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Summary. Tissue-like P systems with cell division is a computing model in the frame-
work of Membrane Computing that shares with the spiking neural P system model a
similar biological inspiration. Namely, both models are based on the intercellular com-
munication and cooperation between neurons, respectively. Due to this fact, in both
models the devices have the same structure: a network of elementary units (cells in a
tissue and interconnected neurons, respectively). Nonetheless, the two models are quite
different. One of the differences is the ability of tissue-like P systems with cell division
for increasing the number of cells during the computation. In this paper we exploit this
ability and present a polynomial-time solution for the (NP-complete) Partition problem
via a uniform family of such P systems.

1 Introduction

Tissue-like P systems with cell division [13] is a computing model in the framework
of membrane computing based on inter-cellular communication and cooperation
between neurons. It shares some common features with another emerging mem-
brane computing model based on spiking neurons, the spiking neural P systems
[15]. Their main common feature is that in the computational devices of both
models we have certain processor units (called cells or neurons, respectively) that
process in parallel some pieces of information and send signals to other processor
units along links that connect some of them. Such links do not follow any scheme,
and this is one of the features which distinguishes these models from the initial
model in membrane computing, the cell-like model, where membranes are hierar-
chically arranged in a tree-like structure (see [10]). The biological inspiration for
this cell-like model is the morphology of cell, where small vesicles are surrounded
by larger ones.

In spiking neural P systems and in tissue-like P systems with cell division the
membrane structure is tissue-like and the links between cells form a general graph
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(directed graph for spiking neural P systems and undirected graph for tissue-like
P systems). Nonetheless there are important differences between both models. For
instance, in spiking neural P systems only one type of object (called spike) is
used to encode the information in the cells. Specific rules are used for evolving
populations of spikes and the time is used as a support of information1.

As we said above, in tissue-like P systems we can picture the cells as nodes of a
general undirected graph. The edges of such graph are not given explicitly, but they
are deduced from the set of rules, as it will be explained later. The communication
among cells is based on symport/antiport rules in P systems2. Symport rules move
objects across a membrane together in one direction, whereas antiport rules move
objects across a membrane in opposite directions.

From the seminal definition of tissue P systems [7, 8], several research lines have
been developed and other variants have arisen (see, for example, [1, 2, 3, 4, 6, 14]).
One of the most interesting variants of tissue P systems was presented in [13].
In that paper, tissue P systems are endowed with the ability of getting new cells
based on the mitosis or cellular division, yielding tissue-like P systems with cell
division, and the underlying graph is implicitly described by the rules.

This cellular division is other of the main differences between the model fol-
lowed in this paper and spiking neural P systems. The ability of cell division allows
us to obtain an exponential amount of cells in linear time and to design cellular
solutions to NP-complete problems in polynomial time. Nonetheless, the solu-
tions to NP-complete problems in the spiking neural P systems literature need an
exponential amount of pre-computed devices (see [5]).

In this paper we present a solution to the Partition problem via a family of
recognizing tissue-like P systems with cell division. In the literature we can find
uniform solutions to this problem in the cell-like model of P systems with active
membranes, but this is the first solution to Partition in the framework of tissue-like
P systems with cell division.

The paper is organized as follows: first we recall some preliminaries and the
definition of tissue-like P systems with cell division. Next, recognizing tissue-like P
systems with cell division are briefly described in section 3. A linear–time solution
to the Partition problem is presented in the section 4, including a short overview
of the computation and of the necessary resources. Finally, some conclusions and
new open research lines are presented.

2 Preliminaries

In this section we briefly recall some of the concepts used later on in the paper.
An alphabet, Σ, is a non empty set, whose elements are called symbols. An

ordered sequence of symbols is a string. The number of symbols in a string u is
the length of the string, and it is denoted by |u|. As usual, the empty string (with

1 A detailed description can be found in [16] and the references therein.
2 This way of communication for P systems was introduced in [12].
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length 0) will be denoted by λ. The set of strings of length n built with symbols
from the alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is
a subset from Σ∗.

