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Abstract In this paper, we propose a bio-inspired membrane computational frame-
work for constructing discrete Morse complexes for binary digital images. Our 
approach is based on the discrete Morse theory and we work with cubical complexes. 
As example, a parallel algorithm for computing homology groups of binary 3D digital 
images is designed.
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1 Introduction

Nowadays, to determine in a fast and accurate way topology-related information of 
technologically relevant mathematical structures has become a very important ques-
tion. Within the context of Digital Imagery, computational topology has acquired a 
significant role in fields of applications like computer vision, digital image process-
ing or medical imaging. Working with cubical cell complex representations of digital
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images, we rewrite here a non-negligent part of the computational machinery under-
lying in discrete Morse theory [13], using bio-inspired models of Membrane Comput-
ing area [25]. Discrete Morse theory (DMT) deals with the combinatorial homotopy 
analysis of cell complexes using discrete Morse functions or, equivalently, discrete 
vector fields. Membrane Computing deals with distributed and (massively) parallel 
computing models inspired from cellular membranes and locally processing multi-
sets of symbol objects. This paper is a foundational effort to properly combine the 
computational power of bio-inspired computing with the detailed topological analysis 
of cubical complexes that DMT provides us. In this way, we implement a membrane 
computing framework for constructing “simplified” digital images with regard to some 
special topologically consistent properties mainly related with homology groups.

As a result of the inherent parallelism involved in the definition of digital images 
and due to the current improvement in parallel computational architectures, several 
studies are devoted to parallel implementation of sequential algorithms in order to take 
advantage of parallel hardware.

The development of parallel algorithms is not a trivial question and involves an ade-
quate management of task’s concurrency and a performance, memory efficiency and 
scalability trade-off. Natural Computing has been presented as a productive research 
field that can develop no ordinary computational models inspired by Nature that can 
solve several difficult problems in an elegant and simple way. Here, to maintain a strong 
link between this computational framework and algebraic topology tools is a priority. 
In this way, we obtain a topological description of the digital objects which allows us 
to understand, efficiently compute and handle advanced topological information of kD 
digital objects and images [2,8]. For this purpose, we present a new methodology to 
develop algorithms in topological analysis of digital images. Within this bioinspired 
setting, our approach mainly focus on performance more than on memory efficiency 
or scalability.

This paper is the first one using membrane computing for DMT techniques. Various 
DMT-based approaches to compute discrete functions defined on cells of a cell com-
plex have been already used. Reininghaus et al. [29,30] apply DMT methods to analyze 
vector fields. Bauer et al. [1] computed simplified two-dimensional scalar functions 
while ensuring that the input function is modified by no more than a threshold d and 
all surviving critical point pairs have persistence greater than 2d. Cazals et al. [7] and 
Lewiner et al. [17] successfully employed Forman’s discrete Morse theory to compute 
Morse complexes of piecewise-linear functions and show applications to segmenta-
tion, visualization, and mesh compression. Gyulassy et al. [15] also used a DMT-based 
formulation to develop an efficient algorithm for computing Morse (more concretely, 
Morse-Smale) complexes of large 3D data. Robins et al. [30] proposed an algorithm 
to compute the Morse complex of 2D and 3D gray-scale digital images modeled as 
discrete functions on cubical complexes. The algorithm computes the Morse complex 
with provable guarantees on its correctness with respect to the critical cells.

In [20], an algorithm for computing homology using a recursive tree-based tech-
nique for generating Morse complexes is established. Peterka et al. [27] introduced 
a set of building blocks for implementing parallel algorithms, which leverage high 
performance computing clusters. In particular, they discuss a parallel implementation 
of the discrete Morse theory based on the algorithm proposed by Gyulassy et al. [15].
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Günther et al. [14] design a memory efficient algorithm to compute the Morse–Smale
complex for 3D data and use the complex to compute persistent homology groups. The
discrete gradient field is computed using a parallel variant of the method proposed by
Robins et al. followed by an efficient computation of the boundary map representing
the Morse complex. Finally, the parallel algorithm for computing the discrete gradi-
ent field given in [22] is based on a novel description of the discrete Morse function
followed by a two-step algorithm computing the cells of the Morse–Smale complex.
The algorithms are implemented using a hybrid multi-core implementation.

The papers [6,9,10], deal with the computation of some combinatorial and algebraic
aspects of the topology of the image.

This paper is structured as follows. First, some aspects related with cubical homol-
ogy and DMT are reviewed. Then, basic concepts and techniques from Membrane
computing are given. Next, a theoretical framework for designing algorithms in this
“hibrid” context and some examples of its use are presented. Finally, some conclusions
are discussed,where the most important fact is the theoretical viability of framework
shown before, that allows us to implement algorithms computing the homology groups
of 3D images using parallel computing tools.

2 Discrete Morse theory

In this section we introduce the topological background required by our framework.
First of all, we review the required combinatorial structure for the topological spaces
that are used. We mainly follow the process introduced by Kaczyński et al. [16]
with some minor changes. Specifically, Kaczyński et al. uses closed cubes as main
combinatorial objects while we use open cubes.

A cubical cell σ is a finite product of intervals:

σ = I1 × · · · × Ik ⊂ R
k

where I j is an interval with integer extremes (m j , m j + 1) and length one or the
singleton {m j }, denoted as (m j ), for each j ∈ {1, . . . , k}. The interval I j is referred
as the j th component of σ and denoted by I j (σ ). The set of all cubical cells in R

k is
denoted by Kk . The set of all cubical cells is

K =
∞⋃

k=1

Kk (1)

We usually require the cubical cells to be bounded. Hence, we define

Kk∗,n = {σ ∈ Kk : 0 ≤ inf Ip(σ ), sup Ip(σ ) < n, 1 ≤ p ≤ k} (2)

where k and n are nonnegative integer numbers.
Given a cubical cell σ in R

k , its embedding number k is denoted by emb σ . The
dimension of σ is defined as the number of unitary intervals in its expression as
product of intervals and is denoted by dim σ . The set of all elementary cubes with
dimension p is denoted by Kp. The set of all elementary cubes in R

k with dimension
p is denoted by Kk

p. Whenever the dimension of a cubical cell require to be made
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explicit, it is denoted as a superscript between parenthesis. Therefore, dim σ (p) = p.
We also explicitly indicate the dimension of a cell σ (p) writing that σ is a p-cell.

The closure of a cubical cell can be decomposed into the union of lower-dimensional
cubical cells. If δ and σ are two cubical cells in R

k of any dimension and δ ⊂ σ , then
δ is a face of σ and is denoted as δ ≤ σ . If δ is a face of σ and δ �= σ , then δ is a
proper face of σ , denoted as δ < σ . If δ is a face of σ and dim δ = dim σ − 1 then δ

is a primary face of σ , denoted by δ ∈ ∂σ .
A cubical complex is a collection K of cubical cells with the same embedding

number and such that, for every cubical cell σ ∈ K , all of its primary faces are in the
complex. We denote the set of p-cells in K as K p.

