
P-Lingua: A Programming Language
for Membrane Computing

Daniel Dı́az–Pernil, Ignacio Pérez–Hurtado,
Mario J. Pérez–Jiménez, Agust́ın Riscos–Núñez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mails:{sbdani,perezh,marper,ariscosn}@us.es

Summary. Software development for cellular computing has already been addressed,
yielding a first generation of applications. In this paper, we develop a new programming
language: P-Lingua. Furthermore, we present a simulator for the class of recognizing P
systems with active membranes. We illustrate it by giving a solution to the SAT problem
as an example.

1 Introduction

Membrane computing (or cellular computing) is an emerging branch within natural
computing that was introduced by Gh. Păun [4]. The main idea is to consider
biochemical processes taking place inside living cells from a computational point
of view, in a way that gives us a new nondeterministic model of computation by
using cellular machines.

Since the model was presented, many software applications have been produced
(see [2], [10]). The common purpose of all of these software applications is to
simulate P systems devices (cellular machines), and hence the designers have faced
similar difficulties. However, these systems were usually focused on, and adapted
for, particular cases, making it difficult to work on generalizations.

In order to give the first steps towards a next generation of applications, it
is convenient to agree on some standards (specifications that regulate the perfor-
mance of specific processes in order to guarantee their interoperability) and to
implement the necessary tools and libraries.

When designing software for membrane computing, one has to describe pre-
cisely the P systems specification that is to be used. This task is hard if we need
to handle families of P systems where the set of rules, the alphabet, the initial
contents and even the membrane structure depend on the value assigned to some
initial parameters. In existing software, several options have been implemented:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

136 D. Dı́az–Pernil et al.

plain text files with a determined format, XML documents, graphical user inter-
faces, etc. As mentioned above, most of these solutions are adapted to specific
models or to the specific purpose of the software.

In this paper we propose a programming language, called P-Lingua, whose
programs define families of P systems in a parametric and modular way. After
assigning values to the initial parameters, the compilation tool generates an XML
document associated with the corresponding P system from the family, and fur-
thermore it checks possible programming errors (both lexical/syntactical and se-
mantical). Such documents can be integrated into other applications, thus guar-
anteeing interoperability. More precisely, in the simulators framework, the XML
specification of a P system can be translated into an executable representation.

We present a practical application of P-Lingua in this paper. We give a simula-
tor for recognizing P systems with active membranes that accepts as input an XML
document generated by the compiler and that allows us to simulate a computation
of the P system, obtaining the answer that the system outputs to its environment,
plus a text file with a detailed step-by-step report of the computation.

The paper is structured as follows. In Section 2 several definitions and con-
cepts are given for the sake of completeness of the paper. Section 3 introduces the
P-Lingua programming language, and the syntax for P systems with active mem-
branes is specified. In Section 4 we implement a solution to the SAT problem using
P-Lingua. In Section 5 the compilation tool for the language is presented. Finally,
Section 6 presents a simulator for recognizing P systems with active membranes.
The paper ends with some conclusions and ideas for future work in Section 7.

2 Preliminaries

Polynomial time solutions to NP-complete problems in membrane computing are
produced by trading time for space. This is inspired by the capability of cells to
produce an exponential number of new membranes (new workspace) in polynomial
time. Basically, there are two ways of producing new membranes in living cells:
mitosis (membrane division) and autopoiesis (membrane creation). Both ways of
generating new membranes have given rise to different variants of P systems: P sys-
tems with active membranes, where the new workspace is generated by membrane
division, and P systems with membrane creation, where the new membranes are
created from objects. Both models were proved to be computationally universal.

In this paper, we use the first variant mentioned above. Recall that a P system
with active membranes is a construct of the form Π = (O, H, µ, ω1, . . . , ωm, R),
where m ≥ 1 is the initial degree of the system; O is the alphabet of objects, and
H is a finite set of labels for membranes; µ is a membrane structure, consisting of
m membranes injectively labelled with elements of H, and ω1, . . . , ωm are strings
over O, describing the multisets of objects placed in the m regions of µ; R is a
finite set of rules, where each rule is of one of the following forms:

P-Lingua: A Programming Language for Membrane Computing 137

(a) [a → v]αh where h ∈ H, α ∈ {+,−, 0} (electrical charges), a ∈ O and v is
a string over O describing a multiset of objects associated with membranes
and depending on the label and the charge of the membranes (object evolution
rules).

(b) a []αh → [b]βh where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-in communication
rules). An object is introduced in the membrane, possibly modified, and the
initial charge α is changed to β.

(c) [a]αh → []βhb where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-out communication
rules). An object is sent out of the membrane, possibly modified, and the
initial charge α is changed to β.