A multiset over a set A is a pair (A, f) where f : A → N is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) >
0} and its size is defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its

support is the empty set (resp. finite).
If m = (A, f) is a finite multiset over A, then it will be denoted by

m = a
f(a1)
1 a

f(a2)
2 · · · af(ak)

k , where supp(m) = {a1, . . . , ak}, and for each element
ai, f(ai) is called the multiplicity of ai.

A undirected graph G is a pair G = (V, E) where V is the set of vertices and E
is the set of edges, each one of which is a (unordered) pair of (different) vertices.
If {u, v} ∈ E, we say that u is adjacent to v (and also v is adjacent to u). The
degree of v ∈ V is the number of adjacent vertices to v.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For details, see [11].

3 Tissue-like P Systems with Cell Division

In the first definition of the model of tissue P systems [7, 8] the membrane structure
did not change along the computation. Based on the cell-like model of P systems
with active membranes, Gh. Păun et al. presented in [13] a new model of tissue P
systems with cell division. The biological inspiration is clear: alive tissues are not
static network of cells, since cells are duplicated via mitosis in a natural way.

The main features of this model, from the computational point of view, are
that cells have not polarizations (the contrary holds in the cell-like model of P
systems with active membranes, see [11]); the cells obtained by division have the
same labels as the original cell and if a cell is divided, its interaction with other
cells or with the environment is blocked during the mitosis process. In some sense,
this means that while a cell is dividing it closes the communication channels with
other cells and with the environment.

Formally, a tissue-like P system with cell division of degree q ≥ 1 is a tuple of
the form

Π = (Γ, E , w1, . . . , wq,R, i0),

where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells in the initial configuration.
3. E ⊆ Γ .
4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .
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5. i0 ∈ {0, 1, 2, . . . , q}.
A tissue-like P system with cell division of degree q ≥ 1 can be seen as a set of
q cells (each one consisting of an elementary membrane) labelled by 1, 2, . . . , q.
We shall use 0 to refer to the label of the environment, and i0 denotes the output
region (which can be the region inside a cell or the environment).

The communication rules determine a virtual graph, where the nodes are the
cells and the edges indicated if it is possible for pairs of cells to communicate
directly. This is a dynamical graph, because of new nodes can appear produced by
the application of division rules.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells of
the system. We interpret that E ⊆ Γ is the set of objects placed in the environment,
each one of them in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells i and j such
that u is contained in cell i and v is contained in cell j. The application of this rule
means that the objects of the multisets represented by u and v are interchanged
between the two cells.

The division rule [a]i → [b]i[c]i is applied over a cell i containing object a. The
application of this rule divides this cell into two new cells with the same label. All
the objects in the original cell are replicated and copied in each of the new cells,
with the exception of the object a, which is replaced by the object b in the first
one and by c in the other one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e, in each step we apply a maximal set of rules. This way
of applying rules has only one restriction when a cell is divided, the division rule
is the only one which is applied for that cell in that step; the objects inside that
cell do not evolve in that step.

3.1 Recognizing Tissue-like P Systems with Cell Division

NP-completeness has been usually studied in the framework of decision problems.
Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

In order to study the computing efficiency for solving NP-complete decision
problems, a special class of tissue P systems with cell division is introduced in [13]:
recognizing tissue P systems. The key idea of such recognizing systems is the same
one as from recognizing P systems with cell-like structure.

Recognizing cell-like P systems were introduced in [9] and they are the natural
framework to study and solve decision problems within Membrane Computing,
since deciding whether an instance of a given problem has an affirmative or negative
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answer is equivalent to deciding if a string belongs or not to the language associated
with the problem.