As usual, we define the chain complex C(K ) as the graded Z-module {C p(K )}p∈Z

where C p(K ) is the free abelian Z-module generated by the cubical p-cells in K . The
boundary map ∂ in the chain complex is defined in [16]. Concretely, for any cubical
cell σ , ∂σ is an alternating sum over the faces of σ and such that ∂ ◦∂ = 0. As usual, let
Z p = ker ∂p the subgroup of cycles and Bp = Im ∂p+1 the subgroup of boundaries.
The pth cubical homology group of K is

Hp(K ) = Z p K

Bp(K )

The cubical homology of K is the collection H∗(K ) = {Hp(K )}p∈Z. Recall that, for
p < 0 or p > dim K , is Hp(K ) = 0.

2.1 Discrete Morse theory

So far, we have recalled all the required notions from cubical complexes. Now, we
introduce the needed elements from DMT.

A real-valued smooth map defined over a compact d-manifold is a Morse function
if all its critical points have non-singular Hessian matrix and no two critical points
have the same function value [15]. Morse functions allow to endow the manifold with
a cellular structure.

A CW complex is, roughly speaking, a topological space endowed with a decom-
position into smaller pieces called cells, being homeomorphic to Euclidean spheres.
A formal definition can be found in [13].

Discrete Morse theory introduced by Forman [13] adapts Morse Theory to CW
complexes instead of smooth manifolds. Although DMT has been developed for finite
regular CW complexes, we restrict our research to finite cubical complexes, which are
a particular type of CW-complexes.

Let K be a cubical complex and f : K → R a function that assigns scalar values
to every cell of K . f is a discrete Morse function if, for every cubical cell σ (p) ∈ K
the following conditions hold:

– #{τ (p+1) ∈ K |τ > σ ∧ f (τ ) ≤ f (σ )} ≤ 1
– #{μ(p−1) ∈ K |μ < σ ∧ f (τ ) ≥ f (σ )} ≤ 1

A discrete Morse function f can be thought as a discrete function that is increasing
with respect to cell dimension except for, at most, two cells for each cell. Concretely,
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for each cell σ there is at most one face μ (μ ∈ ∂σ ) with f (μ) ≥ f (σ ) and there is
at most one facet τ (σ ∈ ∂τ ) 0 with f (τ ) ≤ f (σ ).

A cubical cell σ (p) is critical if one of the following conditions hold:

– #{τ (p+1) ∈ K |τ > σ ∧ f (τ ) ≤ f (σ )} = 0
– #{μ(p−1) ∈ K |μ < σ ∧ f (τ ) ≥ f (σ )} = 0

Given a cubical cell σ its barycenter is the point

b(σ ) =
(

inf I1(σ ) + sup I1(σ )

2
, . . . ,

inf Ik(σ ) + sup Ik(σ )

2

)
.

As the closure of a cubical cell is convex, its barycenter is an interior point.
We define a discrete vector as a pair of cells {σ (p) < τ (p+1)}. Vectors are repre-

sented as arrows from the barycenter of the lower dimension cell to barycenter of the
higher dimension cell. A discrete vector field V on K is a collection of vectors in K
such that each cubical cell in the vector belongs to, at most, one pair of V .

Formally, a discrete vector field is a map V : K → K ∪ {0} such that:

1. for each σ ∈ K , if V (σ ) �= 0 then dim V (σ ) = dim σ + 1
2. for each σ ∈ K p, either V (σ ) = 0 or σ ∈ ∂V (σ )

3. if σ ∈ Im(V ) then V (σ ) = 0
4. for each σ ∈ K p

#{μ(p−1) ∈ K |V (μ) = σ } ≤ 1

Given a discrete vector field V on K , a V -path of dimension p, γ , is a sequence of
cubical p-cells σ0, σ1, σ2, . . . , σr such that

1. If V (σi ) = 0, then σi+1 = σi .
2. If V (σi ) �= 0, then σi+1 < V (σi ) with σi+1 �= σi .

The set of V -paths is denoted as Γ (V ).
A V -path γ = σ0, σ1, . . . , σr is called closed is σr = σ0 and is called non-

stationary if σ1 �= σ0.
Given two V -paths γ1 = σ0, . . . , σr and γ2 = σr , . . . , σr+s , the concatenation

γ2 ◦ γ1 is defined by

γ2 ◦ γ1 = σ0, . . . , σr , σr+1, . . . , σr+s (3)

Two V -paths γ1 and γ2 are said to be connectible if there is a V -path γ3 such that
γ3 = γ2 ◦ γ1

A V -path γ1 is said to be extendable by another V -path γ2 whenever there is a
V -path γ ′ such that γ2 = γ ′ ◦ γ1, and is denoted by γ1 � γ2. It can be easily verified
that (Γ (V ),�) is a partially ordered set. Whenever a V -path γ1 is extendable by a
V -path γ2 so that γ2 = γ ′ ◦ γ1 as well as γ ′ is non-stationary, it is denoted as γ1 � γ2.
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Given a V -path γ = σ0, σ1, . . . , σr , the multiplicity of γ is defined as

m(γ ) =
r−1∏

i=0
V (σi )�=0

〈σi , ∂V (σi )〉〈σi+1, ∂V (σi )〉 (4)

Given two connectible paths γ1 and γ2, then

m(γ2 ◦ γ1) = m(γ2) · m(γ2) (5)

A V -path γ is said to be maximal if there is no V -path γ ′ such that γ �γ ′. A maximal
path is called critical if its last cell is critical. Notice that, if γ = σ0, . . . , σr is a
maximal critical path, then there is a critical cell μ such that 〈σ0, ∂μ〉 �= 0.

Given a discrete Morse function, a special discrete vector field called discrete
gradient vector field is defined so that f (V (σ )) ≤ f (σ ). As shown in [13], a cubical
complex can be transformed into another homotopically equivalent following a series
of simplicial collapses,1 where each of them collapses both cubical cells in each vector
in the corresponding discrete gradient vector field.

We recall here one of the main results of DMT.

Theorem 1 ([13], 9.3) A discrete vector field V is the gradient vector field of some
discrete Morse function if and only if there are no non-stationary closed V -paths.

A vector field V is extended to a graded group homomorphism V : C p(K ) →
C p+1(K ) such that

V (σ (p)) =
{±τ (p+1) if {σ < τ } is a vector in V

0 otherwise
(6)

where the sign is chosen so that 〈σ, ∂V (σ )〉 = −1.
The reduced (discrete time) flow map, denoted as φ̃ is defined by

φ̃ = id +∂ ◦ V (7)

The reduced flow map associates a (p + 1)-chain φ̃(σ ) to any p-cell σ , such that
∂ V (σ ) = φ̃(σ )−σ . Hence, 〈σ, φ̃(σ )〉 = 0. The map φ̃ establishes a way of following
the flow determined by the vector field. Concretely, if there is a V -path of length r
from a p-cell σ to another p-cell σ ′, then 〈φ̃r (σ ), σ ′〉 �= 0. This fact can be proved
by induction in the length of the V -path.