(d) [a]αh → b where h ∈ H, α ∈ {+,−, 0}, a, b ∈ O (dissolution rules). A mem-
brane with a specific charge is dissolved in reaction with a (possibly modified)
object.

(e) [a]αh → [b]βh [c]γh where h ∈ H, α, β, γ ∈ {+,−, 0}, a, b, c ∈ O (division rules).
A membrane is divided into two membranes. The objects inside the membrane
are replicated, except for a, that may be modified in each membrane.

Rules are applied according to the following principles:

• Rules from (a) to (e) are used as is usual in the framework of membrane com-
puting, i.e. in a maximal parallel way. In one step, each object in a membrane
can only be used for one rule (non-deterministically chosen), but any object
which can evolve by a rule must do it (with the restrictions indicated below).

• If a membrane is divided each object a in a membrane labelled with h and with
charge α is divided into two membranes with label h, and one membrane has
charge β and the second membrane has charge γ. The objects are replicated,
but a can be modified in each membrane.

• If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external one. The skin is never dissolved.

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• Rules associated with label h are used for all membranes with this label, irre-
spective of whether the membrane is an initial one or whether it was created.

• Rules (b) to (e) can not be applied simultaneously in a membrane in one com-
putation step.

Recognizing P systems were introduced in [5], and are the natural framework
to study and solve decision problems, since deciding whether an instance has an
affirmative or negative answer is equivalent to deciding if a string belongs or not
to the language associated with the problem.

In the literature, recognizing P systems are associated in a natural way with P
systems with input. The data related to an instance of the decision problem has
to be provided to the P system in order for it to compute the appropriate answer.
This is done by codifying each instance as a multiset placed in an input membrane.
The output of the computation, yes or no, is sent to the environment.

138 D. Dı́az–Pernil et al.

A P system with input is a tuple (Π, Σ, i
Π

), where: (a) Π is a P system, with
working alphabet Γ , with p membranes labelled by 1, . . . , p, and initial multisets
ω1, . . . , ωp associated with them; (b) Σ is an (input) alphabet strictly contained
in Γ ; the initial multisets are over Γ \Σ; and (c) i

Π
is the label of a distinguished

(input) membrane.
Let m be a multiset over Σ. The initial configuration of (Π, Σ, i

Π
) with input

m is (µ, ω1, . . . , ωi
Π

+ m, . . . , ωp).
A recognizing P system is a P system with input, (Π, Σ, iΠ), and with external

output such that:

(a) The working alphabet contains two distinguished elements, yes and no.
(b) The system always halts.
(c) If C is a computation of Π, then either some object yes or some object no

(but no both) must be released into the environment, and only in the last step
of the computation.

We say that C is an accepting computation (respectively, rejecting computation)
if the object yes (respectively, no) appears in the external environment associated
with the corresponding halting configuration of C.

In this paper, we present a programming language to define P systems with
active membranes. A programming language is an artificial language that can be
used to control the behavior of a machine, particularly a computer, but it can be
used also to define a model of a machine that can be translated into an executable
representation by a simulation tool. The act of simulating something generally
entails representing certain key characteristics or behaviours of some physical, or
abstract, system. Do not confuse a simulation tool with an emulation tool: the
second one duplicates the functions of one system by using a different system, so
that the second system behaves like (and appears to be) the first system. With
the actual technology, we can not emulate the functionality of a cellular machine
by using a conventional computer to resolve NP problems in polynomial time,
but we can simulate these cellular machines, not necessarily in polynomial time,
in order to aid researchers.

Programming languages, like natural languages, are defined by syntactic and
semantic rules which describe their structure and meaning respectively. Usually,
they are asociated with compilation tools that are computer programs that trans-
lates text written in a programming language into another language. The original
sequence is usually called the source code whereas the output called the object
code. Commonly the output has a form suitable for being processed by other pro-
grams or for being executed by the computer, but it may be a human-readable
text file. In this paper, we use an XML language-like object code. The Extensible
Markup Language (XML) is a general-purpose specification for creating custom
markup languages. It is classified as an extensible metalanguage because it allows
its users to define their own elements. Its primary purpose is to facilitate the shar-
ing of structured data across different information systems. The files written by
using a specific XML language are called XML documents.

P-Lingua: A Programming Language for Membrane Computing 139

The P system computations are massively parallel. One of the most common
programming methods to simulate real parallelism in a conventional computer with
a single processor is to use multithreading. A thread in this sense is a thread of
execution. Threads are a way for a program to fork (or split) itself into two or more
simultaneously (or pseudo-simultaneously) running tasks. Multiple threads can be
executed in parallel on a single computer. This multithreading generally occurs by
time-division multiplexing where the processor switches between different threads.
This context switching can happen so fast as to give the illusion of parallelism to
an end-user. On a multiprocessor or multi-core system, threading can be achieved
via multiprocessing, wherein different threads can literally run simultaneously on
different processors or cores.