In the literature, recognizing cell-like P systems are associated with P systems
with input in a natural way. The data encoding to an instance of the decision
problem has to be provided to the P system in order to compute the appropriate
answer. This is done by codifying each instance as a multiset placed in an input
membrane. The output of the computation (yes or no) is sent to the environment,
and in the last step of the computation. In this way, cell-like P systems with input
and external output are devices which can be seen as black boxes, in the sense that
the user provides the data before the computation starts, and then waits outside
the P system until it sends to the environment the output in the last step of the
computation.

A recognizing tissue-like P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E , w1, . . . , wq,R, iin, i0)

where

• (Γ, E , w1, . . . , wq,R, i0) is a tissue-like P system with cell division of degree
q ≥ 1 (as defined in the previous section), i0 = env and w1, . . . , wq strings over
Γ \Σ.

• The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in some initial multisets w1, . . . , wq, but not present in E .

• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• All computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

The computations of the system Π with input w ∈ Σ∗ start from a configura-
tion of the form (w1, w2, . . . , wiinw, . . . , wq; E), that is, after adding the multiset
w to the contents of the input cell iin. We say that the multiset w is recognized by
Π if and only if the object yes is sent to the environment, in the last step of the
corresponding computation. We say that C is an accepting computation (respec-
tively, rejecting computation) if the object yes (respectively, no) appears in the
environment associated to the corresponding halting configuration of C.
Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizing tissue-like P systems
with cell division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

(called a polynomial encoding of IX in Π) such that:
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− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input
multiset of the system Π(s(u));

− the family Π is polynomially bounded with regard to (X, cod, s), that is,
there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation of a system with the same input multiset
must always give the same answer.

We denote by PMCTD the set of all decision problems which can be solved by
means of recognizing tissue-like P systems with cell division in polynomial time.
This class is closed under polynomial reduction and under complement.

4 A solution for the Partition Problem

Let us recall that a partition of a set V is a family of non-empty pairwise disjoint
subsets of V such that the union of the subsets of the family is equal to V .

The Partition Problem (PART) can be settled as follows: Let V be a finite set and
let w be a weight function on V , w : V → N (that is, an additive function). Decide
whether or not there exists a partition {V1, V2} of V such that w(V1) = w(V2).

Next, we shall prove that the Partition problem can be solved in a linear time
(in {n, lg k} where k = ω1 + · · · + ωn) by a family of recognizing tissue-like P
systems with cell division (in the sense of Definition 1).

Given an instance u = (V,w) of the Partition Problem, we will denote V =
{v1, v2, . . . , vn}. Such instance will be represented by u = (n, (w1, . . . , wn)), where
wi = w(vi), for each i (1 ≤ i ≤ n).

Next, we present a family of recognizing tissue-like P systems with cell division
where at the initial configuration each system of the family has two cells (labelled
by 1 and 2). We shall address the resolution via a brute force algorithm, which
consists in the following stages:

• Generation Stage: All the possible subsets of V are generated by the application
of cell division rules.

• Pre–checking Stage: In this stage, the weight of each of the subsets of V is
calculated.

• Checking Stage: We compare for each subset if its weight and the weight of its
complementary set are equal.
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• Answer Stage: According to the previous stage, an affirmative or negative re-
sponse is obtained.

For each n, k ∈ N we will consider the recognizing tissue-like P system with
cell division and symport/antiport rules

Π(< n, k >) = (Γ, Σ, E , w1, w2, R, iin)

defined as follows

• Γ = {Ai, Ai, B
′
i, Bi : 1 ≤ i ≤ n} ∪

{ai : 1 ≤ i ≤ dlg ne+ dlg ke+ 14} ∪ {ci, vi : 1 ≤ i ≤ n} ∪
{di, gi : 1 ≤ i ≤ dlg ne+ 1} ∪ {ei : 1 ≤ i ≤ dlg ne+ dlg ke+ 5} ∪
{Aij , Bij : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ dlg ke+ 1} ∪
{b, D, D1, p, q, E1, F1, F2, T, S, N, yes, no}

• Σ = {v1, . . . , vn}
• E = Γ \ {a1, b, c1, yes, no, D,A1, ..., An, A1, . . . , An}.
• w1 = a1 b c1 yes no and w2 = D A1 ... An, A1 . . . , An.