Definition 1 Let K be a cubical complex and f be a Morse discrete function on K .
Let C p(K ) denote the p-chains on K and Mp ⊆ C p(K ) the span of the critical
p-cells. The graded group M = {Mp}p∈Z is called the space of Morse chains.

1 In [13] Forman works with simplicial complexes, however the mathematical scaffolding provided by 
DMT can be settled with no change to finite cubical complexes.



Membrane parallelism for DMT in digital images 55

In [13] Forman makes use of the set of V -paths to build the boundary map of the
Morse complex associated to a given complex and an acyclic vector field. It is shown
in the following result.

Theorem 2 ([13], 7.1) There are boundary maps ∂̃p : Mp → Mp−1, for each p ∈ Z,
so that

∂̃p−1 ◦ ∂̃p = 0

and such that the differential complex

0
∂̃k+1−−→ Mk

∂̃k−→ Mk−1
∂̃k−1−−→ · · · ∂̃2−→ M1

∂̃1−→ M0
∂̃0−→ 0

calculates de homology of K . That is, if we define

Hp(M, ∂̃) = ker ∂̃p

Im ∂̃p+1

then, for each p

Hp(M, ∂̃) ≡ Hp(K ).

In [13] an explicit expression for the boundary operator in the Morse complex
(M, ∂̃) is also given in terms of V -paths.

Theorem 3 ([13], 7.3) For any critical cubical (p + 1)-cell τ , let ∂̃τ be defined as

∂̃τ =
∑

σ∈Mp

cσ,τ σ

where

cσ,τ =
∑

γ∈Γ (τ,σ )

m(γ )

and Γ (τ, σ ) is the set of maximal critical V -paths (for a given gradient vector field
V ) which go from a maximal face of τ to σ .

The complex (M, ∂̃) and K have isomorphic homology groups.

2.2 Examples

In Fig. 1 a 2D cubical complex K is shown (Fig. 1a). In this example, cubical cells
are referred as ordered tuples of vertices. A vector field V is shown in Fig. 1b. As the
previous vector field is acyclic, it is in fact the gradient vector field for some discrete
Morse function f , whose critical cells are showed in Fig. 1c.
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(a) (b) (c)

(d) (e)

Fig. 1 a Example of cubical complex, b gradient vector field, c critical cells where two kinds of critical
cells are shown: ordinary critical cells representing a hole at any dimension and other critical cells showing
a “step” configuration which will be canceled later (see [13], section 11, for details), d critical complex and
e final homological complex with null differential

The reduced flow map φ̃ maps a cell σ (p) into a p-chain c, such that all the cells
in c are those in ∂V (σ ) except σ . For example, φ̃ applied to the 1-cell spanned by P4
and P5, denoted by < P4, P5 > (see Fig. 1a) returns

φ

φ̃

˜(〈P4, P5〉) = 〈P4, P9〉 + 〈P9, P10〉 − 〈P5, P10〉

Informally speaking, the application of φ̃ means the annihilation of some cells 
involved in the vector field, as well as the “extension” of critical cells in the sense of 
creating critical “super-cells” in terms of chains. For example, the application of 
to 〈P4, P5〉 not only removes 〈P4, P5〉 and 〈P4, P9, P10, P5〉, but it extends the cell 
〈P0, P4, P5, P1〉 to the chain 〈P0, P4, P5, P1〉 + 〈P4, P9, P10, P5〉.

This previous example provides us the key idea in the development of our frame-
work. The homology of a 3D cubical complex can be calculated in only two stages. 
First the complex is reduced by the construction of a gradient vector field and the cal-
culation of the associated Morse complex (see Fig. 1d). Second, the process is repeated 
in the Morse complex and, finally, the result is a chain complex with null differential 
whose pth homology group is easily calculable and coincides with the pth homology 
group of the cubical complex (see Fig. 1e).

2.3 Encoding images as cubical complexes and cubes as tuples

In this section, we work with a cubical cell version of a digital image [16]. A common 
problem appearing in the development and implementation of algorithms with cubical
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complexes is the requirement of a huge amount of memory resources. Below, an
efficient encoding of cubical cells is described.

Given two non-negative integers k and n ≥ 2, the following auxiliary sets are
defined

T k
n := {0, 1, 2, . . . , n − 1}k, (8)

T
k
n := T k

2n−1, (9)

In,k := Tnk = {0, 1, 2, . . . , nk − 1}, (10)

I n,k := T(2n−1)k = {0, 1, 2, . . . , (2n − 1)k − 1}. (11)

The set of points2 for the source images is the set T k
n ⊂ Z

k equipped with a
cubic neighborhood function, described as follows: two points i = (i1, . . . , ik) and
j = ( j1, . . . , jk) are said (2k)-adjacent if

∑k
p=1 |i p − jp| = 1. The neighborhood

function is given by

N (i1, . . . , ik) =
⎧
⎨

⎩( j1, . . . , jk) ∈ T k
n :

k∑

p=1

|i p − jp| = 1

⎫
⎬

⎭

This function restricted to k = 2 defines 4-adjacency and to k = 3 defines 6-adjacency.
Let I : T k

n → {0, 1} be a k-D binary image of size nk , where the set of points in the
object (or black points) is given by I−1(1). Let K = K (I) be the cubical cell complex
associated to I. In K , the 0-cells are points in the object, the 1-cells represent pairs of
(2k)-adjacent points, the 2-cells unit squares where its edges are pairs of (2k)-adjacent
points, and so on. In general, each p-cell is a p-dimensional unit hypercube whose
edges are determined by pairs of (2k)-adjacent points.

A cubical cell is encoded as a tuple through the function T : Kk → Z
k defined as

follows
T(σ ) = (sup I1(σ ) + inf I1(σ ), . . . , sup Ik(σ ) + inf Ik(σ )) (12)

The main property of T is given in the following lemma.

Lemma 1 The function T is a bijection and T(Kk∗,n) = T
k
n.

Proof First at all, let us prove that T is injective. Let σ and μ be two distinct cells.
Then, let j0 ∈ {1, 2, . . . k} be the first index such that I j0(σ ) �= I j0(μ). The following
cases may come up:

– I j0(σ ) = (a, a + 1) and I j0(μ) = (b, b + 1) with a �= b. Then

inf I j0(σ ) = a �= b = inf I j0(μ)

2 The reader is supposed to be familiar with concepts of Image Algebra. For a detailed text, see [31].
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– I j0(σ ) = (a, a + 1) and I j0(μ) = (b). Then, either a �= b or a + 1 �= b. In the first
case,

inf I j0(σ ) = a �= b = inf I j0(μ)

and in the second case

sup I j0(σ ) = a + 1 �= b = sup I j0(μ)

In all the cases showed above inf I j0(σ ) + sup I j0(σ ) �= inf I j0(μ) + sup I j0(μ) and,
hence, T(σ ) �= T(μ).