3 The P-Lingua programming language

3.1 Syntax for P systems with active membranes

What follows is the syntax of the language for P systems with active membranes
(whose description can be found in [6] and [1] among others.)

Valid identifiers

We say that a sequence of characters forms a valid identifier if it does not
begin with a numeric character and it is composed by characters from the following:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

Valid identifiers are widely used in the language: to define module names,
parameters, indexes, membrane labels and alphabet objects.

The following text strings are reserved words in the language: def, call,
@mu, @ms, main, -->, # and they cannot be used as valid identifiers.

Identifiers for electrical charges

In P-Lingua, we can consider electrical charges by using the + and - symbols for
positive and negative charges respectively, and no one for neutral charge. It is
worth mentioning that polarizationless P systems are included.

Data types

Two data types exist in P-Lingua:

• Integer numbers: We use 32 bits (signed) to store integer values, this allows
a range from -2,147,483,648 to 2,147,483,647 for indexes and parameters.

• Text strings: These are valid identifiers that are used to define the alphabet
objects and the membrane labels of a P system.

140 D. Dı́az–Pernil et al.

Variables

Two kind of variables are permitted in P-Lingua:

• indexes

• Parameters

Variables are used to store numeric values and their names are valid identifiers.

Numeric expressions

Numeric expressions can be written by using the * (multiplication), / (division),
% (module), + (addition), - (subtraction) operators with integer numbers or vari-
ables, along with the use of parentheses.

Objects

The objects of the alphabet of a P system are written using valid identifiers, and
the inclusion of sub-indexes is permitted. For example, xi,2n+1 and Y es are written
as x{i,2*n+1} and Yes respectively.

The multiplicity of an object is represented by using the * operator. For ex-
ample, x2n+1

i is written as x{i}*(2*n+1).

Modules definition

Similarities between various solutions to NP-complete numerical problems by us-
ing families of recognizing P systems are discussed in [3]. Also, a cellular program-
ming language is proposed based on libraries of subroutines. Using these ideas,
a P-Lingua program consists of a set of programming modules that can be used
more times by the same, or other, programs.

The syntax to define a module is the following.

def module_name(param1,..., paramN)
{

sentence0;
sentence1;
...
sentenceM;

}

The name of a module, module name, must be a valid and unique identifier.The
parameters must be valid identifiers and cannot appear repeated. It is possible to
define a module without parameters. Parameters have a numerical value that is
assigned at the module call (see below).

All programs written in P-Lingua must contain a main module without param-
eters. The compiler will look for it when generating the XML file.

P-Lingua: A Programming Language for Membrane Computing 141

In P-Lingua there are sentences to define the membranes configuration of a P
system, to specify multisets, to define rules and to make calls to other modules.
Next, let us see how such sentences are written.

Module calls

In P-Lingua, modules are executed by using calls. The format of an sentence that
calls a module for some concrete values of its parameters is given next:

call module name(value1, ..., valueN);

where valuei is an integer number or a variable.

Definition of the initial membrane structure of a P system

In order to define the initial membrane structure of a P system, the following
sentence must be written:

@mu = expr;

where expr is a sequence of matching square brackets representing the membrane
structure, including some identifiers that specify the label and the electrical charge
of each membrane.

Examples:

1. [[]02]
0
1 ≡ @mu = [[]’2]’1

2. [[]0b []
−
c]+a ≡ @mu = +[[]’b, -[]’c]’a

Definition of multisets

Next sentence defines the initial multiset associated to the membrane labelled by
label.

@ms(label) = list of objects;

where label is a valid identifier or a natural number that represents a label of
the structure of membranes and list of objects is a comma-separated list of
objects. The character # is used to represent the empty multiset.

Union of multisets

P-Lingua allows to define the union of two multisets (recall that the input multiset
is “added” to the initial multiset of the input membrane) by using an sentence with
the following format.

@ms(label) += list of objects;

142 D. Dı́az–Pernil et al.

Definition of rules

1. The format to define evolution rules of type [a → v]αh is given next:

α[a --> v]’h

2. The format to define send-in communication rules of type a []αh → [b]βh is given
next:

aα[]’h -->β[b]

3. The format to define send-out communication rules of type [a]αh → b[]βh is
given next:

α[a]’h --> β[]b

4. The format to define division rules of type [a]αh → [b]βh[c]γh is given next:

α[a]’h -->β[b]γ[c]

5. The format to define dissolution rules of type [a]αh → b is given next:

α[a]’h --> b

where:

• α, β and γ are identifiers for electrical charges.
• a, b and c are objects of the alphabet.
• v is a comma-separated list of objects that represents a multiset.
• h is a label.

