
Journal of Computational Geometry jocg.org

COVER CONTACT GRAPHS∗

Nieves Atienza,†Natalia de Castro,†Carmen Cortés,†M. Ángeles Garrido,†
Clara I. Grima,†Gregorio Hernández,‡Alberto Márquez,†Auxiliadora Moreno-González,†
Martin Nöllenburg,§ José Ramón Portillo,†Pedro Reyes,† Jesús Valenzuela,†
Maria Trinidad Villar,†Alexander Wolff¶

Abstract. We study problems that arise in the context of covering certain geometric
objects called seeds (e.g., points or disks) by a set of other geometric objects called cover
(e.g., a set of disks or homothetic triangles). We insist that the interiors of the seeds and the
cover elements are pairwise disjoint, respectively, but they can touch. We call the contact
graph of a cover a cover contact graph (CCG).

We are interested in three types of tasks, both in the general case and in the spe-
cial case of seeds on a line: (a) deciding whether a given seed set has a connected CCG,
(b) deciding whether a given graph has a realization as a CCG on a given seed set, and
(c) bounding the sizes of certain classes of CCG’s.

Concerning (a) we give efficient algorithms for the case that seeds are points and
show that the problem becomes hard if seeds and covers are disks. Concerning (b) we show
that this problem is hard even for point seeds and disk covers (given a fixed correspondence
between graph vertices and seeds). Concerning (c) we obtain upper and lower bounds on
the number of CCG’s for point seeds.

1 Introduction

Koebe’s theorem [Koe36, PA95], a beautiful and classical result in graph theory, says that
every planar graph can be represented as a coin graph, that is, a contact graph of disks in
the plane. In other words, given any planar graph with n vertices, there is a set of n disjoint
open disks in the plane that are in one-to-one correspondence to the vertices such that a pair
of disks is tangent if and only if the corresponding vertices are adjacent. Conversely, every
coin graph is obviously planar since if we connect the centers of touching disks by straight-
line edges, no two edges intersect. Koebe’s theorem has been rediscovered several times, see
∗A preliminary version of this paper appeared in: Proc. 15th International Symposium on Graph Drawing

(GD’07) [AdCC+08]. This research was partially supported by projects PAI FQM—0164, ORI MTM2008-
05866-C03-01, and grant WO 758/4-3 of the German Research Foundation (DFG).
†Universidad de Sevilla, Spain, {natienza, natalia, ccortes, vizuete, grima, almar, auxiliadora,

josera, preyes, jesusv, villar}@us.es
‡Departamento de Matemática Aplicada, Facultad de Informática, Universidad Politécnica de Madrid,

Spain, gregorio@fi.upm.es
§Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany,

noellenburg@kit.edu
¶Institut für Informatik, Universität Würzburg, Germany, www1.informatik.uni-wuerzburg.de/en/staff

JoCG 3(1), 102–131, 2012 102

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jocg.org/
http://www1.informatik.uni-wuerzburg.de/en/staff/wolff_alexander/

Journal of Computational Geometry jocg.org

the survey of Sachs [Sac94]. Collins and Stephenson [CS03] give an efficient algorithm for
numerically approximating the radii and locations of the disks of such a representation of a
planar graph. Their algorithm relies on an iterative process suggested by Thurston [Thu80].

Since Koebe there has been a lot of work in the graph-drawing community dedicated
to the question which planar graphs can be represented as contact or intersection graphs of
which geometric object. Intersection graphs, especially of disks, are used as graph models in
multiple application areas, for example, wireless communication networks [Hal80, CCJ90].
Recently, Chalopin and Gonçalves [CG09] showed that, similarly to Koebe’s characteriza-
tion, every planar graph is the intersection graph of line segments in the plane.

On the other hand, there has been a lot of work in the geometric-optimization
community dedicated to the question how to (optimally) cover geometric objects (usually
points) by other geometric objects (for example, convex shapes, disks, or annuli). Typical
objectives are minimizing the (maximum/total) radius of a set of k disks to cover n input
points. Alternatively, the disk size might be fixed and the number of disks used to cover the
input points is to be minimized. Applications of such covering problems are, for example,
geometric facility location problems [RT90, Wel91].

In this paper we combine the two previous problems: we are given a set of pairwise
disjoint geometric objects called seeds (for example, points or disks) that must be covered
by other geometric objects called covering objects (for example, disks or triangles) whose
interiors are pairwise disjoint. Unlike in geometric optimization, each of our covering objects
must contain exactly one of the seeds. We are not interested in minimizing or maximizing
the sizes of the covering objects; instead we want their contact graph to satisfy some graph-
theoretic property (like connectivity) or to be isomorphic to a given graph. Compared to
previous work on geometric representation of graphs, we are more restricted in the choice
of our representatives by the requirement to cover the set of seeds.

Model. Given a set S = {p1, p2, . . . , pn} of pairwise disjoint seeds in R2 of some type, a
cover of S is a set C = {C1, C2, . . . , Cn} of closed objects of some type (also called cover
elements) with the property that there is a bijection between seeds and cover elements such
that each Ci contains its seed pi and any two cover elements are allowed to intersect only
on their boundaries. Figure 1b depicts a disk cover of the disk seeds in Figure 1a. The
cover contact graph (CCG) induced by C is the contact graph of the elements of C, that is,
the graph G = (C, E) with E = {{Ci, Cj} ⊆ C | Ci 6= Cj , Ci ∩ Cj 6= ∅}. In other words,
two vertices of a CCG are adjacent if the corresponding cover elements touch, that is, their
boundaries intersect. Figure 1c depicts the CCG induced by the cover in Figure 1b. Note
that the vertices of the CCG are in one-to-one correspondence to both seeds and covering
objects. We consider seeds to be topologically open (except if they are single points). Then
the closures of two open seeds are allowed to touch. Note that we require cover objects
to be closed. This makes sure that a cover actually contains a point seed that lies on its
boundary. We call a CCG whose cover consists of disks a disk-CCG and in the case of
triangles a triangle-CCG.

In this paper, we investigate the following questions.

JoCG 3(1), 102–131, 2012 103

http://jocg.org/

Journal of Computational Geometry jocg.org

(a) Disk seeds (b) Disk cover of (a) (c) CCG induced by (b)

Fig. 1: Seeds, cover, and CCG.

Connectivity: Given a seed set, does it admit a (simply or bi-) connected CCG?

Realizability: Given a planar graph G and a set of seeds, can G be realized as a CCG
on the given seeds?

Enumeration: For a given number of vertices, how many graphs of a certain graph class
can be realized as a CCG?

Our focus in this paper is on the first two questions: connectivity and realizability.
We also consider an interesting restriction of the above problems where seeds and

cover elements must lie in the half plane R2
+ above and including the x-axis. Seeds are

additionally required to contain at least one point of the x-axis. In this restricted setting
we call the contact graph of a cover a CCG+. See Figures 11b and 13 for examples.

Our results. First, we consider arbitrary sets of point seeds in the plane; see Section 2.
Concerning connectivity we show that we can always cover a set of point seeds using disks or
using homothetic triangles such that the resulting CCG is 1- or even 2-connected. The two
algorithms run in O(n logn) worst-case time (1-connected CCG) and O(n2 logn) expected
time (2-connected CCG). Concerning realizability, we give some necessary conditions and
then show that it is NP-hard to decide whether a given graph can be realized as a disk-CCG
if the correspondence between vertices and point seeds is given. We also remark that there
is an upper bound on the number of planar graphs that are realizable as CCG’s.

Next, we consider the restriction where the seed set is a set of points on the x-axis;
see Section 3. We show that in this case 2-connectivity is easy: given any seed set on the
x-axis, we can realize the n-cycle as CCG and any n-vertex tree as CCG+. For the case
that the correspondence between seeds and vertices is given, we show how to decide, in
O(n logn) time, whether a given tree can be realized as a CCG+. Concerning enumeration,
we prove that the (n)-th Catalan number is a lower bound of the number of labeled trees
realizable as a CCG+ on an ordered seed set of cardinality 2n+ 1.

Finally, we consider disk and triangle seeds; see Section 4. We show that for homo-
thetic triangle seeds on the x-axis, there is always a connected triangle-CCG+ and that for
disk seeds it is already NP-hard to decide whether they admit a connected disk-CCG. The

JoCG 3(1), 102–131, 2012 104

http://jocg.org/

Journal of Computational Geometry jocg.org

hardness of the realization problem for point seeds and the enumeration results for points
remain to be true for disk seeds.

Related work. Abellanas et al. [ABH+06] proved that the following problem, which they
call the coin placement problem, is NP-complete. Given n disks of given varying radii and n
points in the plane, is there a way to place the disks such that each disk is centered at one
of the given points and no two disks overlap?

Abellanas et al. [AdCH+06] considered a related problem. They showed that given
a set of points in the plane, it is NP-complete to decide whether there are disjoint disks
centered at the points such that the contact graph of the disks is connected.