To prove that T is surjective, it is enough to find a cell σ = I1 × · · · × Ik such that,
given a tuple (c1, . . . , ck) ∈ Z

k , T(σ ) = (c1, . . . , ck). It is easily verified that such
cell σ si given by setting each interval Ip as follows

Ip =
⎧
⎨

⎩

(
cp−1

2 ,
cp+1

2

)
if cp ≡ 1 (mod 2)

( cp
2

)
if cp ≡ 0 (mod 2)

(13)

for 1 ≤ p ≤ k.
Finally notice that, if I = (m, m+1) with 0 ≤ m, m+1 ≤ n−1, then sup I+inf I =

2m + 1 ≤ 2n − 2. In consequence, sup I + inf I ∈ T2n−1, proving the last statement
of the Lemma. ��

As an example, the cell σ = (0, 1) × (3, 4) × (2) is encoded as T(σ ) = (1, 7, 4).
A cubical cell can also be encoded as an integer. Concretely, a cubical cell3 is

encoded as a number In,k(σ ) in I n,k as follows:

In,k(σ ) = In,k(c1, . . . , ck) =
k∑

p=1

cp · (2n − 1)k−p (14)

Lemma 2 The function In,k : T
k
n → I n,k defined above is a bijection.

Proof To prove that the function In,k is surjective is enough to find a cell σl for any
l ∈ I n,k such that In,k(σl) = l. The cell σl = (c1, . . . , ck) such that

cp =
⌊

l

(2n − 1)(k−p)

⌋
(mod (2n − 1)) for 1 ≤ p ≤ k (15)

satisfies that In,k(σl) = l.

3 Lemma 1 grants the identification of cubical cells in a cubical complex in Rk with k-tuples. 
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To prove that In,k is injective, let σ, σ ′ ∈ T
k
n be two cells such that In,k(σ ) =

In,k(σ
′). Then, if σ = (c1, . . . , ck) and σ ′ = (c′

1, . . . , c′
k),

0 = In,k(σ
′) − In,k(σ ) =

k∑

p=1

(c′
p − cp)(2n − 1)(k−p)

hence, taking iteratively remainders modulo (2n − 1), it turns out that c′
p ≡ cp

(mod (2n − 1)) and, as 0 ≤ c′
p, cp < 2n − 1, it is proved that c′

p = cp. ��

3 Membrane computing formal framework

The chosen P system model for our framework is based in the works of Păun and Pérez-
Jiménez in [26]. Here, a finite set of tissue like P systems working in a cooperative
way is used, where each of them solves a part of the problem and, in some conditions,
sends each output to other P system to be processed by it.

First of all, tissue like P systems are introduced. As it is well-known, the biological
inspirations of this model are intercellular communication and cooperation between
neurons [18,19]. The communication among cells is based on symport/antiport rules.4

Tissue-like P systems have been widely used to solve computational problems in other
areas (see e.g. [10,11]), but recently, they have been also used in the study of digital
images (e.g., [3–5,12,23,24]).

In this paper, a variant of tissue-like P systems is used where the application of the
rules are regulated by promoters and inhibitors. These promoters have a clear biolog-
ical inspiration. The rule is applied if the reactants are present, but it is also necessary
the presence of all the promoters and none of the inhibitors in the corresponding cell.
The promoters are not consumed nor produced by the application of the rule, but if
they are not in the cell, the rule cannot be applied. In one step, each reactant in a
membrane can be used only for one rule, but if several rules need the presence of the
same promoter, then the presence of one unique copy of the promoter suffices for the
application of all the rules.

In the general case, if there are several possibilities, the rule is non-deterministically
chosen, but sometimes a priority relation between rules is considered, so the concept
of priority in our P systems is required.

Next, the formal definition of these P systems is recalled.

Definition 2 A tissue P system with promoters, inhibitors, priorities and input of
degree q ≥ 1 is a tuple of the form

Π = (Γ,Σ, E, w1, . . . , wq ,R, Pri, iin, iout )

where q is the number of cells (or membranes) of the P system and

1. Γ is a finite alphabet, whose symbols are called objects. These objects can be
placed in the cells or in the surrounding space (called the environment).

4 Introduced in [25].
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2. Σ ⊆ Γ is the input alphabet. The input of the computation performed by the P
system is encoded by using this alphabet.

3. E ⊆ Γ is a finite alphabet representing the set of the objects in the environment.
Following a biological inspiration, the objects in the environment are available in
an arbitrary large amount of copies;

4. w1, . . . , wq are strings over Γ representing the multisets of objects placed inside
the cells at the beginning of the computation;

5. R is a finite set of rules of the following form:

(pro ¬inh | i, u/v, j), for 0 ≤ i �= j ≤ q, pro, inh, u, v ∈ Γ ∗

6. Pri is a finite set of relations Ri > R j , where Ri and R j are rules from R. It
means that if Ri and R j can be applied, then the application of Ri has priority on
the application of R j .

7. iin ∈ {1, 2, . . . , q} denotes the input cell, i.e., the cell where the input of the
computation will be placed.

8. iout ∈ {1, 2, . . . , q} denotes the output cell, i.e., the cell where the output of the
computation will be placed.

Informally, a tissue-like P system with promoters, inhibitors and priorities of degree
q ≥ 1 can be seen as a set of q cells labeled by 1, 2, . . . , q. The cells are the nodes 
of a virtual graph, where the edges connecting the cells are determined by the com-
munication rules of the P system, i.e., as usual in tissue-like P systems, the edges 
linking cells are not provided explicitly: if a rule ( pro ¬inh  | i, u/v, j) is given, then 
cells i and j are considered linked. The application of a rule ( pro ¬inh  | i, u/v, j) 
consists of trading the multiset u (initially in the cell i) against the multiset v (initially 
in j). After the application of the rule, the multiset u disappears from the cell i and 
it appears in the cell j . Analogously, the multiset v disappears from the cell j and 
it appears in the cell i . The trade can also be between one cell and the environment, 
labeled by 0. The rule is applied if in the cell with label i the objects of pro are 
present in the cell i (promoters), while any of the objects in inh  do not appear in the 
cell (inhibitors). The promoters or the inhibitors are not modified by the application 
of the rule. If the promoters and inhibitors are empty, we write (i, u/v, j) instead 
of (∅¬∅| i, u/v, j). Finally, we write ( pro |i, u/v, j) or (¬inh  |i, u/v, j) when only 
promoters or inhibitors appear, respectively.

As usual, some objects not belonging to E can arrive to the environment during 
a computation. So, in a configuration (not initial) it could be found two types of 
objects in the environment: firstly, those which belong to the environment and appear 
in an arbitrary large number of copies. Secondly, those which do not belong to the 
environment but have been sent to the environment by the application of a rule.

Rules are used as usual in the framework of membrane computing, that is, in a 
maximally parallel way (a universal clock is considered). A configuration is an instan-
taneous description of the P system and it is represented as a tuple (w0, w1, . . . , wq ), 
where w0 is the multiset of objects from Γ − E placed in the environment (initially, 
w0 = ∅). Given a configuration, we can perform a computation step and obtain a new 
configuration by applying the rules in a parallel manner as it is shown above. A con-
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figuration is halting when no rules can be applied to it. A computation is a sequence of
computation steps such that either it is infinite or it is finite and the last step yields a halt-
ing configuration (i.e., no rules can be applied to it). Then, a computation halts when
the P system reaches a halting configuration. The output of a computation is collected
from its halting configuration by reading the objects contained in the output cell.