Also, we consider that in the environment there are infinitely many copies of
each object from E , and no copies of any element in Γ \ E .

• R is the following set of rules:
1. Division rules:

r1,i ≡ [Ai]2 → [Bi]2[λ]2, for i = 1, . . . , n
2. Communication rules:

r2,i ≡ (1, ai/ai+1, 0), for i = 1, . . . , n + dlg ne+ dlg ke+ 11
r3,i ≡ (1, ci/c2

i+1, 0), for i = 1 . . . , n
r4 ≡ (1, cn+1/D, 2)
r5 ≡ (2, cn+1/D1g1, 0)
r6,i ≡ (2, gi/g2

i+1, 0), for i = 1, . . . , dlg ne
r7 ≡ (2, D1/d1e2, 0)
r8,i ≡ (2, di/d2

i+1, 0), for i = 1, . . . , dlg ne
r9 ≡ (2, ddlg ne/ddlg ne+1, 0)
r10,i ≡ (2, ei/ei+1, 0), for i = 1, . . . , dlg ne+ dlg ke+ 4
r11,i ≡ (2, gdlg ne+1Bi/B′

i, 0), for i = 1, . . . , n

r12,i ≡ (2, B′
iAi/Bi1, 0), for i = 1, . . . , n

r13,i ≡ (2, ddlg ne+2Ai/Ai1, 0), for i = 1, . . . , n
r14,ij ≡ (2, Bij/B2

ij+1, 0), for i = 1, . . . , n and j = 1, . . . , dlg ke
r15,ij ≡ (2, Aij/A

2
ij+1, 0), for i = 1, . . . , n and j = 1, . . . , dlg ke

r16,i ≡ (2, Bi,dlg ke+1vi/p, 0), for i = 1, . . . , n
r17,i ≡ (2, Ai,dlg ke+1vi/q, 0), for i = 1, . . . , n
r18 ≡ (2, pq/λ, 0)
r19 ≡ (2, edlg ne+dlg ke+5/E1F1, 0)
r20 ≡ (2, E1p/λ, 0)
r21 ≡ (2, E1q/λ, 0)
r22 ≡ (2, F1/F2, 0)
r23 ≡ (2, E1F2/T, 0)
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r24 ≡ (2, T/λ, 1)
r25 ≡ (1, bT/S, 0)
r26 ≡ (1, Syes/λ, 0)
r27 ≡ (1, an+dlg ne+dlg ke+12b/N, 0)
r28 ≡ (1, noN/λ, 0)

• iin = 2, is the label of the input cell.

This family of recognizing tissue-like P systems with cell division and sym-
port/antiport rules consists of non–deterministic systems, since several division
rules can be applied in the cells labelled by 2. Nonetheless, if a division rule has
not been applied yet to a cell labelled by 2, then it will be applied in the next steps
since in the initial configuration, the unique cell labelled by 2 contains the objects
A1, A2, . . . , An, i.e., with respect to the division rules, the systems are confluent.

In order to justify that the family Π = (Π(t))t∈N defined above provides a
linear solution to the Partition problem we need a polynomial encoding (cod, s) of
the set of instances of such a problem in the family Π.

We will consider a polynomial enconding (cod, s) defined as follows: for each
instance u = (n, (w1, . . . , wn)) we define s(u) =< n, w1 + · · ·+ wn > and cod(u) =
vw1
1 , . . . , vwn

n .
In this way, the instance u = (n, (w1, . . . , wn)) ∈ IPART will be processed

by the tissue-like P system Π(s(u)) with the multiset cod(u) provided in the
corresponding input cell.