Some examples:

• [xi,1 → r4
i,1]

+
2 ≡ +[x{i,1} --> r{i,1}*4]’2

• dk[]02 → [dk+1]02 ≡ d{k}[]’2 --> [d{k+1}]
• [dk]+2 → []02dk ≡ +[d{k}]’2 --> []d{k}
• [dk]02 → [dk]+2 [dk]−2 ≡ [d{k}]’2 --> +[d{k}]-[d{k}]
• [a]−2 → b ≡ -[a]’2 --> b

Parametric sentences

In P-Lingua, it is possible to define parametric sentences by using the next format:

sentence : range1, ..., rangeN;

where sentence is a sentence of the language, or a sequence of sentences in brack-
ets, and range1, ..., rangeN is a comma-separated list of ranges with the for-
mat:

min value <= index <= max value

P-Lingua: A Programming Language for Membrane Computing 143

where min value and max value are numeric expressions, integer numbers or vari-
ables, and index is a variable that can be used in the context of the sentence. It
is possible to use the operator < instead of <=.

The sentence will be repeated for each possible values of each index.
Some examples of parametric sentences:

1. [dk]02 → [dk]+2 [dk]−2 : 1 ≤ k ≤ n ≡
[d{k}]’2 --> +[d{k}]-[d{k}] : 1<= k <= n;

2. [xi,j → xi,j−1]+2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n ≡
+[x{i,j} --> x{i,j-1}]’2 : 1<=i<=m,2<=j<=n;

Inclusion of comments

The programs in P-Lingua can be commented by writing phrases into the text
strings /* and */.

4 Implementation of a solution to SAT problem

SAT problem is the following: Given a boolean formula in conjunctive normal
form (CNF), to determine whether or not it is satisfiable, that is, whether there
exists an assignment to its variables on which it evaluates to true.

4.1 A solution to SAT

In this section, we present a solution to the SAT problem using recognizing P
systems with active membranes, given by M.J. Pérez–Jiménez et al. [6].

For each (m,n) ∈ N2, we consider the P system

(Π(〈m, n〉), Σ(m,n), i(m,n))

where

• Σ(m,n) = {xi,j , x̄i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
• i(m,n) = 2
• Π(〈m,n〉) = (Γ (m,n), {1, 2}, [[]2]1, w1, w2, R), is defined as follows:

– Γ (m,n) = Σ(m,n) ∪ {ck : 1 ≤ k ≤ m + 2} ∪
{dk : 1 ≤ k ≤ 3n + 2m + 3} ∪
{ri,k : 0 ≤ i ≤ m, 1 ≤ k ≤ m + 2} ∪ {e, t} ∪ {Y es, No}

– w1 = ∅
– w2 = {d1}

144 D. Dı́az–Pernil et al.

– The set of rules, R, is given by:

{[dk]02 → [dk]+2 [dk]−2 : 1 ≤ k ≤ n}
{[xi,1 → ri,1]+2 , [x̄i,1 → ri,1]−2 : 1 ≤ i ≤ m}
{[xi,1 → λ]−2 , [x̄i,1 → λ]+2 : 1 ≤ i ≤ m}
{[xi,j → xi,j−1]+2 , [xi,j → xi,j−1]−2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n}
{[x̄i,j → x̄i,j−1]+2 , [x̄i,j → x̄i,j−1]−2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n}
{[dk]+2 → []02dk, [dk]−2 → []02dk : 1 ≤ k ≤ n}
{dk[]02 → [dk+1]02 : 1 ≤ k ≤ n− 1}
{[ri,k → ri,k+1]02 : 1 ≤ i ≤ m, 1 ≤ k ≤ 2n− 1}
{[dk → dk+1]01 : n ≤ k ≤ 3n− 3}; [d3n−2 → d3n−1e]01
e[]02 → [c1]+2 ; [d3n−1 → d3n]01
{[dk → dk+1]01 : 3n ≤ k ≤ 3n + 2m + 2}
[r1,2n]+2 → []−2 r1,2n ; {[ri,2n → ri−1,2n]−2 : 1 ≤ i ≤ m}
r1,2n[]−2 → [r0,2n]+2
{[ck → ck+1]−2 : 1 ≤ k ≤ m}
[cm+1]+2 → []+2 cm+1 ; [cm+1 → cm+2t]01
[t]01 → []+1 t ; [cm+2]+1 → []−1 Y es ; [d3n+2m+3]01 → []+1 No

4.2 Implementation

The following is the code of the program written in P-Lingua that encodes a
solution to the SAT problem.