Given a pair of touching convex (or, more generally, star-shaped) cover elements,
we can draw the corresponding edge in a drawing of the CCG by a two-segment polygonal
line that connects the incident seeds and uses the contact point of the cover elements as
bend. This is a link to the problem of point-set embeddability. We say that a planar
graph G = (V,E) with n vertices is k-bend (point-set) embeddable if for any set P ⊂ R2 of n
points there is a one-to-one mapping from V to P such that the edges of G can be drawn as
non-crossing polygonal lines with at most k bends. Kaufmann and Wiese [KW02] showed
that (a) every 4-connected planar graph is 1-bend embeddable, (b) every planar graph is
2-bend embeddable, and (c) given a planar graph G = (V,E) and a set P of n points on a
line, it is NP-complete to decide whether G has a 1-bend embedding that maps V one-to-one
on P .

For a given correspondence between vertices and points, Pach and Wenger [PW01]
showed how to compute in O(n2) time a plane embedding of the given graph where each
vertex is represented by the corresponding point and each edge is represented by a polygonal
line with O(n) bends. They also showed that Ω(n) bends are needed in the worst case.

2 Seeds are Points in the Plane

In this section we study point seeds with arbitrary positions in the plane. If not stated
otherwise, our results hold for both disk covers and (homothetic) triangle covers. We start
with the connectivity problem.

2.1 Connectivity

It is known to be NP-hard to decide whether a given set of points can be covered by a
set of pairwise disjoint open disks, each centered on a point, such that the contact graph
of the disks is connected [AdCH+06]. In contrast to that result we give a simple sweep-
line algorithm that covers point seeds by (non-centered) disks or triangles such that their
contact graph is connected.

Theorem 2.1. Every set S of n point seeds has a connected CCG. Such a CCG can be
constructed in O(n logn) time and linear space.

JoCG 3(1), 102–131, 2012 105

http://jocg.org/

Journal of Computational Geometry jocg.org

Proof. We first sort the given seed set S by non-increasing ordinate. Let p1, . . . , pn be the
resulting sequence of points. Then we process the points in this order from top to bottom.
We cover p1 by a cover element C1 such that p1 is the bottommost point of C1. In case of
disk covers, C1 can have arbitrary size; in case of homothetic triangle covers, the triangle C1
must be large enough so that the “shadow” region defined by the top edge of C1 and two
rays through the top vertices that are parallel to the opposing triangle sides contains all
other seeds, see Figure 2. Now assume that k > 1 and that the first k− 1 points have been
covered such that the contact graph of their cover is connected. Then we cover pk = (xk, yk)
by an infinitesimally small cover element Ck and inflate Ck with pk as the bottommost point
until Ck eventually touches one of the previously placed cover elements. Figure 2 shows an
example with homothetic triangles as cover elements.

C1 C2

C3

C4

Fig. 2: Constructing a connected CCG by inflating triangles as cover elements. The size of the
first triangle C1 is selected so that its shadow contains all other seeds. Then three contact
types are possible: the top edge of the new triangle touches the bottom vertex of a previous
triangle (C4), the top right vertex touches a left edge (C3), or the top left vertex touches a
right edge (C2).

It is possible to do this construction by incrementally constructing an abstract
Voronoi diagram with respect to accordingly defined bisectors. It is not clear, however,
how to implement this in O(n logn) time. Instead we use the following simpler algorithms
for triangles and disks, respectively.

For triangles, it is easy to determine the size of the k-th triangle Ck given that
triangles C1, . . . , Ck−1 have been placed. The idea is that we maintain three data structures,
one for each type of collision during the afore-mentioned inflation step, see Figure 2. We
first precompute, in O(n logn) time and linear space, a data structure for so-called segment-
dragging queries [Mit92]. Given a fixed direction d and a wedge W with apex (0, 0), a data
structure for segment dragging yields, in O(logn) time, for a given query point p ∈ R2 the
first point hit by a line segment of direction d whose endpoints run from p along the edges
of the wedge W + p with apex p. This data structure gives us seeds that are hit by (the
relative interior of) the top edge of Ck (see C4 in Figure 2). It remains to determine the
first triangles that are hit by rays on which the top left and top right vertex of Ck travel
when we inflate Ck. This can be done by two simple ray-shooting data structures. Both
data structures can be implemented by dynamic balanced binary search trees since in each
of them all query rays have the same direction, and so do the segments that are potentially
hit. Thus we again have a query time of O(logn). Once a new triangle is added to the
cover, we insert the new left and right triangle edges to the search trees in O(logn) time.
Thus our algorithm for connected triangle-CCG’s runs in O(n logn) time and needs linear
space.

JoCG 3(1), 102–131, 2012 106

http://jocg.org/

Journal of Computational Geometry jocg.org

For disks we do a top-to-bottom sweep with a horizontal sweep line ` : y = c. As
before, let C1, . . . , Ck−1 be the disks that have already been placed, that is, whose south
poles lie on or above `. We maintain the lower envelope of functions f c1 , . . . , f ck−1, where f cj
is the locus of the centers of all disks that touch both disk Cj and the sweep line. It is
easy to see that f cj is the parabola whose focus is the center of Cj and whose directrix
is the horizontal line with y-coordinate c − rj , see Figure 3. Note that, given a new site
pk = (xk, yk) on the sweep line, the largest disk with south pole pk that does not intersect
the interior of any previously placed disk has center (xk, ỹk) and radius ỹk − c, where
ỹk = min1≤j<k f

c
j (xk). This disk can easily be computed given the lower envelope.

y = c

C1

C2C3

p4

C4
f c
3

f c
2

r3

focus

directrix
r3

Fig. 3: Finding a covering disk C4 for seed p4 that touches a previous disk. The center of C4 lies
on the lower envelope of the parabolas f c

1 , f c
2 , and f c

3 . Focus and directrix of f c
3 are shown.

Our sweep is very similar to Fortune’s sweep [For86] for computing the Voronoi
diagram of weighted points (or disks). The only difference is that we do not know the weight
of a point p beforehand; we compute the weight of p (by querying the lower envelope) as
soon as we reach p. The handling of changes in the lower envelope and the insertion of
new parabolas are essentially the same as in Fortune’s sweep. Thus the running time of
O(n logn) and the linear space consumption carry over.

In fact, even a biconnected CCG for any set of n point seeds exists as the following
theorem assures.

Theorem 2.2. Any set S of n point seeds has a biconnected CCG. Such a CCG can be
constructed in O(n2 logn) time using linear space.

Proof. We first consider disks as cover elements. Let D1, D2, and D3 be three congruent
disks that touch each other. They delimit a pseudo-triangular shape R. Choose the three
disks such that each diskDi contains a unique point pi ∈ S and such that S\{p1, p2, p3} ⊂ R,
see Figure 4a.

In order to cover the remaining points, we assume that disks D4, . . . , Di−1 have
been placed such that each covers a unique point of S and touches two previously placed
disks, see Figure 4b. Thus the contact graph of D1, . . . , Di−1 is biconnected. Let Ri be
a connected component of R \

⋃i−1
j=4Dj that contains at least one uncovered point. We

use Fortune’s sweep [For86] to compute the combined Voronoi diagram of the disks incident
to Ri and the points in S∩Ri. This takes O(n logn) time and the resulting Voronoi diagram
has complexity O(n). The part of the Voronoi diagram in Ri is the locus of the centers of

JoCG 3(1), 102–131, 2012 107

http://jocg.org/

Journal of Computational Geometry jocg.org

D1 D2

D3

p1

p3

R
p2

(a)

D1 D2

D3

p1

p3

p4
D4

R7

p5
p6

p2

(b)

D1 D2

D3

p1
p2

p3

p4

p7

p8

D8

D4
D7

R9

p5
p6

(c)

Fig. 4: Three steps in the construction of a biconnected disk-CCG.

all disks that lie in Ri and touch ∂Ri ∪ (S ∩ Ri) in at least two points, where ∂Ri is the
boundary of Ri.

Now we make a simple but crucial observation: if D is a disk that (a) lies in Ri,
(b) contains a seed s ∈ S ∩ Ri on its boundary, and (c) touches two of the previous disks,
then D is centered at a vertex of the Voronoi diagram. Thus a disk D? fulfilling (a)–(c) can
be found in linear time and, by construction, does not contain any point of S in its interior.
(If, by any chance, all such disks touch more than one point of S, we re-start the whole
computation with three slightly wiggled initial disks D1, D2, and D3. Then the probability
of this degeneracy becomes 0.) Now set Di = D?, and repeat the process until all seeds are
covered. This takes O(n2 logn) time in total.

The case of triangles can be handled analogously. Choosing any reference point in
the triangular shape, a structure similar to the medial axis can be computed in O(n logn)
time and updated in O(n) time in each of the n− 3 phases.

2.2 Realizability

In this section we first give two necessary conditions that a planar graph must satisfy in order
to be realizable as a disk-CCG on a given seed set. We show that there is a plane geometric
graph on six vertices that cannot be represented as disk-CCG. Finally we investigate the
complexity of deciding realizability.

To formulate our necessary conditions for realizability, we define the hyperinfluence
graph on the given seed set S. This graph is inspired by the sphere-of-influence graph
defined by Toussaint [Tou88] (see also [HJLM93, JLM95] for more results on sphere-of-
influence graphs). Given a seed set S and a point p ∈ S, let the influence area of p be
the closure of the union of all empty open disks D (that is, D ∩ S = ∅) that are centered
at vertices of the Voronoi region of p, see Figure 5a. We call the intersection graph of the
influence areas of all seeds in S the hyperinfluence graph of S and denote it by HI (S), see
Figure 5b.