Next, we will provide an informal description of the computations of the system
Π(s(u)) with input cod(u) for a generic instance u of the Partition problem, and
we justify that the family defined above is polynomially uniform by deterministic
Turing machines.

4.1 An overview of the computation

We informally describe here how the recognizing tissue-like P system with cell
division Π(s(u)) with input cod(u) works.

Let us start with the generation stage. In this stage we have two parallel pro-
cesses.

• On the one hand, in the cell labelled by 1 we have two counters: ai, which will
be used in the output stage, and ci, which will be multiplied until step n, where
2n copies of cn+1 are obtained.

• On the other hand, in the cell labelled by 2, the division rules are applied. For
each object Ai we produce two cells labelled by 2, one of them containing a
new object Bi and the other one not.
After the appropriate divisions, in the step n we obtain exactly 2n cells with
label 2, and each of them encode a different subset of V .

The pre–checking stage starts at the step (n + 1), where each cell labelled by
2 trades the object D against the counter cn+1 from the cell 1 (by applying in
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parallel the rule r4). From that moment on, only the evolution of the counter ai

will be performed in cell 1, till the step n + dlg ne+ dlg ke+ 13, via the rules r1,i

(n + 2 ≤ i ≤ n + dlg ne+ dlg ke+ 12).
Note that in the next step, the objects cn+1 in the cells labelled by 2 will trigger

the rules r5 and r7 in the next two steps, thus bringing in the counter gi in the
step n + 2, and the counters di and ei in the step n + 3.

From the step n + 3 to the step n + dlg ne+ 3 the counter gi duplicates itself
(with the rules r6,i) until producing at least n copies of the object gdlg ne+1, and
in a further step, it yields the trading of the objects Bi in each cell with label 2
against the objects B′

i from the environment (by the application of the rules r11,i).
In the step n + dlg ne+ 5, each pair of objects B′

i and Ai that appear in a cell
labelled by 2 are traded against an object Bi1 by applying the rules r12,i.

In parallel, from the step n+4 to the step n+dlg ne+dlg ke+8 the counter ei

is evolving until reaching the object edlg ne+dlg ke+5 (by applying the rules r10,i)).
Moreover, from the step n + 4 to the step n + dlg ne+ 4 the counter di duplicates
itself (by the rules r8,i) until getting at least n copies of the object ddlg ne+1. In the
next step, the rule r9 trades the objects ddlg ne+1 in the cells with label 2 against
the objects ddlg ne+2. The arrival of these objects to a cell with label 2 produces
the trading of the objects Ai (which remain in the cell after the application of the
rules r12,i) against objects Ai1 in the step n + dlg ne + 6 (by applying the rules
r13,i).

In this way, we have in each cell with label 2 a pair of complementary subsets,
encoded by the objects Bi1 and Ai1, respectively.

From the step n + dlg ne+ 7 to the step n + dlg ne+ dlg ke+ 7 the number of
objects Bi1 and Ai1 are multiplied by 2 (by application of the rules r14,ij and r15,ij ,
respectively) to reach, at least, k copies of the objects Bi,dlg ke+1 and Ai,dlg ke+1

(1 ≤ i ≤ n). Recall that k = w1 + · · ·+wn represents the total weight of the initial
set.

In order to obtain the weight of each one of the subsets, we take each pair of
objects Bi,dlg ke+1 and vi (respectively, Ai,dlg ke+1 and vi) that appear in a cell
with label 2, and they are traded against an object p (respectively, against an
object q) according to the rules r16,i (respectively, r17,i).

The checking stage starts in the step n+dlg ne+dlg ke+8 with the application
of the rule r18 which removes from the cells labelled by 2 as many pairs of objects
p and q as possible. Therefore, if a cell 2 encodes a pair of subsets of weight k,
then all the objects p and q will be deleted in this cell. Otherwise, at least one
object p or q will remain in this cell.

