. Păun (editors), pp 445-448. 2003

9. J.M. Sempere. Covering reductions and degrees in P systems. In Pre-proceedings of
the Fifth Workshop on Membrane Computing (June, 2004), pp 384-391. 2004

10. M. Stannet. Hypercomputational Models. In Alan Turing: Life and Legacy of a Great
Thinker. C. Teuscher (editor). Springer. 2004