Proposition 2.1. Let S be a set of point seeds and let G be a graph that is realizable as a
disk-CCG on S. Then

JoCG 3(1), 102–131, 2012 108

http://jocg.org/

Journal of Computational Geometry jocg.org

p

p6

p7

p1

p2

p3p4

p5

(a) Influence area of seed p.

p
p6

p7

p1

p2

p3p4

p5

(b) Hyperinfluence graph HI (S).

Fig. 5: Influence area and hyperinfluence graph for seeds S.

(i) G is a subgraph of HI (S), and

(ii) G has a plane drawing where each vertex is mapped to a unique seed in S and each
edge is drawn as a polygonal line with at most one bend.

Proof. Both properties are straightforward to obtain. Property (i) is based on the observa-
tion that any possible covering disk of p is contained in the influence area of p. Thus, if the
covering disks of two seeds are in contact, their influence areas intersect.

Property (ii) is obtained by representing each edge of the CCG by two line segments
that connect the seeds with the point of tangency of the covering disks.

p1 p2

Fig. 6: A non-realizable graph. The influence areas of p1 and p2 do not intersect and thus no two
covering disks of p1 and p2 can touch.

While it is NP-complete to verify property (ii) of Proposition 2.1 even if all seeds lie
on a line [KW02], property (i) of Proposition 2.1 gives us a way to show non-realizability
of certain geometric graphs, for example, the graph depicted in Figure 6. The edge p1p2 of
the graph cannot be realized in a CCG with the given seeds because the shaded influence
areas of p1 and p2 do not intersect. This graph is thus an example of a non-realizable graph
with eight vertices. On the other hand it is easy to see that any three-vertex graph can be
realized on any three-point seed set. Now it is interesting to ask for the least n for which
there is a plane n-vertex geometric graph G that cannot be realized as CCG.

JoCG 3(1), 102–131, 2012 109

http://jocg.org/

Journal of Computational Geometry jocg.org

Proposition 2.2. There is a set S of six point seeds in convex position such that their
Delaunay triangulation is not representable as a CCG.

f

a

b c

d

e f

a

b c

d

e

Da
Dd

Da Dd

Dc

Df...
...

...
...

Fig. 7: Non-realizable Delaunay triangulation of six points in convex position.

Proof. Let S = {a, b, c, d, e, f} be six points in convex position that are connected by the
edges of their Delaunay triangulation as shown in Figure 7. Since the points a and d are
connected, the covering disks Da and Dd of the points a and d must touch each other in
one of two ways. Either the tangent point of the disks lies inside the convex hull of S (left
part of Figure 7), or Da and Dd are very large and lie to the left of a and to the right of d,
in which case they touch far above or below S as indicated in the right part of Figure 7.
In the first case, we can either find a disk covering c that touches Da and Dd or a disk
covering f that touches Da and Dd, but not both at the same time. In the second case, we
can assume that the boundaries of Da and Dd are two almost parallel lines in the vicinity
of the six points. The disks Dc and Df covering c and f must both touch Da and Dd. If,
however, c and f are close enough to a and d then Dc and Df cannot be disjoint.

So we have seen that there are pairs of (quite small) graphs and seed sets such that
the graph cannot be realized on the seed set as disk-CCG. A natural question to ask is
whether a given graph is realizable as CCG on a given seed set or not. Of course Koebe’s
theorem [Koe36] guarantees that, for any planar graph G, there is a seed set S such that
it is possible to realize G on S. If the seeds and the vertex–seed correspondence are given,
however, the problem becomes NP-hard as the next theorem shows.

Theorem 2.3. Given a set S of points in the plane and a planar graph G = (V,E) with
a bijection between V and S, it is NP-hard to decide whether G is realizable as disk-CCG
on S.

Proof. We show the NP-hardness by reduction from Planar3Sat, which is NP-hard [Lic82].
Planar3Sat is defined as follows. We are given a planar bipartite graph Hϕ, the variable-
clause graph, corresponding to a planar Boolean formula ϕ in conjunctive normal form with
three literals per clause. The vertices in one part of the bipartition represent the variables

JoCG 3(1), 102–131, 2012 110

http://jocg.org/

Journal of Computational Geometry jocg.org

of ϕ, and the vertices in the other part correspond to the clauses of ϕ. Each clause is con-
nected to the three variables that it contains. Such a graph Hϕ can be drawn on a grid of
polynomial size with all variable vertices placed on a horizontal line and the clause vertices
connecting in a comb-shaped manner from above or below that line [KR92]. Similar to a
hardness proof of Cabello et al. [CDR07], we use a slanted layout of Hϕ, where all angles
are multiples of 60 degrees.

Next, we construct gadgets for variables and clauses as seeds and edges on a trian-
gular grid such that the resulting graph can be realized as CCG if and only if the Boolean
formula ϕ is satisfiable. One basic ingredient are linear chains of adjacent points, each of
which can be covered by a disk from one of two classes of disks depending on the truth
value encoded by the respective chain structure. These chains will be used for the variables
and for the literal connections to the clauses. The structure of the chains is exemplified in
Figure 8 which shows two chain links and the underlying graph. The two desired covering
disks Dtrue

p and Dfalse
p of the central point seed p are drawn in solid black and gray, respec-

tively. They both touch the covering disks of the two stopper elements s and s′ above and
below p as required by the edges ps and ps′.

To see how a stopper element works, consider point s in Figure 8. The positions
of the singleton seed q and the seed r, which is adjacent to s, force the centers of all valid
covering disks to the left of p to lie within a small region Itrue

p . This region can be made
arbitrarily small by slightly shifting the seeds of the stopper element. The same holds
for I false

p and disks to the right of p.

p

I falsepq
r

Itruep

s′

Dtrue
p Dfalse

p

p

q

q′

r

r′

s

s′

s

Fig. 8: Two chain links (black and gray) and the graph structure around p

Variable gadgets. By putting chain links together such that they touch their neighbors, we
construct variable gadgets as shown in Figure 9. Each variable is represented by a chain of
pairs of successive left and right turns of 60 degrees. Note that the turns of 60 degrees adhere
to the grid. Once the covering disk of the first seed is fixed to one of the two possibilities,
all successive disks in that chain are fixed because they have to touch their predecessor as
well as their two stopper elements. We define the black variable configuration in Figure 9a
as true and the gray one as false. At the bends of the variable gadget, literal chains can
connect from above or below as depicted. If a literal has the value false, the covering disks
of the literal chain are pulled towards the variable (see the black configuration of the lower
literal chain). Otherwise both configurations of the literal chain are possible and we may

JoCG 3(1), 102–131, 2012 111

http://jocg.org/

Journal of Computational Geometry jocg.org

choose the one where the covering disks are pushed away from the variable chain (see the
black configuration of the upper literal chain). Figure 9b shows two close-up views of the
truth value transfer for a negative literal connecting to the variable gadget in its true state.
(Note that for positive literals, the three special seeds at the end of the literal chain are
mirrored at the main axis of the literal chain.) The left-hand side of Figure 9b is an invalid
configuration because one of the final disks of the literal chain intersects a covering disk
of the variable gadget. Only the configuration on the right-hand side, where the covering
disks are pulled towards the variable gadget and hence encode the value false correctly, is
valid.

¬x

x

false

true

· · ·

..
.

variable
gadget
for x

(a) Gadget for a variable x in true state (black cover) and in false state (gray cover).

¬x

x

false

true

· · ·

..
.

(b) Close-up view of the value transfer from variable chain to literal chain (see selection box in subfigure (a)).
The left configuration has an invalid disk overlap; the right configuration is valid.

Fig. 9: Variable gadget

Clause gadgets. Figure 10 depicts the clause gadget. The three literal chains are meeting
symmetrically at angles of 120 degrees. At the end of each chain, the graph G contains a
triangle. Hence, the corresponding seeds must be covered by three disks such that each pair

JoCG 3(1), 102–131, 2012 112

http://jocg.org/

Journal of Computational Geometry jocg.org

of disks touches. If a literal evaluates to true, that is, the covering disks of the literal chain
are pushed towards the clause gadget, then the last disk of the chain touches the disks of the
other two seeds in the vicinity of their position. In that case, the overall area used by the
three disks of the triangle is relatively small (see the literal gadget on the right-hand side
in Figure 10a). If, on the other hand, the literal evaluates to false, the disks of the literal
chains are pulled towards the variable gadget. Hence, the last disk of the chain is pulled
away from the other two seeds of the triangle; these two disks, consequently, need to grow
strongly. Figure 10 shows that two false literals can still be accommodated (Figure 10a),
whereas three false literals clearly cannot (Figure 10b).

false

false

true

(a) Clause evaluates to true.

false

false

false

(b) Clause evaluates to false.

Fig. 10: Clause gadget.

Reduction. From the construction of the gadgets we have the following:

(i) Each variable gadget realizes its respective subgraph by one of two combinatorially
different configurations, which represent the truth values true and false.

(ii) Each literal gadget similarly realizes its subgraph in one of two configurations; if the
literal evaluates to false, only one configuration is possible (otherwise two disks would
intersect in their interior), if the literal evaluates to true, both options are possible.