Definition 3 A d P scheme (of degree s ≥ 1) is a construct

Δ = (Γ,Σ,Π1, . . . ,Πs, R, iin, iout )

where:

1. Γ is an alphabet of (communicated) objects.
2. Σ ⊂ Γ is the input alphabet, used as input for the module Πiin .
3. Π1, . . . ,Πs are tissue like P systems with promoters, inhibitors and priorities

whose alphabets contain Γ . Each Πi is called a component or module of Δ.
4. R is a set of distribution rules of the form (pro¬inh|i, u → v, j) where pro, inh,

u and v are multisets on Γ , 0 ≤ i �= j ≤ s and i �= 0. The objects in pro are
called promoters of the rule and the objects in inh are called inhibitors, as usual in
tissue like P systems with promoters and inhibitors.

5. iin and iout represents the modules used as input and output, respectively.

Informally, the evolution of a dP scheme can be summarized as follows. A universal
common clock is used for all the modules in the scheme. Initially all the modules start
evolving together, each of them with their respective initial configuration except the
input module, which also uses the input alphabet Σ as input. On each computation
step, every time a module reaches its halting configuration, a maximal multiset of
distribution rules is selected. Then, we apply these rules so some objects are sent from
the output membrane of some modules to the input membrane of another. Then, the
evolution starts again until all the modules have reached their halting configuration
and no distribution rule can be selected. We use an special destination module, indexed
by 0. Every time a rule (pro¬inh|i, u → v, 0) is executed, the multiset u is removed
from the output membrane of the i th module. This is used as some kind of garbage
collection.

4 Membrane computing framework for cell complexes algorithms

In previous section, the formal requirements for a Membrane Computing algorithm
are presented, i.e. all the elements required to formally describe a P system. Hence,
a language must be defined in order to characterize all the elements present in each
membrane. The main goal in this paper is the introduction of a membrane computing
framework flexible enough to be useful in many others applications than those pre-
sented below. Hence, we define now those essential notions in order to represent the
objects and relations already outlined in Sect. 2.

Let K ⊂ T
k
n be a cubical complex. Let ∂ represents the boundary map in the

associated chain complex. The cubical cells in K are represented as σi , for some
i ∈ I n,k . The cubical geometry of K is achieved using objects U±

i j,d for i, j ∈ I n,k
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and 1 ≤ d ≤ k. The presence of such an object is interpreted as the cell σi is in
the boundary of σ j and the vector joining their barycenters (from lower dimension to
higher dimension cell) is ± 1

2 ud , where ud is the d-th vector in the canonical base in
R

k .
As the cubical complex K is usually built from a binary k-D image5 I : T k

n →
{0, 1}, black pixels in I−1(1) are denoted as Bi for i ∈ T k

n .
The dimension of a cubical p-cell σi is represented by the presence of the object

di p, for i ∈ I n,k and 0 ≤ p ≤ k.
The boundary map is symbolized by objects δ±

i j whenever 〈σi , ∂σ j 〉 = ±1, respec-
tively. Recall that cubical complexes are regular, so it is ensured that 〈σ, ∂μ〉 ∈ {0,±1}
for any pair of cells σ (p) and μ(p+1). Sometimes the knowledge of how many cells
share a given cell in their border is required. The presence of objects Di f means that
the set {σ j ∈ K : 〈σi , ∂σ j 〉 �= 0} has f elements.

Gradient vector fields are represented by the presence of objects V ±
i j where the sign

is given by the sign of −〈σi , ∂σ j 〉 with i, j ∈ I n,k . Objects Vi depict that the cubical
cell σi is used as part of a vector. If a cubical cell is critical for a given gradient vector
field V , it is denoted by the presence of some object Ci for 0 ≤ i ≤ N .

In order to stand for the operator φ̃ defined above, objects φ±
i j , for 0 ≤ i, j ≤ N ,

are used.
Hence, the common starting language for all the algorithms designed in the proposed

framework is defined below:

Γ0 = {Bi : i ∈ T k
n } ∪ {

σi : i ∈ I n,k
} ∪ {Ci : i ∈ I n,k}

∪ {
di p : i ∈ I n,k ∧ 0 ≤ p ≤ k

} ∪
{

Di f : i ∈ I n,k ∧ 0 ≤ f ≤ 2k
}

∪
{
δ±

i j : i, j ∈ I n,k

}
∪

{
V ±

i j : i, j ∈ I n,k

}
∪ {

Vi : i ∈ I n,k
} ∪ {V }

∪
{

U±
i j,p : i, j ∈ I n,k ∧ 0 ≤ p ≤ k

}
∪

{
φ±

i j : i, j ∈ I n,k

}

The framework presented here does not only consist of a language, but also some dP
modules and distribution rules are defined. Firstly, the dP modules have to be such that
allows performing only simple tasks in each module. Hence, the implementation of
the membrane computing algorithm in current parallel devices is simplified. Secondly,
the development of algorithms in computational algebraic topology usually reduces to
simplify some cell complexes by using DMT. We specify here some modules related
to the process of removal of cells which are the head and tails of discrete gradient
vectors.

Previously mentioned common tasks are introduced as modules of a dP scheme.
Namely, two main tasks are to be defined:

1. Build a cubical complex from a binary k-D image.
2. Specify the Morse complex from a given cubical complex and a gradient vector

field.

5 In case of 2D images, Bi = Bi1i2 .
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For any i ∈ I n,k , the cubical cell σ(i) ∈ Kk∗,n is defined as

σ(i) = T
−1(I−1

n,k(i))

To determine the vertices of a cubical cell σ the function gen : Kk
n → 2Z

k
defined

as
gen(I1 × · · · × Ik) = {inf I1, sup I1} × · · · × {inf Ik, sup Ik} (16)

is used. For example,

gen ((1, 2) × (2) × (0, 1)) = {1, 2} × {2} × {0, 1}
= {(1, 2, 0), (1, 2, 1), (2, 2, 0), (2, 2, 1)}

are the vertices of a square in R
3.

Let σ and μ be cubical cells such that σ ∈ ∂μ. Let b(σ ) and b(μ) represent
the barycenter of cells σ and μ, respectively. Finally, denote the vector b(σ )b(μ) as
vσμ. For example, let σ = (0, 1) × (2) × (2, 3) and μ = (0, 1) × (2, 3) × (2, 3).

Then, vσμ = (
0, 1

2 , 0
)

as the barycenters are, respectively, b(σ ) =
(

1
2 , 2, 5

2

)
and

b(μ) =
(

1
2 , 5

2 , 5
2

)
.