Objects of the form x̄i,j are written as nx{i,j}.
/* Module that defines a family of recognizing P systems

to solve the SAT problem */
def Sat(m,n)
{
/* Initial configuration */
@mu = [[]’2]’1;

/* Initial multisets */
@ms(2) = d{1};

/* Set of rules */
[d{k}]’2 --> +[d{k}]-[d{k}] : 1 <= k <= n;

P-Lingua: A Programming Language for Membrane Computing 145

{
+[x{i,1} --> r{i,1}]’2;
-[nx{i,1} --> r{i,1}]’2;
-[x{i,1} --> #]’2;
+[nx{i,1} --> #]’2;

} : 1 <= i <= m;

{
+[x{i,j} --> x{i,j-1}]’2;
-[x{i,j} --> x{i,j-1}]’2;
+[nx{i,j} --> nx{i,j-1}]’2;
-[nx{i,j} --> nx{i,j-1}]’2;

} : 1<=i<=m, 2<=j<=n;

{
+[d{k}]’2 --> []d{k};
-[d{k}]’2 --> []d{k};

} : 1<=k<=n;

d{k}[]’2 --> [d{k+1}] : 1<=k<=n-1;
[r{i,k} --> r{i,k+1}]’2 : 1<=i<=m, 1<=k<=2*n-1;
[d{k} --> d{k+1}]’1 : n <= k<= 3*n-3;
[d{3*n-2} --> d{3*n-1},e]’1;
e[]’2 --> +[c{1}];
[d{3*n-1} --> d{3*n}]’1;
[d{k} --> d{k+1}]’1 : 3*n <= k <= 3*n+2*m+2;
+[r{1,2*n}]’2 --> -[]r{1,2*n};
-[r{i,2*n} --> r{i-1,2*n}]’2 : 1<= i <= m;
r{1,2*n}-[]’2 --> +[r{0,2*n}];
-[c{k} --> c{k+1}]’2 : 1<=k<=m;
+[c{m+1}]’2 --> +[]c{m+1};
[c{m+1} --> c{m+2},t]’1;
[t]’1 --> +[]t;
+[c{m+2}]’1 --> -[]Yes;
[d{3*n+2*m+3}]’1 --> +[]No;

} /* End of Sat module */

/* Main module */
def main()
{
/* Call to Sat module for m=4 and n=6 */
call Sat(4,6);
/* Expansion of the input multiset */

146 D. Dı́az–Pernil et al.

@ms(2) += x{1,1}, nx{1,2}, nx{2,2}, x{2,3},
nx{2,4}, x{3,5}, nx{4,6};

} /* End of main module */

The module main is instantiated with the formula

ϕ ≡ (x1 + x2)(x2 + x3 + x4) x5 x6

where n = 6, m = 4 and the input multiset: x1,1, x1,2, x2,2, x2,3, x2,4, x3,5, x4,6.

5 The P-Lingua compiler

A compiler is a program that translates code written in some computer language to
another language. We have developed a compiler that is able to translate programs
written in P-Lingua into XML documents, after having assigned values to some
initial parameters. Recall that a P-Lingua program can, in a flexible way, encode
a family of P systems (with the help of some parameters), whereas the XML
document generated by the compiler specifies only a single P system of the family.
In this way, the applications do not need to process parametric systems, and hence
their implementation is much easier.

The choice of the metalanguage XML is due to the fact that it is a broadly
known standard, that has the following advantages:

• It is extensible. After having an XML specification designed, one can extend it
by adding new labels, allowing in this way compatibility with earlier versions.

• The analyzer is a generic component, it is not necessary to create a new one
for each XML specification. This avoids errors and speeds up the development
of applications.

• The structure of the language is easy to understand and to process, facilitating
compatibility with earlier versions.

5.1 An XML language for P systems with active membranes

The structure of the XML documents generated by the P-Lingua compiler for P
systems with active membranes is as follows:

<?xml version="1.0"?>
<active_membrane_psystem version="1.0">

<init_config>
...
</init_config>

P-Lingua: A Programming Language for Membrane Computing 147

<multisets>
...
</multisets>

<rules>
...
</rules>

</active_membrane_psystem>

The main element is named active membrane psystem, and it has an attribute
indicating the version of the specification. There are three internal elements:

• init config: defines the membrane structure of the initial configuration.

• multisets: defines the initial multisets.

• rules: defines the set of rules.

Definition of the membrane structure of the initial configuration

Next, we describe the element init config corresponding to the membrane struc-
ture [[]+e []−r]0s .

<init_config>
<membrane label="s" charge="0">
<membrane label="e" charge="+1"/>
<membrane label="r" charge="-1"/>

</membrane>
</init_config>

init config allows a recursive representation of a membrane structure. The
element membrane has two attributes: label, which indicates the label of the mem-
brane, and charge, which can take values 0, +1 or -1 and indicates the membrane
polarization.

Definition of initial multisets

Multisets of objects present in membranes are defined through the element
multisets. Let us consider the following example: we = e0, g1, ws = z3

1 and
wr = h0, b0 .