The answer stage starts in the step n + dlg ne + dlg ke + 9. In the cells with
label 2, the object edlg ne+dlg ke+5 is traded against the objects E1 and F1 by the
rule r19. From this step on, there are two possible situations:

• Let us suppose that there exists a couple of complementary subsets of V with
weight k. In this case, there will exist a cell 2 such that it does not contain any
object p or q after the step n + dlg ne+ dlg ke+ 9. Therefore, in the next step,
neither rule r20 nor r21 can be applied in such cell. However, rule r22 is applied,
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allowing the evolution of the counter F1 to F2. This object together with the
object E1 produces the object T that, in the step n + dlg ne+ dlg ke+ 12 goes
to the cell labelled by 1.
In the next step, the objects T and b that initially were in the cell 1 produce
the object S. This object allows to send an object yes to the environment in
the step n + dlg ne+ dlg ke+ 14, which ends the computation. In this case, we
have an accepting computation.

• Let us suppose now that there does not exist a pair of complementary subsets
of V such that its weights are both equal to k. In this case, all the cells labelled
by 2 contain either objects p or q (but not both of them simultaneously). Then,
in the step n + dlg ne+ dlg ke+ 10, the object E1 is removed from these cells
labelled by 2 together with a copy of p or q (by application of the rules r20

or r21). In the meantime, the object F1 evolves to F2 (by the rule r22). In
this way, after the step n + dlg ne + dlg ke + 13 the object b remains in the
cell 1. This object together with the object an+dlg ne+dlg ke+14 produces an
object N , which is sent to the environment together with an object no in the
step n + dlg ne+ dlg ke+ 15. This step ends the computation with a negative
answer.

Polynomial Uniformity of the Family

In order to stablish that the family Π = (Π(t))t∈N is polynomially uniform by
deterministic Turing machines firstly we note that the set of rules associated with
the system Π(< n, k >) is described in a recursive way. Hence, we only need to
justify that the amount of necessary resources for defining the system is polyno-
mial in max{n, dlg ke}. The necessary resources for building Π(< n, k >) are the
following:

• Size of the alphabet: 2n · dlg ke+ 7n + 2dlg ke+ 3dlg ne+ 36 ∈ θ(n · dlg ke),
• Initial number of cells: 2 ∈ θ(1),
• Initial number of objects: 2n + 6 ∈ θ(n),
• Number of rules: 2n · dlg ke+ 6n + 2dlg ke+ 5dlg ne+ 33 ∈ θ(n · dlg ke),
• Upper bound for the length of the rules: 3 ∈ θ(1).

Then, we have the following result:

Theorem 1. PART∈ PMCTD.

Taking into account that PART is an NP-complete problem, we can deduce the
following result.

Corollary 1. NP ⊆ PMCTD.
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5 Conclusion and Future Work

Tissue-like P systems with cell division is a computing model in the framework
of Membrane Computing that shares with the spiking neural P system model
the tissue-like structure of cells and the biological inspiration, since both models
are based on the intercellular communication and cooperation between neurons.
Nonetheless, both models are quite different. One of the main differences is the
treatment of the information and how the flow of information between rules is
handled. The second main difference is the ability of tissue-like P systems with
cell division for increasing the number of cells during the computation. In a similar
way to other P system models, this ability can be used for trading space against
time and obtaining polynomial-time solutions for NP problems by obtaining an
exponential amount of new cells during the computation.

One of the main drawbacks of spiking neural P systems in order to design
solutions for NP problems is that the cell structure cannot change along the
computation, so in order to get solutions of hard problems, the design needs to
use precomputed resources. An open research line for the future is to study if some
of the features of tissue-like P systems can be adapted to spiking neural P systems
in order to get new applications to these new systems.
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Abstract Neural Nets: Tissue P Systems. Lecture Notes in Computer Science 2387,
(2002), 290–299.
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