Notice that the barycenter of a cubical cell is defined as

b(I1 × · · · × Ik) =
(

inf I1 + sup I1

2
, . . . ,

inf Ik + sup Ik

2

)
(17)

Definition 4 Let I : T k
n → {0, 1} be a binary k-D image. The tissue like P system

with promoters, inhibitors and priorities ΠCub is defined as

ΠCub = {Γ,Σ, E, w1,R, Pri, iin, iout}

where

– Γ = Γ0
– Σ = {Bi : i ∈ I−1(1)}
– E = Γ0
– w1 = ∅
– R is the following set of rules:

– R1 ≡ ({Bi : i ∈ gen(σ (l))} ¬{σl}|1, λ/σlCl , 0) for l ∈ I n,k

– R2 ≡
(
{σi , σ j } ¬{δ±

i j }|1, λ/δ±
i j , 0

)
for i, j ∈ I n,k and 〈σ(i), ∂σ ( j)〉 = ±1

– R3 ≡
(
{σi , σ j } ¬{U+

i j,d}|1, λ/U+
i j,d , 0

)
for i, j ∈ I n,k , 1 ≤ d ≤ k,

〈σ(i), ∂σ ( j)〉 �= 0 and vσ(i)σ ( j) · ud = 1
2

Note that ud is the d-th vector of the canonical base in R
k .

– Pri = ∅
– iin = iout = 1
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Theorem 4 Given a k-D binary image I, the corresponding P system ΠCub builds
the cubical complex for I in two computation steps.

Proof (Remark) Let I : T k
n → {0, 1} be a binary k-D image. Let K be the cubical

complex built from I. In the initial configuration, the first membrane consists on
objects Bi for i ∈ I−1(1). In this situation, only some rules in R1 can be selected,
because the other rules require the presence of objects σi . The rules in R1 that can
be selected are those for l ∈ I n,k such that all the points in gen(σ (l)) are in I−1(1).
Therefore, the first computation step builds the objects σl that represents cubical cells
in the complex and, also, introduce the mark for critical cells (Cl ).

In the second configuration, no rule in R1 can be selected since the proper objects
representing each cubical cell act as inhibitors for this rules. However, the rules in R2
and R3 are susceptible to be selected. In fact, the selected rules in R2 introduce into the
first membrane the objects that symbolize the boundary map (δ±

i j ). The selected rules in
R3 introduce the objects that mark the (positive) direction of the boundary barycentric
vector vσμ for every pair of cells σ,μ ∈ K such that σ ∈ ∂μ and vσμ · ud = 1

2 .
The application of rules in R2 and R3 prevent the selection of any other rule in

R2 or R3 any time, because the inserted objects act as inhibitors. Hence, the next
computation step (the third) makes the system reach the halting condition, inasmuch
as no rule can be selected. ��
Remark 1 If σ is in the boundary of μ, then both cells share all its intervals except
one, degenerated in σ and non-degenerated in μ. We suppose here that this interval is
the d-th. Then, all the coordinates of the vector vσμ are 0, except the d-th one, whose
value is 1

2 and, hence, vσμ = 1
2 ud .

Definition 5 Let K be a cubical complex and ∂ the associated boundary map. Let V
be a gradient vector field in K . The P system ΠFlow is defined as

ΠFlow = (Γ,Σ, E, w1,RFlow, Pri, iin, iout)

where

– The alphabet of objects is given by Γ = Γ0 ∪ {Ei j : i, j ∈ I n,k, i �= j}.
– The input alphabet is given by

Σ = {σi : i ∈ In,k(T(K ))} ∪ {δ±
i j : i, j ∈ In,k(T(K )) ∧ 〈σ(i), ∂σ ( j)〉 = ±1}

∪ {V ±
i j , Vi , Vj : i, j ∈ In,k(T(K )) ∧ V (σ (i)) = ±σ( j)}

∪ {Ci : i ∈ In,k(T(K )) ∧ V (σ (i)) = 0 ∧ V −1(σ (i)) = ∅}
∪ {Ei j : i, j ∈ In,k(T(K )) ∧ 〈σ( j), ∂V (σ (i))〉 �= 0 ∧ i �= j}

– The environment alphabet is given by E = Γ0.
– The set of rules R is given by

– R1 ≡
(
{σiσ jσlδ

s1
il δ

s2
jl V −s1

il } ¬{φiφ j }|1, λ/φ
−s1s2
i j φiφ j , 0

)
for i, j, l ∈ I n,k ,

i �= j �= l �= i and s1, s2 ∈ {+,−}
– R2 ≡ ({σi Ci } ¬{φ+

i i }|1, λ/φ+
i i , 0

)
for i ∈ I n,k
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– R3 ≡
(
{φs1

i1i2
V s2

i2 j1
φ

s3
j1 j2

}|1, Ei2 j1/φ
−s1s2s3
i j , 0

)
for i, j, l ∈ I n,k , s1, s2, s3 ∈

{+,−} and i �= j �= l �= i .

– R4 ≡
(
{δs1

li Ci C j } ¬{δ̃s1s2
j i }|1, φ

s2
l j /δ̃

s1s2
j i C̃i C̃ j σ̃i σ̃ j , 0

)
for i, j, l ∈ I n,k with

i �= j �= l �= i .

– R5 ≡
(

1, δ̃+
i j δ̃

−
i j /λ, 0

)
for i, j ∈ I n,k , i �= j .

– Pri = ∅
– iin = iout = 1.

Theorem 5 Let K ⊂ Kk∗,n be a cubical complex and V a gradient vector field in K .
The module ΠFlow computes the Morse complex for K associated to V in, at most,
4 + �log2 ν� computation steps, where ν ≤ nk is the length of the greatest V -path on
K .

Proof (Remark) The initial configuration for ΠFlow consists in all the elements that
codify the cubical complex K (objects σi for cubical cells and Ci marking critical
cells), its boundary map (objects δ±

i j ) and the gradient vector field (objects V ±
i j ). There

also are objects Ei j depicting that σi and σ j are distinct maximal faces in V (σi ). In
this situation, only rules in R1 and R2 can be selected, as the other rules require the
existence of objects φ±

i j introduced in the first membrane by these rules. The application

of rules R1 creates one object φ±
i j for each pair of cubical cells σi , σ j ∈ K such that

〈φ̃(σi ), σ j 〉 = ±1. Recall that φ̃ : C → C given by φ̃ = id +∂ ◦ V is the reduced
(discrete time) flow of the gradient vector field [13].

The application of rules R2 previously selected introduce objectsφ+
i i for each critical

cubical cell σi , representing that, for each critical cell μ is φ̃(μ) = μ. In the current
situation, the second configuration, only rules in R3, R4 or R5 are available to be
selected.

Recall that objects φ±
i j encodes the presence of a V -path from σi to σ j with multi-

plicity equals to ±1. Rules in R3 concatenate two V -paths γ and γ ′ if there is a cell σ

such that the ending cell of γ ′, named σ(i), the starting cell of γ lay on its boundary
and V (σ (i)) = σ . Hence, rules in R3 are applied until a maximal path is constructed.
This process needs, at most, log2 ν steps, where ν is the length of the longest maximal
V -path.