<multisets>
<multiset label="e">
<object name="e{0}" multiplicity="1"/>

148 D. Dı́az–Pernil et al.

<object name="g{1}" multiplicity="1"/>
</multiset>
<multiset label="s">
<object name="z{1}" multiplicity="3"/>

</multiset>
<multiset label="r">
<object name="h{0}" multiplicity="1"/>
<object name="b{0}" multiplicity="1"/>

</multiset>
</multisets>

As it can be seen in the example, the element multisets is composed of several
elements of type multiset, each of them having an attribute label indicating
the label of the membrane where the multiset is contained. The objects present
in the multiset are represented by elements of type object with two attributes:
name indicates the symbol naming the object, and multiplicity indicates the
multiplicity of the object in the multiset.

Definition of the set of rules

Let us consider the following set of rules:

• [c9 → c10t]01
• [r1,16]+2 → []−2 r1,16

• r1,16[]−2 → [r0,16]+2
• [d0]02 → [d0]+2 [d0]−2
• [a]0e → b

The element rules is described as follows:

<rules>
<evolution_rule label=1" charge="0">
<left_hand_rule object="c{9}"/>
<right_hand_rule object="c{10}" multiplicity="1"/>
<right_hand_rule object="t" multiplicity="1"/>

</evolution_rule>
<send_out_rule label="2" charge="+1">
<left_hand_rule object="r{1,16}"/>
<right_hand_rule object="r{1,16}" charge="-1"/>

</send_out_rule>
<send_in_rule label="2" charge="-1">
<left_hand_rule object="r{1,16}"/>
<right_hand_rule object="r{0,16}" charge="+1"/>

P-Lingua: A Programming Language for Membrane Computing 149

</send_in_rule>
<division_rule label="2" charge="0">
<left_hand_rule object="d{0}"/>
<right_hand_rule object="d{0}" charge="+1"/>
<right_hand_rule object="d{0}" charge="-1"/>

</division_rule>
<dissolution_rule label="e" charge="0">
<left_hand_rule object="a"/>
<right_hand_rule object="b"/>

</dissolution_rule>
</rules>

Within the element rules we can find five different types of ele-
ments: evolution rule, send in rule, send out rule, division rule and
dissolution rule. All of them contain two attributes: label and charge, in-
dicating the label and polarization of the membranes to which the rule can be
applied.

Besides, there exists an internal element called left hand rule with an at-
tribute called object containing the name of the object that triggers the rule.

For the case of evolution rules, the compiler generates one or more ele-
ments of type right hand rule, each of them having two attributes object and
multiplicity expressing the name of the object produced by the rule, and the
number of copies obtained.

Communication rules have only one element right hand rule with the name
of the resulting object and the polarization that the membrane gets after applying
the rule.

For division rules, there are two elements right hand rule, indicating the
objects obtained in the two resulting membranes, as well as their respective po-
larizations.

Finally, for dissolution rules, only one element right hand rule showing the
name of the object that is obtained.

5.2 The compilation tool

The P-Lingua compiler (version 1.0) and its source code can be freely downloaded
from the software section in the website of the Research Group on Natural Com-
puting [11]. The compiler is under GPL license [7] and is written in Java [8] using
the lexical and syntactical analyzers provided by JavaCC [9]. The minimum sys-
tem requirements are having a Java virtual machine (JVM) version 1.6.0 running
in a Pentium III computer.

The compilation tool is a program that may be exectuted from the command
line as follows:

plingua input file -xml output file [-v verbosity level] [-h]

150 D. Dı́az–Pernil et al.

The text file input file contains the program (written in P-Lingua) that we want
to be compiled, and output file is the name of the XML file that is generated.
Optional arguments are in brackets: verbosity level is a number between 0 and 5
indicating the level of detail of the messages shown during the compilation process,
and the option -h displays some help information.

6 A simulator for recognizing P systems with active
membranes

As a first practical application of the P-Lingua programming language, we have
implemented a simulator for recognizing P systems with active membranes that
takes as input an XML document generated by the P-Lingua compiler and runs
one of the possible computations that the P system may follow, obtaining the
answer that the system outputs to its environment, plus a text file with a detailed
step-by-step report of the computation.

This simulator is again a Java program under GPL license that can be freely
downloaded from the software section in the web of the Research Group on Natural
Computing [11]. The system requirements are the same as in the case of the P-
Lingua compiler.

The simulator is launched from the command line as follows:

plingua sim input xml [-o output file]

where input xml is an XML document formatted as discussed in this paper, and
output file is the name of the file where the report about the simulated compu-
tation will be saved.