(iii) Each clause gadget is a space-restricted area that can accommodate the covering disks
of at most two false literal gadgets, otherwise there will be some disk overlap.

This concludes the proof of the reduction since we have shown that the constructed graph
can be realized on the constructed seeds if and only if the corresponding planar Boolean
3Sat formula is satisfiable. We have embedded all seeds, except those belonging to stopper
elements, on a hexagonal grid. By refining this grid and slightly perturbing the seeds of
stopper element we can achieve that all seeds are on a grid. This grid has polynomial size

JoCG 3(1), 102–131, 2012 113

http://jocg.org/

Journal of Computational Geometry jocg.org

since the variable-clause graph of ϕ is embeddable on a grid whose size is quadratic in the
length of ϕ. Hence the reduction takes polynomial time.

2.3 Enumeration

Every graph that can be realized as CCG is planar. Hence, the number of n-vertex graphs
that can be realized as CCG is upperbounded by the number gn of n-vertex planar graphs.
The asymptotic growth of gn has been determined by Gimenez and Noy [GN09]. They show
that

gn ∼ g · n−7/2γnn!

where g ≈ 0.497 · 10−5 and γ ≈ 27.2 are constants given by explicit analytic expressions.

3 Seeds are Points on a Line

In this section, we restrict the seeds to be points on the x-axis and consider covers in the
plane R2 as well as in the upper half plane R2

+. Since the connectivity question is answered
by our realizability results, we focus on the latter problem and then give some enumeration
results.

3.1 Realizability

We consider the following four questions. Note that seeds now correspond to real numbers,
so we can use the natural order < in R to compare them.

Q1. Given a graph class C (for example, the class of trees), does it hold that for any seed
set S there is a graph in C that is realizable as CCG or CCG+ on S?
We show: This is true for the combinations (cycles, CCG) and (trees, CCG+), both
for disk and triangle covers.

Q2. Given a graph class C, does it hold that for any graph G in C there is a seed set S such
that G can be realized as CCG or CCG+ on S?
We show: This is true for the combination (trees, CCG+), both for disk and triangle
covers, where the triangles must have a unique bottom vertex.

Q3. Let C be a fixed graph class. Given a graph G ∈ C with a labeling λ : V → {1, . . . , n}
of its vertices, is there a sequence s1 < · · · < sn of seeds on the x-axis and a realization
of G as CCG or CCG+ that maps each vertex v to the corresponding seed sλ(v)?
We show: There is an O(n logn)-time decision algorithm for the combination (trees,
disk-CCG+).

Q4. Let C be a fixed graph class. Given a seed set S and a graph G = (V,E) ∈ C with
a one-to-one correspondence between S and V , can G be realized on S as CCG or
CCG+?

JoCG 3(1), 102–131, 2012 114

http://jocg.org/

Journal of Computational Geometry jocg.org

We show: There is an O(n logn)-time decision algorithm for the combination (trees,
triangle-CCG+). Even if the correspondence between seeds and vertices is not fixed,
there are pairs of seed sets and trees that cannot be realized as triangle-CCG+.

The above questions vary in the amount of information they require about the seed set,
ranging from no information (Q2) via a fixed order (Q3) to complete information (Q1
and Q4).

Question Q1. We start with question Q1, which also answers the connectivity problem.

Proposition 3.1. Let S be a set of n point seeds on a line, then

(i) the n-vertex cycle can be realized as CCG on S, and
(ii) there is a tree T (S) that can be realized as CCG+ on S.

Proof. (i) Let S be ordered from left to right and let a, b, c, and d be the first, second,
second last, and last point in S, see Figure 11a. Consider the one-dimensional Voronoi
diagram of S. We shift the first Voronoi point between a and b to b and the last point
between c and d to c. The resulting Voronoi points are marked by vertical dotted segments
in Figure 11a. Each finite cell of the resulting diagram is a segment of the x-axis and
contains a seed. We cover the seed by a disk whose diameter is the segment. The resulting
disks are shaded in dark gray in Figure 11a. Clearly each seed in S \ {a, d} is now covered
by a disk that touches the disk of its predecessor and the disk of its successor (where those
exist). Choose a point x on the perpendicular bisector ` of a and d such that all (closed)
disks lie in the interior of quadrangle (a, x, d,−x). Cover a and d by two congruent disks Da

and Dd that touch the quadrangle in a and d, respectively, and touch each other on `. These
two disks (light gray in Figure 11a) do not touch any of the other n− 2 disks yet. In order
to achieve this, we enlarge the disk Db of b by moving the left endpoint of its diameter
towards a until Db touches Da. The disk Dc of c is enlarged analogously towards d. This
closes the cycle.

x

a d

b c

Da Dd

`

(a) Any cycle can be realized as CCG.

CCG+ of S

tree T (S)

r

Dr

(b) tree T (S) is realizable as CCG+.

Fig. 11: Graphs that can be realized on a given one-dimensional n-point seed set S.

A similar construction that first connects the points from b to c by a path and then
closes the cycle from a to d can be used for homothetic triangles as cover elements.

JoCG 3(1), 102–131, 2012 115

http://jocg.org/

Journal of Computational Geometry jocg.org

(ii) We pick any seed r as root and cover it by a disk Dr whose projection on the
x-axis contains all seeds. Then we grow a disk from each seed until it touches one of the
previously placed disks, see Figure 11b. A cycle can appear only if a new disk accidentally
touches more than one previously placed disk. In this case, we increase the radius of Dr

by a randomly chosen ε > 0 and repeat the process. Then the probability of constructing
a tree is 1.

For triangular cover elements we start with a large triangle placed with its bottom-
most vertex at the leftmost seed such that its projection on the x-axis contains all seeds
(apply the same idea from right to left if the triangle is tilted to the left). Now we iteratively
grow a triangle from the next seed until it touches one of the earlier triangles with its top
left vertex. Note that the top right vertex can never touch a previous triangle and hence
the CCG+ obtained is a tree. In the special case of triangles with a horizontal bottom edge
we always place the bottom left vertex at the seed and grow the triangle until the bottom
right vertex touches the next seed in order to obtain a path (and thus a tree).

Question Q2. In terms of this paper, a coin graph is obtained when seeds are points and
cover elements are disks centered at seeds, and thus Koebe’s theorem establishes that it is
always possible to choose seeds in the plane such that any given plane graph is realizable
as a coin graph on them. We have seen in Proposition 3.1 that any cycle is realizable as a
CCG on any seed set on a line. One can ask whether a Koebe-type theorem also holds in
this restricted setting. Kaufmann and Wiese [KW02] have shown, however, that there is a
plane triangulated 12-vertex graph (see Figure 12) that cannot be drawn with at most one
bend per edge if vertices are restricted to a line. Now Proposition 2.1 (ii) implies that this
graph is not realizable as CCG if the seeds lie on a line. On the positive side, we can show
that a Koebe-type theorem holds for the combination (trees, CCG+). This is an answer to
Q2 and in a way dual to Proposition 3.1 (ii). See Figure 13 for a sketch of our recursive
construction.

Fig. 12: Kaufmann–Wiese graph [KW02].

v r1r2r3

D0

D1

D2

D3

`0`1`2`3

R2 R1

10

Fig. 13: Constructing a seed set S(T).

Proposition 3.2. For any tree T there is a seed set S(T) ⊂ R such that T is realizable as
CCG+ on S(T).

Proof. Our construction is recursive. We traverse the vertices of T in breadth-first order.
We map the root v of T to 0 and cover it by a disk D0 of radius 1, see Figure 13. If v has

JoCG 3(1), 102–131, 2012 116

http://jocg.org/

Journal of Computational Geometry jocg.org

no children, we are done. Otherwise let r1, . . . , rk be the children of v. Define `0 to be the
line x = 1. Note that `0 touches D0. Now for each i = 1, . . . , k do the following. Place
the largest disk Di that fits into the region delimited by D0, the x-axis, and the line `i−1.
Map ri to the lowest point of Di, that is, the point where Di touches the x-axis. Note
that Di also touches `i−1 on its right-hand side. Define `i to be the left vertical line that
touches Di and continue with the next child of v. Figure 13 shows the placement of the
seeds for the three children r1, r2, r3 of v and their covering disks D1, D2, D3.

It is not hard to see that we can place an arbitrary number of children of v in this
way. By construction, the disks of any two children of v are disjoint, and they all lie in
the region R0 delimited by D0, `0, and the x-axis. For i = 1, . . . , k we define the region Ri
delimited by Di, `i−1 and the x-axis. These regions are shaded in light gray in Figure 13.
Each of them is similar to R0. Thus we can recursively repeat the process of placing the
children of v in R0 for the children of r1, . . . , rk in the respective regions R1, . . . , Rk. These
regions are pairwise disjoint, so the disks of two different grandchildren of v do not intersect.

The same idea can also be used to show the result for cover elements that are
homothetic triangles with a unique bottom vertex.