Rules in R4 get some objects from the environment, encoding the cells of the Morse
complex. Indeed, for each critical path from σi to σ j with multiplicity ±1, there is an
object φ±

i j , hence for each critical cubical cell σl with 〈σi , ∂σl〉 �= 0 there will be as

many objects φ±
i j as the number of critical V -paths from σi to σ j with multiplicity ±1,

respectively.
Finally, rules in R5 cancel pairs of objects δ̃+

i j , δ̃−
i j . The halting configuration of

ΠFlow has as many objects δ̃±
i j as the incidence of σi in the boundary of σ j .

Notice that the entire process needs, at most, 4 + �log2 ν� steps, where ν is the
length of the longest critical V -path. ��

In the following section, we show an example of the use of our framework by
designing a dP scheme for solving one Computational Algebraic Topology related
problem.
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5 dP systems for the calculation of the homology groups for a 3D binary image

We deal here with a membrane algorithm for computing an optimal gradient vector
field for a 3D digital object I. Working with a cubical “cellularization” K (I) of I, we
show that the critical cells of dimension p (p = 0, 1, 2, 3) of this particular gradient
vector field coincide with the pth Betti number of K (I).

Discrete Morse theory establishes a tool to simplify a cell complex6 while the
homology groups are kept. This can be used to calculate the homology groups of
appropriate cell complexes. Concretely, the technique explained below require the
complex to be torsion free.

An acyclic vector field over a cubical complex K is built, removing as many cubical
cells as possible. In case that the resulting Morse complex has non-null differential,
another acyclic vector field is constructed to accomplish the so called critical cell
cancellation (see section 11 in [13]). In this way, a sequence of Morse reductions is
built until a complex with null-differential is “reached”. To ensure the finiteness of
this process, the cubical complex has to be torsion free.

Figure 1 presents an example of the calculation of homology groups for a 2D cubical
complex. In this example the strategy presented above is shown. First, an acyclic vector
field is built such that almost every cubical p-cell σ is paired to one of its co-faces
μ (cubical (p + 1)-cell with σ ∈ ∂μ). The algorithm used to determine the acyclic
vector field returns two kind of critical cubical cells: on one hand, cubical p-cells
that represent a p-dimensional hole and, on the other hand, 1-cells that represents an
“step” configuration (as 〈P11, P12〉 or 〈P15, P16〉 in Fig. 1). Therefore, another acyclic
vector field is required to cancel these spurious critical cells. Notice that the first Morse
complex is not a cubical complex but a CW complex. However, it is usually much
more simpler than the original cubical complex.

For binary 3D images, it suffices to build up to two acyclic vector fields to calculate
an homotopically equivalent cell complex with null differential, which makes homol-
ogy group calculation trivial. In the paragraphs below, two P modules are defined to
perform this task: ΠVector and ΠVector2 .

Definition 6 Let I : T 3
n → {0, 1} be a k-D binary image. The module ΠVector is

defined as

ΠVector = {Γ,Σ, E, w1,R, Pri, iin, iout}
where

– Γ = Γ0
– Σ = {σi : i ∈ In,k(T(K (I)))}
– E = Γ0
– w1 = ∅
– R is the following set of rules:

– R1 ≡
(
¬{Vi Vj }|1, σiσ jδ

±
i j di pU+

i j,dCi C j/σiσ jδ
±
i j U

+
i j,d V ∓

i j Vi Vj , 0
)

for i, j ∈
I n,3, i �= j , 0 ≤ p ≤ 3 and 1 ≤ d ≤ 3

6 CW complex in [13] and cubical complex in this paper.
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These rules take a critical cubical p-cell (σi ), a critical cubical (p+1)-cell (σ j )
with σi ∈ ∂σ j and such that the barycentric vector vσi σ j is 1

2 ud . Then, objects
V ±

i j are brought from the environment (this represents that V (σi ) = ±σ j ) as
long as objects Vi and Vj (used to prevent that a cubical cell is used in two
different vectors in the vector field).

– The priorities are given by

Pri = {R1[i, j, p, d] > R1[i, j ′, p, d ′] : i, j, j ′ ∈ I n,3 ∧ 0 ≤ p ≤ 3 ∧ 1

≤ d < d ′ ≤ 3} ∪ {R1[i, j, p, d] > R1[i ′, j, p, d ′] : i, i ′, j ∈ I n,3 ∧ 0

≤ p ≤ 3 ∧ 1 ≤ d < d ′ ≤ 3} ∪ {R1[i, j, p, d] > R1[ j, j ′, p + 1, d ′] :
i, j, j ′ ∈ I n,3 ∧ 0 ≤ p ≤ 2 ∧ 1 ≤ d ≤ 3}

where R1[i, j, p, d] represents the corresponding instance of rule R1 for the given
values of the parameters.
The priorities in the first set are used to assign to a cubical cell σi a cubical cell σ j

with the corresponding barycentric vector parallel to the vector ud with the lowest
d as possible.
The priorities of the second kind are used to choose between two cubical cells σi

and σi ′ when another cubical cell σ j can be assigned to be the image by V . The
criteria is again to select the cubical cell with the lowest barycentric vector.
The last priority type is used to choose whether a cubical cell is chosen as the source
cell of a vector or the end cell of another. In this case it is used as the end cell.

– iin = iout = 1

Informally speaking, the vector field tries to “go” in the direction of u1. When it is not
possible to go in that direction, it is used u2 and, if it cannot be performed, u3 is used.
Hence, the flow of V can be thought as a waterfall going downside until it goes from
left to right and, finally, rear to back.

Definition 7 Let I : T 3
n → {0, 1} be a k-D binary image. The module ΠVector2 is

defined as

ΠVector2 = {Γ,Σ, E, w1,R, Pri, iin, iout}

where

– Γ = Γ0
– Σ = {σi : i ∈ In,k(T(M))} where M is the Morse complex built from the acyclic

vector field created by ΠVector.
– E = Γ0
– w1 = ∅
– R is the following set of rules:

– R1 ≡
(
¬{Vi Vj }|1, σiσ jδ

±
i j Ci C j/σiσ jδ

±
i j V ∓

i j Vi Vj V, 0
)

for i, j ∈ I n,3, i �= j .

These rules take two cells that can be used to build a vector and create that
vector. Notice that, once a cell is used in a vector, it will not be used in another.
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– Pri = ∅.
– iin = iout = 1

This P module cancels pairs of critical cells of ΠVector due to the previously men-
tioned “step” configuration.

The d P scheme

ΔBin3DHom = (Γ0,Σ,ΠCub,ΠVector,ΠFlow,ΠVector2 ,R, iin, iout)

with four modules defined below, computes the homology groups for the cubical
complex generated from I.