6.1 Simulation of a solution to SAT problem

We now show an execution of the simulator running on the XML document ob-
tained after compiling the P-Lingua program described in Section 4.2. The results
have been obtained on an AMD Sempron machine, at 2.8 Ghz and with 512Mb of
RAM memory.

The command used to execute the simulation is:

plingua sim sat.xml -o info.txt

The simulation ends when no more rules can be applied, and then the following
information is displayed:

Environment: t, Yes
Steps: 41
Time: 1.971 s.
Halting configuration (No rule can be selected to be executed
in the next step)

P-Lingua: A Programming Language for Membrane Computing 151

Thus, the computation of the P system lasted 41 transition steps, and it took
1,971 seconds to simulate it until reaching a halting configuration (recall that we
are simulating a parallel device on a sequential computer).

The file info.txt keeps detailed information about each configuration of the
simulated computation. More precisely, the multisets and polarizations of all the
membranes are listed, as well as the rules selected for execution at each transition
step. The configurations are numbered (starting at 0), to keep track of the step of
the computation that is being simulated. Some information about the CPU time
is shown for each step, and the number of rules of each type that is executed. As
an example, we give the information generated for the first two configurations.

MEMBRANE ID: 1, Label: 2, Charge: 0
Multiset: nx{1, 2}, d{1}, x{3, 5}, nx{2, 4}, nx{2, 2},

nx{4, 6}, x{2, 3}, x{1, 1}
Parent Membrane ID: 0
Rules Selected:
1*DIVISION RULE: [d{1}]’2 --> +[d{1}] -[d{1}]

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: 0
Multiset: #
Internal membranes count: 1

Configuration: 0
Time: 0.0 s.
1 division rule(s) selected to be executed in the step 1
**
MEMBRANE ID: 1, Label: 2, Charge: +

Multiset: nx{1, 2}, d{1}, x{3, 5}, nx{2, 4}, nx{2, 2},
nx{4, 6}, x{2, 3}, x{1, 1}

Parent Membrane ID: 0
Rules Selected:
1*EVOLUTION RULE: +[nx{2, 2} --> nx{2, 1}]’2
1*EVOLUTION RULE: +[nx{1, 2} --> nx{1, 1}]’2
1*EVOLUTION RULE: +[x{3, 5} --> x{3, 4}]’2
1*EVOLUTION RULE: +[x{1, 1} --> r{1, 1}]’2
1*EVOLUTION RULE: +[nx{2, 4} --> nx{2, 3}]’2
1*EVOLUTION RULE: +[nx{4, 6} --> nx{4, 5}]’2
1*EVOLUTION RULE: +[x{2, 3} --> x{2, 2}]’2
1*SEND-OUT RULE: +[d{1}]’2 --> []d{1}

MEMBRANE ID: 2, Label: 2, Charge: -
Multiset: nx{1, 2}, d{1}, nx{2, 4}, x{3, 5}, nx{2, 2},

x{2, 3}, nx{4, 6}, x{1, 1}
Parent Membrane ID: 0

152 D. Dı́az–Pernil et al.

Rules Selected:
1*EVOLUTION RULE: -[nx{2, 4} --> nx{2, 3}]’2
1*EVOLUTION RULE: -[nx{2, 2} --> nx{2, 1}]’2
1*EVOLUTION RULE: -[nx{4, 6} --> nx{4, 5}]’2
1*EVOLUTION RULE: -[x{1, 1} --> #]’2
1*EVOLUTION RULE: -[x{2, 3} --> x{2, 2}]’2
1*EVOLUTION RULE: -[nx{1, 2} --> nx{1, 1}]’2
1*EVOLUTION RULE: -[x{3, 5} --> x{3, 4}]’2
1*SEND-OUT RULE: -[d{1}]’2 --> []d{1}

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: 0
Multiset: #
Internal membranes count: 2

Configuration: 1
Time: 0.025 s.
14 evolution rule(s) selected to be executed in the step 2
2 send-out rule(s) selected to be executed in the step 2
**

After simulating 41 transition steps, the halting configuration is described as
follows:

MEMBRANE ID: 1, Label: 2, Charge: +
Multiset: r{0, 12}*3, c{4}
Parent Membrane ID: 0

MEMBRANE ID: 2, Label: 2, Charge: +
Multiset: c{1}, r{2, 12}, r{3, 12}
Parent Membrane ID: 0

MEMBRANE ID: 3, Label: 2, Charge: +
Multiset: r{0, 12}*5, c{4}
Parent Membrane ID: 0

MEMBRANE ID: 4, Label: 2, Charge: +
Multiset: r{0, 12}*4, c{4}
Parent Membrane ID: 0

MEMBRANE ID: 5, Label: 2, Charge: +
Multiset: r{0, 12}, r{2, 12}, c{2}
Parent Membrane ID: 0

MEMBRANE ID: 6, Label: 2, Charge: +
Multiset: c{1}, r{3, 12}

P-Lingua: A Programming Language for Membrane Computing 153

Parent Membrane ID: 0

MEMBRANE ID: 7, Label: 2, Charge: +
Multiset: r{0, 12}*4, c{4}
Parent Membrane ID: 0

...