Question Q3. In Proposition 3.2 above, we had complete freedom to choose the seeds.
Now we turn to question Q3, where we are not just given a tree, but also an order of its
vertices that must be respected by the corresponding seeds. Kaufmann and Wiese [KW02]
have investigated a related problem. They showed that it is NP-complete to decide whether
the vertices of a given (planar) graph can be put into one-to-one correspondence with a
given set of points on a line such that there is a plane drawing of the graph with at most
one bend per edge. We call such a drawing a 1d-1BD. If additionally all bends lie on one
side of the line, we call the drawing a 1d-1BD+. Note that a 1d-1BD of a graph G can be
seen as a two-page book embedding [CLR87], where the edges drawn below the line that
contains the vertices (called the spine in book embeddings) correspond to edges on one
page while the edges above the spine correspond to edges on a second page. Similarly, a
1d-1BD+ of G can be considered as a one-page book embedding.

Note that the hardness result of Kaufmann and Wiese does not yield the hardness
of the one-dimensional CCG realizability problem since not every graph that can be one-
bend embedded on a set of points on a line is realizable as CCG, let alone as CCG+. Our
next result explores the gap between Kaufmann and Wiese’s one-dimensional embeddability
problem and the situation in Proposition 3.2.

More formally, given an n-vertex tree T and a (bijective) labeling λ : V → {1, . . . , n}
of its vertices, we say that T is λ-realizable (as CCG, CCG+, 1d-1BD, 1d-1BD+) if there is
a sequence s1 < · · · < sn of seeds in R1 and a realization of T (as CCG, CCG+, 1d-1BD,
1d-1BD+) that maps each vertex v to the corresponding seed sλ(v).

In order to obtain a characterization of trees that are λ-realizable as CCG+, we
need the following definition. Given a graph G = (V,E) with vertex labeling λ, a forbidden
pair is a pair of edges

{
{a, b}, {c, d}

}
such that λ(a) < λ(c) < λ(b) < λ(d). Note that it is

impossible to embed the edges of a forbidden pair simultaneously above the x-axis.

JoCG 3(1), 102–131, 2012 117

http://jocg.org/

Journal of Computational Geometry jocg.org

Theorem 3.1. For a λ-labeled tree T , the following statements are equivalent:

(i) T is λ-realizable as a CCG+.
(ii) T is λ-realizable as a 1d-1BD+.
(iii) T does not contain any forbidden pair.

Proof. We first show that (i) and (ii) and then that (ii) and (iii) are equivalent.
(i) ⇒ (ii): Given a λ-realization of T as CCG+ on some seed set S ⊂ R1, we can

use the idea of Proposition 2.1 (ii) to get a one-bend embedding in R2
+ on the same seed

set by drawing each edge as the two-segment polyline from the first seed via the point of
tangency of the corresponding covering disks to the second seed.

(ii) ⇒ (i): Now we are given a λ-realization of T as 1d-1BD+ on some seed set
S ⊂ R1. We say that v is a free vertex of T if T has no edge {u,w} with λ(u) < λ(v) < λ(w).
Note that T has at least two (but potentially more) free vertices, namely those with λ-values
1 and n. Pick any free vertex v as root of T . Represent v by a seed at the origin and
cover that seed by the unique disk D0 of radius 1 in R2

+ touching the origin. The root v
partitions T \ {v} into two (possibly empty) parts. The vertices in the right part have
λ-values greater than λ(v), and the vertices in the left part, have λ-values less than λ(v).
Let R0 and R′0 be the two regions delimited by the x-axis, D0, and the vertical lines x = 1
and x = −1, respectively.

Now we place all seeds and the cover of the right part and the left part in R0 and R′0,
respectively. Let the children of v in the right part be r1, . . . , rt ordered by decreasing λ-
value. We place them from right to left as in the proof of Proposition 3.2 (see Figure 13),
but with tiny gaps in between the left vertical tangency line of disk Di and the right vertical
tangency line of Di+1 for i = 1, . . . , t − 1. The children l1, . . . , lt′ of v in the left part are
defined and placed symmetrically (with respect to the line x = 0).

From the 1d-1BD+ drawing of T we obtain that each subtree Tu rooted at a de-
scendant u of a vertex v forms an interval in the sequence of the λ-values: Assume to the
contrary that there is a descendant u of v, a non-descendant w of u, and two vertices u′
and u′′ in Tu with λ(u′) < λ(w) < λ(u′′). Then w cannot be a free vertex in Tu ∪ {w}
since Tu is connected. Hence, either T is disconnected or the 1d-1BD+ of T is not plane,
both of which is a contradiction.

Next we show that each child u of the root v is a free vertex in the subtree Tu rooted
at u. Assume to the contrary that there are two descendants w and w′ of u connected by
an edge {w,w′} such that λ(w) < λ(u) < λ(w′), that is, u is not free in Tu. But since we
know that the subtree Tu forms an interval in the λ-values of T and that {v, u} is an edge
in T it follows that the edges {v, u} and {w,w′} must cross, which is a contradiction. So u
is indeed a free vertex in Tu and we can recurse for each child u of v using the region defined
by the disk of u, its vertical tangents, and the x-axis.

(ii) ⇒ (iii): Trivial.
(iii) ⇒ (ii): We map each vertex v of T to the seed λ(v) ∈ R1. Let all edges be

directed from left to right with respect to the seed ordering on the x-axis and let vi (i =
1, . . . , n) be the vertex in T that is mapped to seed λ(vi) = i. We insert the edges iteratively

JoCG 3(1), 102–131, 2012 118

http://jocg.org/

Journal of Computational Geometry jocg.org

by increasing order of the source vertices. For each i = 1, . . . , n we draw any outgoing
edge {vi, vj} as the two-segment polyline whose bend is placed at position (i+1/2, (j−i)/2i).
Figure 14 shows an example of this construction. Clearly, all edges with the same source
do not intersect (except at their common vertex). It remains to show that none of the
previously inserted edges is intersected by a new edge {vi, vj}. Since there are no forbidden
pairs, it holds that for any previously inserted edge {vk, vl} and the current edge {vi, vj},
either the four seeds are ordered as k < l ≤ i < j, in which case the two edges obviously do
not intersect, or they are ordered as k < i < j ≤ l. The slope of the right leg of {vk, vl} in
the drawing is

− 1
2k ·

l − k
l − k − 1/2 < − 1

2k

and the slope of the right leg of the new edge vivj is

− 1
2i ·

j − i
j − i− 1/2 ≥ −

1
2i−1 .

Since k ≤ i− 1 this means that the right leg of any previously inserted edge is steeper than
the right leg of {vi, vj}. Moreover, the bend of any previously inserted edge is to the left
of i. Hence edge {vi, vj} does not intersect any other edge when it is inserted. Once all
edges are drawn, we have found a valid 1d-1BD+ for T .

v1

1

2

3

v2 v3 v4 v5 v6 v7

Fig. 14: Incremental 1d-1BD+ drawing for a tree without forbidden pairs.

Given the tree, statement (iii) can be checked in O(n logn) time using an interval
tree, therefore we immediately obtain the following corollary.

Corollary 3.1. Given a λ-labeled tree T , we can decide in O(n logn) time whether T is
λ-realizable as CCG+.

Question Q4. Now we are given a set S of seeds, a tree T = (V,E), and a bijection
between S and V that assigns each vertex to a seed. Our aim is to device a decision
algorithm for the realizability of T as a triangle-CCG+ on S.

We call a family of homothetic triangles V-shaped if each triangle is symmetric to
a vertical line and its bottommost vertex is unique. In the following, we will consider only
V-shaped triangles. First, note that there are pairs of trees and seed sets for which the

JoCG 3(1), 102–131, 2012 119

http://jocg.org/

Journal of Computational Geometry jocg.org

answer to question Q4 is negative—even if the mapping between vertices and seeds is not
fixed in advance.

Observation 3.1. There is a complete binary tree T and a seed set S ⊂ R with |S| = |V (T)|
such that T is not realizable as a triangle-CCG+ on S.

Proof. Figure 15 shows a complete binary tree T on seven vertices and the seven-point seed
set S = {a(0), b(2), c(5), d(11), e(13), f(16), g(33)} ⊂ R. A case distinction on the seed that
represents the root vertex 1 shows that it is not possible to find a representation of T as
triangle-CCG+ on S. The example in Figure 15 shows the case where seed g represents the
root. In this case, any two covers of points in S \ {g} that touch the covering triangle of g
will overlap, even the covering triangles of the most distant seeds a and f . Hence, if g is
the root, it is impossible to attach two children to the root. The other cases can be treated
similarly.

1

2 3

4 5 6 7 b c d e fa g

Fig. 15: Example of a binary tree T and a seed set S = {a(0), b(2), c(5), d(11), e(13), f(16), g(33)}
such that T is not realizable as triangle-CCG+ on S.

On the other hand, there is always a tree that can be realized on a given set of seeds
as Proposition 3.1 (ii) shows. Below we give an algorithm that decides this realizability
question in O(n logn) time. We say that a set of points on a line is in general position if no
point is equidistant to two other points, and we consider only such point sets. Furthermore,
we define the atomic V-shaped covering triangles for a given V-shaped family of triangles
and a pair of seeds {s, t} as the unique congruent triangles ∆s and ∆t placed at s and t
that touch each other in a triangle vertex, see Figure 16a. The concept of atomic triangles
can also be generalized to families of non V-shaped covering triangles. Here the atomic
triangles for two seeds {s′, t′} are the unique homothetic (but not necessarily congruent)
triangles ∆s′ and ∆t′ placed at s′ and t′ that touch in a triangle vertex, see Figure 16b.

s t

∆s ∆t

(a) V-shaped triangles.
s′ t′

∆t′
∆s′

(b) general case.