– Σ = {Bi : i ∈ I−1(1)}
– The modules are given by

ΠCub This module builds a cubical complex from the 3D binary image I.
ΠVector This module creates a maximal acyclic vector field.
ΠFlow This module determines the Morse complex associated to the vector

field created above.
ΠVector2 This module creates a maximal acyclic vector field in the Morse com-

plex.
– The distribution rules are given by

– R1 ≡ (Cub, σi Ci → σi Ci , Vector) for i ∈ I n,3

– R2 ≡
(

Cub, δ±
i j → δ±

i j , Vector
)

for i, j ∈ I n,3

– R3 ≡
(

Cub, U+
i j,d → U+

i j,d , Vector
)

for i, j ∈ I n,3 and 1 ≤ d ≤ 3

– R4 ≡ (
Cub, di p → di p, Vector

)
for i ∈ I n,3 and 0 ≤ p ≤ 3

– R5 ≡ (Vector, σi → σi , Flow) for i ∈ I n,3
– R6 ≡ (Vector, Ci → Ci , Flow) for i ∈ I n,3

– R7 ≡
(

Vector, δ±
i j → δ±

i j , Flow
)

for i, j ∈ I n,3, i �= j

– R8 ≡ (
Vector, di p → di p, Flow

)
for i ∈ I n,3 and 0 ≤ p ≤ 3

– R9 ≡
(

Vector, V ±
i j → V ±

i j , Flow
)

for i, j ∈ I n,3, i �= j

– R10 ≡
(

Flow, σ̃i C̃i → σi Ci , Vector2

)
for i ∈ I n,3

– R11 ≡
(

Flow, δ̃±
i j → δ±

i j , Vector2

)
for i, j ∈ I n,3, i �= j

– R12 ≡ ({V }|Vector2, σi → σi , Flow) for i ∈ I n,3
– R13 ≡ ({V }|Vector2, Ci → Ci , Flow) for i ∈ I n,3

– R14 ≡
(
{V }|Vector2, δ

±
i j → δ±

i j , Flow
)

for i, j ∈ I n,3, i �= j

– R15 ≡
(
{V }|Vector2, V ±

i j → V ±
i j , Flow

)
for i, j ∈ I n,3, i �= j

– iin = Cub, iout = Vector2

The modules ΠV ector and ΠVector2 are the only modules that do not rely on the
framework. In other words, the user of the framework only has to deal, most of the 
times, with writing modules for calculating acyclic vector fields, as the tasks for 
building the cubical complex associated to the binary image and the building of the 
Morse complex associated to it, are left to the framework.
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Theorem 6 The dP scheme ΔBin3DHom defined above calculates the homology groups
for a given binary 3D image I : T 3

n → {0, 1} in O(log2n) computation steps.

Proof (Remark) The result is proved by following the behavior of the dP scheme
ΔBin3DHom for an input image I. First of all, the input alphabet for ΠCub is set up
from I as ΠCub is the input module. No distribution rules can be selected until one
module reaches its halting stage. By Theorem 4, ΠCub halts in two steps. Then, the
only distribution rules that can be selected are R1, R2, R3 and R4. After it application,
the module ΠVector starts calculating a vector field.

Rules R1 inΠVector build a vector from a cellσi to a co-faceσ j . The priorities ensures
that all the p-cells are mapped by V , the vector field, to a p + 1-cell, prioritizing that
the vector joining its barycenter has as lowest index as possible. Also, the rules ensure
that the vector field is acyclic, as all the vectors are “parallel” to the vectors in the
canonical base in R

3 with positive direction. This work is done in only one computation
step. This way of building a vector field creates two kind of critical cells. First of all,
there are critical cells due to homology generators. Second, there are critical cells
due to “steps” in the cubical complex. In Fig. 1a, the cells 〈P11, P16〉 and 〈P11, P12〉
are in such position. It looks somewhat an “step” in a stair in a bottom view. This
configuration of critical cell is due to the priority relation among rules in ΠVector.
Hence, we have two kinds of critical cells, those representing an homology generator
and those cells that must have to be canceled in later computation steps.

Once ΠVector halts, the only distribution rules that can be selected are R5 to R9,
sending objects to ΠFlow. Concretely, those rules send cells (σi ), boundary map (δ±

i j ),

critical cells (Ci ) and vector field V ±
i j .

Module ΠFlow calculates the Morse complex associated to the previous vector field
in, at most, 4+3 log2(n−1). To prove this note that the longest V -path in a 3D cubical
complex with, at most, (n − 1)3 1-cells have length, at most, (n − 1)3 and, then, use
Theorem 5.

Once the Morse complex is built, it is sent to the module ΠVector2 by distribution
rules R10 and R11. This module builds an acyclic vector field that “removes” all the
cells that do not represent an homology generator. This computation is completed in
only one step. If some vector field is built, which means that there are cells that can be
canceled, at least one object V comes from the environment that ensures the selection
and application of distribution rules R12 to R15, sending the Morse complex and the
gradient vector field to the module ΠFlow, where another Morse complex is built and
sent to ΠVector2 .

Once the second Morse complex has came to ΠVector2 the dP scheme ΔBin3DHom

reaches the halting state, as no other distribution rule can be selected. This takes place
as the only critical cells that are not homology generators are 1-cells that are in a
“step” configuration, and those cells are removed by the second vector field. Formally,
we have reduced the initial cubical complex to another complex with null differential,
which means that all the cells are generators of the homology groups.

Recall that the sum of the computation steps required by each module is, in the
worst case, at most 12 + 6log2(n − 1), which is O(log2 n). ��

The full calculation process of homology groups can be followed in Fig. 1. The
module ΠCub builds the cubical complex in Fig. 1a in two computation steps. Then,
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the module ΠV ector builds the acyclic vector field in Fig. 1b in one computation step.
Following, the module ΠFlow constructs the (first) Morse complex in 7 steps (because
the longest V -path in the complex has length 6). Figure 1c shows the two kinds of
critical cells. On one hand, P19 is a critical 0-cell due to an homology generator. On the
other hand, P12 and P16 are 0-cells due to “step” configuration. 〈P5, P6〉 is a critical
1-cell due to “hole” while 〈P11, P12〉 and 〈P15, P16〉 are critical 1-cells originated by
a “step” configuration. Next, the module ΠVector2 specify, in one computation step,
another acyclic vector field in the complex in Fig. 1d which leads to the computation in
5 computation steps of the homological complex in Fig. 1e, that has null differential,
so that all the cells are homology generators.

6 Conclusions and future work

In this paper a theoretical massively parallel framework to develop algorithms in
homological analysis of 3D imagery has been presented. We focus our study in 3D
digital images, due to the fact that “linear topology” or homology information can
incorporate torsion algebraic data in higher dimension beyond classical DMT context.
In fact, the computatibity problem of torsion homology subgroups for kD (k ≥ 4)
digital objects is a priority at long-term for this incipient and worthwhile research
line.

At short term, we intend to implement this set of algorithms in massively parallel
hardware as graphics cards supporting CUDA. We also work on applications of our
parallel theoretical framework to other image processing tasks, as segmentation or
skeletonization.

We are also interested in the representational power of our framework, as a parallel
implementation of the works of Real and Molina-Abril [21,28].
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