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: -
Multiset: t*10, d{29}*64, c{6}*10
Internal membranes count: 64

~~~ENVIRONMENT: t, Yes

Configuration 41
Time: 1.971 s.
Halting configuration (No rule can be selected to be
executed in the next step)

************************************************

Note that there are 64 different membranes labelled by 2 in this configuration,
although for the sake of simplicity we show only seven of them.

7 Conclusions and future work

In this paper we have presented the first programming language for membrane
computing, P-Lingua, together with a compiler that generates XML documents,
and a simulator for a class of P systems called recognizing P systems with active
membranes.

Using a programming language to define cellular machines is a new concept
in the development of applications for membrane computing that leads to a stan-
dardization with the following advantages:

• Users (researchers) can define cellular machines in a modular and parametric
way by using an easy-to-learn programming language.

• It is possible to define libraries of modules that can be shared among researchers
to facilitate the design of new programs.

• This method to define P systems is decoupled from its applications and the
same P-Lingua programs can be used in different software enviroments.

• By using compiling tools, the P-Lingua programs are translated to other file
formats that can be interpreted by a large number of different applications.

The first version of P-Lingua is presented for P systems with active membranes.
In forthcoming versions we intend to generalize the language so that other types of



154 D. Dı́az–Pernil et al.

cellular devices can be also specified, for instance transition P systems and tissue
P systems.

Currently, the compiler is an application that is executed from the command
line, but the possibility of a graphical programming environment remains open.

We have chosen an XML language as the output format because of the reasons
exposed above. However, we are aware that for some applications it is not the
most suitable format, due to the fact that XML does not include any method for
compressing data, and therefore the text files can eventually become too large,
which is a clear disadvantage for applications running on networks of processors.
It would be convenient to modify the compiler so that it generates a larger variety
of output formats, of special interest are compressed binary files or executable
code (either in C or Java).

It is important to recall that the simulator presented here is designed to run
in a conventional computer, having limited resources (RAM, CPU), and this leads
to a bound on the size of the instances of NP-complete problems whose solutions
can be successfully simulated. Moreover, conventional computers are not massively
parallel devices, and therefore it seems that the inherent parallelism of P systems
must be simulated by means of multithreading techniques.

These shortcomings lead us to the possibility of implementing a distributed
simulator running on a network or cluster of processors, where the need of resources
arising during the computation could be solved by adding further nodes to the
network, thus moving towards massive parallelism.

Acknowledgement

The authors acknowledge the valuable assistance given by Damien Woods who
helped us to write this paper.

The authors also wish to acknowledge the support of the project TIN2006-
13425 of the Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER
funds, as well as the support of the project of excellence TIC-581 of the Junta de
Andalućıa.

References

1. A. Alhazov, M.J. Pérez–Jiménez. Uniform solution of QSAT using polarizationless
active membranes. In J. Durand–Lose and M. Margenstern (eds.) Machines, Com-
putations, and Universality. Lecture Notes in Computer Science, 4664 (2007), pp.
122–133.

2. M. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez. Available membrane
computing software. In G. Ciobau, Gh. Păun, M.J. Péréz–Jiménez (eds.) Applica-
tions of Membrane Computing, Natural Computing Series, Springer–Verlag, Berlin,
15 (2006), pp. 411–436.

3. M.A. Gutiérrez, M.J. Pérez–Jiménez, A. Riscos–Núñez. Towards a programming lan-
guage in cellular computing. Electronic Notes in Theoretical Computer Science, El-
sevier B.V., 123 (2005), pp. 93–110.



P-Lingua: A Programming Language for Membrane Computing 155

4. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), pp. 108–143.

5. M.J. Pérez-Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini. Complexity classes
in cellular computing with membranes. Natural Computing, 2, 3 (2003), 265-285.

6. M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini. A polynomial com-
plexity class in P systems using membrane division. In E. Csuhaj Varjú, C. Kintala,
D. Wotschke, G. Vaszil (eds.), Proceedings of the 5th Workshop on Descriptional
Complexity of Formal Systems, DCFS 2003, Computer and Automation Research
Institute of the Hungarian Academy of Sciences, Budapest, (2003), pp. 284–294.

7. The GNU General Public License: http://www.gnu.org/copyleft/gpl.html
8. Java web page: http://www.java.com/
9. JavaCC web page: https://javacc.dev.java.net/

10. P systems web page: http://ppage.psystems.eu/
11. Research Group on Natural Computing web page: http://www.gcn.us.es/