Fig. 16: Atomic triangles.

Algorithm 1 generates a cover that realizes a triangle-CCG+ on the given seeds.
Note that this graph is not unique as the choice of the seed u in line 6 is arbitrary. It is not
hard to see that the triangle-CCG+ obtained by Algorithm 1 is indeed a tree due to our
assumption that seeds are in general position. Algorithm 1 yields the following result.

JoCG 3(1), 102–131, 2012 120

http://jocg.org/

Journal of Computational Geometry jocg.org

Algorithm 1: V-shaped triangle-CCG+ on fixed seeds realizing a tree.
Input: seed set S with at least two seeds
Output: cover C of S

1 initialize L← S
2 initialize C ← ∅
3 while |L| > 2 do
4 {s, t} ← closest pair in L
5 {∆s,∆t} ← pair of atomic V-shaped triangles for {s, t}
6 choose u ∈ {s, t}
7 add ∆u to C
8 delete u from L

9 end
10 add both atomic triangles for L = {s, t} to C
11 return C

Theorem 3.2. Given a set S ⊂ R1 of seeds in general position and a tree T with a fixed
seed assignment for each vertex, we can decide in O(n logn) time whether T can be realized
as a V-shaped triangle-CCG+ on S.

Proof. We construct a cover that realizes T edge by edge. We start with T and an empty
cover C. Observe that the closest pair of seeds must form an edge of T , otherwise the
triangle-CCG+ of C would not be connected. Furthermore, one of the vertices of this edge
must be a leaf since only one of the atomic triangles can grow any further. Thus, we
determine the closest pair of seeds {s, t} and check whether {s, t} is a leaf edge of T . If this
is not the case, we answer “no”. Otherwise we choose the seed u in line 6 of Algorithm 1 as
the leaf vertex of edge {s, t}. Now Algorithm 1 adds the atomic triangle ∆u for u to C and
removes u from L in line 8. Accordingly, we delete the leaf u and its incident edge in T .
By induction the closest pair in L again corresponds to a leaf edge of the modified tree T
and we repeat the above process. If the construction terminates without answering “no” in
one of the iterations, it is clear that we have constructed a cover C that represents T as a
triangle-CCG+and we answer “yes”.

Finding the closest pair of seeds in line 4 is the time-critical part of Algorithm 1
and can be done by maintaining a priority queue that is initialized with the distances of all
neighboring seeds. Every time the closest pair is extracted we perform one deletion and one
insertion in O(logn) time in order to reflect the removal of the seed u. This takes O(n logn)
total time.

From Theorem 3.2 it is clear that Algorithm 1 can be used to generate all trees that
can be realized as triangle-CCG+ on S and thus we obtain the following corollary.

Corollary 3.2. Let S ⊂ R1 be a set of seeds in general position, let T (S) be the set of trees
that are realizable on S as CCG+ with homothetic V-shaped triangles as cover elements,
and letM(S) be the set of trees that can be obtained by Algorithm 1. Then T (S) =M(S).

JoCG 3(1), 102–131, 2012 121

http://jocg.org/

Journal of Computational Geometry jocg.org

Proof. As all triangle-CCG+’s obtained by Algorithm 1 are trees that are realizable on S it
remains to show that T (S) ⊆M(S). So consider any tree T ∈ T (S) and its realization as
triangle-CCG+. Since covering objects are V-shaped homothetic triangles the y-coordinate
of the contact point between two triangles is proportional to the distance of the covered
seeds. We sort the triangles in the realization of T in increasing order by their height and
impose the same order on the associated seeds. Then we apply Algorithm 1 under the
constraint that u (and the triangle ∆u) in line 6 is chosen according to this ordering of the
seeds. It follows that in each iteration the point covered by the lowest remaining triangle
in the given triangle-CCG+ of T is a point of the closest pair. Hence the algorithm is able
to reconstruct T .

Remark 3.1. Note that the restriction to V-shaped triangles in Theorem 3.2 and Corol-
lary 3.2 is made only for ease of presentation. The results for V-shaped triangle families
can immediately be extended to families of homothetic triangles whose top sides are par-
allel to the x-axis. Even in the case of families of arbitrary homothetic triangles with a
unique bottom vertex analogous results hold. Here, however, the priority queue to select
the next pair of neighboring seeds is not based on the seed distances but on the points in
time when a sweep line parallel to the top side of the triangles reaches the top edges of the
atomic triangles of neighboring seeds. So instead of finding the closest seed pair in line 4 of
Algorithm 1, the modified algorithm always picks the pair of seeds whose atomic triangles
are reached next by the sweep line (see Figure 17) and otherwise proceeds exactly the same.

r s t

`

Fig. 17: The sweep line ` reaches the top sides of the atomic triangles of {s, t} before reaching the
top sides of the atomic triangles of {r, s} although |r − s| < |s− t|.

3.2 Enumeration

The keys to enumerating the CCG’s and CCG+’s on sets of point seeds on a line are some
of the earlier results on realizability in this section. Again, our results depend on how much
information we have about the seeds.

As a consequence of Proposition 3.2, which states that for any tree T there is a seed
set on which T is realizable as CCG+, we know that the number of labeled trees that are
realizable as CCG+ (or CCG) is the total number of labeled trees. So, we get the following
result as a consequence of Cayley’s formula for the number of labeled trees.

Proposition 3.3. The number of labeled trees with n vertices realizable as CCG+ using
point seeds on a line is nn−2.

In our next enumeration result, we establish the link between completely parenthe-
sized factorizations of n natural numbers, which are described by the n-th Catalan number,

JoCG 3(1), 102–131, 2012 122

http://jocg.org/

Journal of Computational Geometry jocg.org

and labeled n-vertex trees that are realizable as CCG+ if the order of the seeds is given.
For a seed set S ⊂ R, let the rank of a seed s ∈ S be the index of s when S is in sorted
order.

Theorem 3.3. The n-th Catalan number
(2n
n

)
/(n + 1) is a lower bound on the number of

labeled (2n+ 1)-vertex trees that can be realized as CCG+ on some seed set S ⊂ R such that
vertex labels correspond to seed ranks.

Proof. Recall that in a full binary tree every vertex has either two children or no children.
We consider the interpretation of the n-th Catalan number as the number of full binary trees
with n internal vertices [Knu97]. A full binary tree with n internal vertices has n+ 1 leaves
and hence, 2n + 1 vertices in total. We label the vertices with the numbers 1, . . . , 2n + 1
inorder. Given this labeling, we place the corresponding disks recursively, starting with
the root, as in the proof of Proposition 3.1. For an example, see Figure 18. The seeds
are simply the points where the disks touch the x-axis. Since the inorder labeling has
the binary-search-tree property [CLRS09], it is clear that vertex labels correspond to seed
ranks.

1

2

3

4

5

1 2 3 4 5

Fig. 18: Every full binary tree can be realized as a CCG+ such that, for each vertex, its inorder
label and the rank of the corresponding seed coincide.

The (2n+ 1)-vertex path is not a full binary tree and thus not counted by the n-th
Catalan number, but it is still a tree realizable as a CCG+; for example, on the seed set
{1, 2, . . . , 2n+ 1}. This shows that the n-th Catalan number is indeed only a lower bound
as stated in Theorem 3.3.

Finally, we consider a fixed seed set S. In Corollary 3.2 and Remark 3.1 we es-
tablished that every tree that is realizable as triangle-CCG+ on S can be obtained by
Algorithm 1. In each of the n − 2 steps of this algorithm one of the triangles in the next
atomic triangle pair defined by the closest pair of points (for V-shaped triangles) or reached
by the sweep line (in the general case) is selected to be in the cover while the other one can
grow further. So, we obtain the following result.

Proposition 3.4. Given a set S ⊂ R of seeds in general position, the number of labeled
trees realizable on S as CCG+ with a fixed class of homothetic triangles (with unique bottom
vertex) as cover elements is 2n−2.

JoCG 3(1), 102–131, 2012 123

http://jocg.org/

Journal of Computational Geometry jocg.org

4 Seeds are Disks or Triangles in the Plane

In this section, we consider a different class of seeds, namely disks or homothetic triangles
in the plane. We cover them with the same kind of objects, that is, the covers for disks
are disks and the covers for homothetic triangles are homothetic triangles. If the seeds are
not points, the main difference is that the minimal size of each cover is bounded, so the
results differ in many cases from those obtained in the previous sections when the seeds
were points. We first consider seeds in R2

+ that are tangent to the x-axis (for triangles the
bottom vertex is on the x-axis) and then describe how to translate the results to general
seeds in the plane.

4.1 Connectivity

Unlike the connectivity results for points we can neither guarantee the existence of a con-
nected CCG+ for disk seeds tangent to the x-axis nor the existence of a connected CCG
for disk seeds in the plane, see Figure 19. For homothetic triangles, however, the situation
is different.

(a) Disks on the x-axis without connected
CCG+.

(b) Disks in the plane without connected CCG.

Fig. 19: Disk seeds that do not have a connected disk cover. Seeds are drawn in gray, covers in
white.

Proposition 4.1. Every seed set consisting of homothetic triangles touching the x-axis
from above has a connected triangle-CCG+.

Proof. We consider the family of parallel lines induced by the triangle sides opposite to
each bottom vertex of the seeds. Among these lines there is a line ` that contains all seed
triangles in its lower half space; see Figure 20. We cover the seed s` belonging to ` by a
big triangle such that the interval on the x-axis between the projections of the two vertices
of the top edge along the direction of the respective opposite triangle sides contains all
bottom vertices of the seeds, see the dotted projection lines in Figure 20. Then we inflate
a covering triangle for each of the seeds until it touches one of the previous triangles. Due
to the size of the first covering triangle, each inflated triangle eventually touches another
covering triangle. Hence, the CCG+ is connected.

Our method for computing connected triangle-CCG+’s can be extended to comput-
ing connected triangle-CCG’s, again for homothetic triangles.

Corollary 4.1. Every set of homothetic triangles has a connected triangle-CCG.

JoCG 3(1), 102–131, 2012 124

http://jocg.org/

Journal of Computational Geometry jocg.org

` s`

Fig. 20: Any set of homothetic triangles touching the x-axis from above has a connected triangle-
CCG+.

Proof. The initial seed to be covered is selected as before and the size of its covering triangle
must be large enough such that all other seeds are contained in the (unbounded) region
between the two projection lines. This guarantees that inflating covering triangles for the
other seeds will always lead to a contact event.

We cannot extend the result of Proposition 4.1 to higher degrees of connectivity.
Assume that the seed triangles are small enough to be conceptually treated as point seeds.
Then by arguments similar to those used in Theorem 3.2 only trees or forests can be realized
as triangle-CCG+’s on seeds in general position.

Somewhat surprisingly, the connectivity question turns out to be hard for disk seeds.

Theorem 4.1. Given a set S of disk seeds, it is NP-hard to decide whether there is a
connected CCG on S, even if there are only two different seed radii.

Proof. Our proof is by reduction from the problem Planar3Sat, which is NP-hard [Lic82];
it has been introduced in the proof of Theorem 2.3. Given a planar Boolean 3-CNF for-
mula ϕ, we construct two types of gadgets, one for the variables of ϕ and one for the clauses
of ϕ. Again we use that the variable-clause graph Hϕ can be drawn on a grid of polynomial
size with all variable vertices placed on a horizontal line and the clause vertices connecting
in a comb-shaped manner from above or below that line [KR92].

First, as an important building block, we define a stopper consisting of four congruent
disks of diameter 0.07 each of which touches two sides of a 0.15×0.15 square; see Figure 21a.
We call the center point of the square the reference point of the stopper, see the large cross
in Figure 21a. Observe that there are various ways how these four seeds can be covered;
Figure 21 depicts some examples. Even in the extreme case (see Figure 21a), however, the
diameter of any cover disk is at most ≈ 0.19, that is, roughly 2.75 times that of the seeds.

Variable gadgets. For each variable v of ϕ, we place a set of unit-disk seeds such that
their centers lie on the x-axis. The centers of consecutive seed disks have distance 4; see
Figure 22. Both below and above the unit-disk seeds, we place stoppers such that their
reference points have distance 1.925 from the seed centers. We do the same below and
above the midpoints of pairs of consecutive seeds. In this way, the two outer disks in the
stoppers touch a horizontal line at distance 2 above or below the x-axis. (Due to their small
size, the stoppers are only indicated by their bounding boxes in Figure 22; for an enlarged
drawing, see Figure 21b.) There are two obvious connected covers of such a variable gadget:

JoCG 3(1), 102–131, 2012 125

http://jocg.org/

Journal of Computational Geometry jocg.org

0.15

0.07

≈ 0.19

(a) Dimensions.

≈ 0.15

11

(b) In a variable gadget.

0.39

0.54

`

(c) At the beginning of a literal wire.

Fig. 21: The stopper.

all stoppers are covered as shown in Figure 21b (or mirrored) and the unit-disk seeds are
covered by radius-2 disks all in a left position (as in Figure 22a) or all in a right position
(as in Figure 22b). In the left position, seed and cover share their rightmost points; in the
right position, they share their leftmost points.

Note that there are more connected covers: the radius-2 disks can be slightly en-
larged and rotated around their seeds, alternately clockwise and counterclockwise. By
moving the stoppers slightly closer to the x-axis, the slack of the enlarged radius-2 disks
can, however, be made arbitrarily small, so that we can safely ignore it. We need this slack
in order to make sure that the stoppers have rational coordinates—otherwise our reduction
would not be polynomial. Note that it is not possible that some covers are in the left posi-
tion and some covers are in the right position; this would either cause two covers to overlap
or two stoppers to be isolated.

The two (main) positions of the connected covers correspond to the values true and
false of the variable v; see Figures 22a and 22b, respectively. In order to transmit the truth
value into the clause gadgets, we attach vertical literal “wires” to the variable gadgets. For
a positive literal, the wire is centered on the left vertical tangent (as ` in Figure 22a) of a
seed of the variable gadget. For a negative literal, on the other hand, the wire is centered
on a right vertical tangent (as `′ in Figure 22b). The wires consist of unit disk seeds flanked
by stoppers as before, where the first seed of each wire is placed with its center at distance 3
from the x-axis. Additionally, we place two stoppers at distance 1.46 from ` (or `′) and
at distance 2.39 above or below the x-axis; see the enlarged view in Figure 21c. In order
to form a connected CCG, the covers of literal wires that are false are pulled towards the
variable gadget and the covers of literals that are true are pushed away from the variable
gadget as illustrated in Figure 22.

The only places where possibly something could go wrong are the unit-disk seeds

JoCG 3(1), 102–131, 2012 126

http://jocg.org/

Journal of Computational Geometry jocg.org

¬v xv

true false

true

` `′
v

(a) Variable v is true; the two dotted boxes mark
the position of the enlarged views in Figures 21b
and 21c.

¬v xv

false true

false
D

s1 s2

s5 s6

s7 s8D′

C

C ′

D1 D2
C1 C2

s3 s4

(b) Variable v is false.

Fig. 22: The variable gadget on a grid with cells of size 2× 2.

in the literal wires that are adjacent to the variable gadgets. As an example, consider the
disk D in Figure 22b. Clearly, we cannot make the cover C of D smaller if we want to keep
the connection with the variable gadget and stoppers s3 and s4.

First, suppose that we enlarge C downwards. Obviously, C cannot grow much
further before it overlaps the seeds of stoppers s3 and s4; it certainly cannot connect to
stoppers s5 and s6. Hence, these two stoppers must be connected to the cover C ′ of the
disk D′ directly below D, which also must connect to the stoppers s7 and s8 that are aligned
with D′. This exactly defines the target position of C ′ in the false state of the wire. Now
suppose that we enlarge C upwards. Again, C cannot grow much before it overlaps the
seeds of the stoppers s3 and s4. Furthermore, covers C1 and C2 must connect to stoppers s1
and s2, respectively. So apart from the usual slack of the covers, no structural changes are
possible. Hence, C can be enlarged neither downwards nor upwards.

Clause gadgets. The clause gadget is depicted in Figure 23 and combines three literal
wires in a comb-like shape with a stopper in the center. The left and right wires make
a 90-degree turn, which works similarly as the connection of a literal wire to its variable
gadget. (The correctness of the bend construction can be analyzed similarly as above.) The
horizontal wire parts, too, consist of unit disk seeds flanked by stoppers—except for the
last seed of each wire. The wires stop with the last seed that can be placed left of, right of,
or below the central stopper.

Observe that in this construction, covers of wires that are pushed into the clause
(transmitting the value true) connect to the central stopper if the final covering disk is
inflated appropriately (see Figure 23a). Wires, on the other hand, that are pulled away from
the clause (transmitting the value false) cannot connect to the central stopper. Inflating
the final covering disk while keeping the contact to the previous disk in the wire would lead
to an overlap with at least one of the two last stoppers of the wire (see Figure 23b). Hence,
the central stopper of a clause gadget can be connected to the remaining graph if and only

JoCG 3(1), 102–131, 2012 127

http://jocg.org/

Journal of Computational Geometry jocg.org

true false

(a) Two literals are true and one of them connects to the central stopper.

falsefalse

(b) All literals are false and the central stopper cannot be connected.

Fig. 23: The clause gadget.

if at least one of the wires transmits the value true. Note that it suffices if one of the literal
wires connects to the central stopper.

Further note that the grid distance between the left and the middle vertical wire in
Figure 23 is even, whereas the grid distance between the middle and the right vertical wire
is odd. Due to the flexible size of the final covering disk of a literal wire, the disk can bridge
a distance of one or two grid cells, as needed.

Reduction. In order to obtain a connected CCG, it is necessary to connect the stopper
in the center of each clause to at least one literal wire. By construction, this is possible
if and only if there is a variable assignment that satisfies all clauses. We further need to
ensure that all the variable gadgets, which are placed on a horizontal line, are in the same
connected component of the CCG. This can easily be achieved by placing a single disk seed
between any two neighboring variable gadgets that can be covered by a disk that touches
both neighboring gadgets irrespective of their truth values. (Alternately, we may assume
that the variable-clause graph Hϕ is connected.) Now it is easy to see that all variable
gadgets and all literal wires are in a single connected component. Hence, the whole CCG is
connected if and only if each clause gadget is also connected to that component by at least
one literal wire. This is the case if and only if each clause is satisfied by the truth value
assignment encoded by the variable gadgets.

The variable-clause graphHϕ of ϕ can be embedded on a grid whose size is quadratic
in the size of ϕ. The number of seeds in our construction is O(nm), where n is the number

JoCG 3(1), 102–131, 2012 128

http://jocg.org/

Journal of Computational Geometry jocg.org

of variables and m is the number of clauses of ϕ. Hence, the unit grid on which we place
the centers of the large disk seeds has polynomial size. We have taken care that the centers
of the disks in the stoppers have rational coordinates with respect to this grid. This ensures
that the reduction takes polynomial time. We have used only two different seed radii.

4.2 Realizability and Enumeration

In the case of disks for seeds and covers, the minimal sizes of the covers given by the sizes of
their associated seeds are not an obstacle to generalizing the realizability results of Section 2.
Thus, as each point seed set gives rise to disk seed sets, the hardness of the realizability
problem in Theorem 2.3 can be generalized to disk seeds. The necessary conditions for
realizability in Proposition 2.1 can be adapted to disk seeds: simply take the centers of the
disk seeds as the required point seeds.

Regarding enumeration, the bounds obtained for point seeds apply here as well.
Clearly every CCG for disk seeds can be considered a CCG for point seeds, so the number gn
(see Section 2.3) remains an upper bound on the number of graphs realizable as disk-CCG’s.

5 Open problems

This paper has opened a new field with many interesting questions.

1. We know that every 3-vertex graph can be represented as CCG on any set of three
points. We have given an example of six points whose Delaunay triangulation is not
representable as a CCG. What about plane geometric graphs with four or five vertices?
Do they always have a representation?

2. Does any set of point seeds in convex position have a triangulation that can be rep-
resented as CCG?

3. We know that any set of point seeds has a 2-connected CCG.What about 3-connectivity?

4. Is it NP-hard to decide whether a set of disks touching a line has a connected CCG+?

5. Is there an equivalent to Theorem 3.1 for CCG’s instead of CCG+’s, that is, can we
characterize vertex-labeled trees that have a realization as CCG on a set of seeds on
a line such that the realization respects the vertex order prescribed by the labeling?

6. What about other classes of seeds and covers?

References

[ABH+06] Manuel Abellanas, Sergey Bereg, Ferran Hurtado, Alfredo García Olaverri,
David Rappaport, and Javier Tejel. Moving coins. Comput. Geom. Theory
Appl., 34(1):35–48, 2006.

JoCG 3(1), 102–131, 2012 129

http://jocg.org/
http://dx.doi.org/10.1016/j.comgeo.2005.06.005

Journal of Computational Geometry jocg.org

[AdCC+08] Nieves Atienza, Natalia de Castro, Carmen Cortés, M. Ángeles Garrido,
Clara I. Grima, Gregorio Hernández, Alberto Márquez, Auxiliadora Moreno,
Martin Nöllenburg, José Ramon Portillo, Pedro Reyes, Jesús Valenzuela,
Maria Trinidad Villar, and Alexander Wolff. Cover contact graphs. In Seok-Hee
Hong, Takao Nishizeki, and Wu Quan, editors, Proc. 15th Int. Symp. Graph
Drawing (GD’07), volume 4875 of Lect. Notes Comput. Sci., pages 171–182.
Springer-Verlag, 2008.

[AdCH+06] Manuel Abellanas, Natalia de Castro, Gregorio Hernández, Alberto Márquez,
and Carlos Moreno-Jiménez. Gear system graphs. Manuscript, 2006.

[CCJ90] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs.
Discrete Math., 86(1–3):165–177, 1990.

[CDR07] Sergio Cabello, Erik D. Demaine, and Günter Rote. Planar embeddings of
graphs with specified edge lengths. J. Graph Algorithms Appl., 11(1):259–276,
2007.

[CG09] Jérémie Chalopin and Daniel Gonçalves. Every planar graph is the intersection
graph of segments in the plane. In Proc. 41st Annu. ACM Symp. Theory
Comput. (STOC’09), pages 631–638, 2009.

[CLR87] Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg. Em-
bedding graphs in books: A layout problem with applications to VLSI design.
SIAM J. Algebra. Discr., 8(1):33–58, 1987.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press and McGraw-Hill, 3rd edition, 2009.

[CS03] Charles R. Collins and Kenneth Stephenson. A circle packing algorithm. Com-
put. Geom. Theory Appl., 25(3):233–256, 2003.

[For86] Steven Fortune. A sweepline algorithm for Voronoi diagrams. In Proc. 2nd
Annu. ACM Symp. Comput. Geom. (SoCG’86), pages 313–322, 1986.

[GN09] Omer Giménez and Marc Noy. Counting planar graphs and related families of
graphs. In Sophie Huczynska, James D. Mitchell, and Colva M. Roney-Dougal,
editors, Surveys in Combinatorics 2009, volume 365 of London Math. Soc. Lect.
Note Ser., pages 169–210. Cambridge Univ. Press, 2009.

[Hal80] William K. Hale. Frequency assignment: Theory and applications. Proc. IEEE,
68(12):1497–1514, 1980.

[HJLM93] Frank Harary, Michael S. Jacobson, Marc J. Lipman, and Fred R. McMor-
ris. Abstract sphere-of-influence graphs. Math. Comput. Model., 17(11):77–83,
1993.

[JLM95] Michael S. Jacobson, Marc J. Lipman, and Fred R. McMorris. Trees that are
sphere-of-influence graphs. Appl. Math. Lett., 8:89–93, 1995.

JoCG 3(1), 102–131, 2012 130

http://jocg.org/
http://dx.doi.org/10.1007/978-3-540-77537-9_18
http://jgaa.info/accepted/2007/CabelloDemaineRote2007.11.1.pdf
http://jgaa.info/accepted/2007/CabelloDemaineRote2007.11.1.pdf
http://doi.acm.org/10.1145/1536414.1536500
http://doi.acm.org/10.1145/1536414.1536500
http://doi.acm.org/10.1145/10515.10549
http://www.cambridge.org/gb/knowledge/isbn/item2713364
http://www.cambridge.org/gb/knowledge/isbn/item2713364

Journal of Computational Geometry jocg.org

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison-Wesley, 1997.

[Koe36] Paul Koebe. Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad.
Wiss. Leipzig, Math.-Phys. Klasse, 88:141–164, 1936.

[KR92] Donald E. Knuth and Arvind Raghunathan. The problem of compatible rep-
resentatives. SIAM J. Discr. Math., 5(3):422–427, 1992.

[KW02] Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few
bends suffice for planar graphs. J. Graph Algorithms Appl., 6(1):115–129, 2002.

[Lic82] David Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11(2):329–343, 1982.

[Mit92] Joseph S. B. Mitchell. L1 shortest paths among polygonal obstacles in the
plane. Algorithmica, 8:55–88, 1992.

[PA95] János Pach and Pankaj K. Agarwal. Combinatorial Geometry. John Wiley &
Sons, New York, 1995. (Contains a proof of Koebe’s theorem.)

[PW01] János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex
locations. Graphs Combinator., 17(4):717–728, 2001.

[RT90] Jean-Marc Robert and Godfried T. Toussaint. Computational geometry and
facility location. In Proc. Int. Conf. Oper. Res. Manage. Sci., pages B1–B19,
Manila, 1990.

[Sac94] Horst Sachs. Coin graphs, polyhedra, and conformal mapping. Discrete Math.,
134(1-3):133–138, 1994.

[Thu80] William P. Thurston. The Geometry and Topology of 3-Manifolds. Princeton
University Notes, 1980.

[Tou88] Godfried T. Toussaint. A graph-theoretical primal sketch. In Godfried T. Tou-
ssaint, editor, Computational Morphology: A Computational Geometric Ap-
proach to the Analysis of Form, pages 229–260. North-Holland, 1988.

[Wel91] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor,
New Results and New Trends in Computer Science, volume 555 of Lect. Notes
Comput. Sci., pages 359–370. Springer-Verlag, 1991.

JoCG 3(1), 102–131, 2012 131

http://jocg.org/
http://dx.doi.org/10.1137/0405033
http://dx.doi.org/10.1137/0405033
http://www.cs.brown.edu/publications/jgaa/accepted/2002/KaufmannWiese2002.6.1.pdf
http://www.cs.brown.edu/publications/jgaa/accepted/2002/KaufmannWiese2002.6.1.pdf
http://dx.doi.org/10.1137/0211025
http://dx.doi.org/10.1007/BF01758836
http://dx.doi.org/10.1007/BF01758836
http://dx.doi.org/10.1016/0012-365X(93)E0068-F

	Introduction
	Seeds are Points in the Plane
	Connectivity
	Realizability
	Enumeration

	Seeds are Points on a Line
	Realizability
	Enumeration

	Seeds are Disks or Triangles in the Plane
	Connectivity
	Realizability and Enumeration

	Open problems

