
Spiking Neural P Systems – A Natural Model for
Sorting Networks

Rodica Ceterchi, Alexandru Ioan Tomescu

Faculty of Mathematics and Computer Science, University of Bucharest
Academiei 14, RO-010014, Bucharest, Romania
E-mails: rceterchi@gmail.com, alexandru.tomescu@gmail.com

Summary. This paper proposes two simulations of sorting networks with spiking neural
P systems. A comparison between different models is also made.

1 Introduction

Sorting is one of the most studied problem in Computer Science, as it has a wide
range of applications, including sequential and parallel algorithms. Over the last
decades, it has been investigated under parallel architectures, as utilizing many
functional units to sort concurrently can improve performance. Batcher introduced
the bitonic sorting network and the odd-even sorting network in [5], which can sort
N keys in O(log2 N) time, and with O(N log2 N) comparators. Various improve-
ments over these networks have been proposed in [2, 17, 18], which provide better
bounds for depth or number of comparators.

Spiking Neural (SN) P systems were introduced in [10]. They simulate the
behavior of neurons sending signals through axons, consisting of membranes which
contain a number of occurrences of only one symbol, and release them through
connections towards other membranes.

In the paper [11] an application of SN P systems for sorting N numbers has been
proposed. We introduce in this paper a different approach, by first constructing
SN P systems which act as comparators, and next by assembling these building
blocks according to the topology of a sorting network.

Sorting has been modeled or simulated with a variety of P systems. In this
paper we introduce first a model which uses a SN P system comparator (of two
values), and next another model based on an n-comparator. Section 2 presents
preliminaries on sorting networks. Section 3 introduces the SN P systems used as
ascending/descending comparators, and shows how to connect them by classical
sorting networks in order to obtain sorting SN P systems. Section 4 presents yet
another model, an n-comparator generalization. This question is related to optimal
data layouts for networks of processors capable of holding more than one piece of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

94 R. Ceterchi, Al.I. Tomescu

data. Finally, in Section 5 a comparison is made between the three models, the
one introduced in [11], and the two other ones presented in this paper.

2 Preliminaries on Sorting Networks

A bitonic sequence is a concatenation of two monotnic sequences, one ascending,
and the other one descending, or a sequence such that a cyclic shift of its elements
would put them in such a form.

The key components of a bitonic network are the bitonic splitters and the
bitonic mergers. The splitter of size N takes as input a bitonic sequence of length
N and partitions it in two bitonic sequences of equal length, such that all the
elements in the first sequence are smaller than (or greater than) all the elements
in the second sequence. A bitonic merger of size N consists of a splitter of size N
and of two mergers of size N/2, of opposite direction. It accepts as input a bitonic
sequence and sorts it in ascending or descending order (direction).

As any sequence of two numbers is bitonic, the sorting network uses bitonic
mergers of increasing size and alternating direction to construct bitonic sequences
of increasing length. The last such merger, of size N , renders the whole sequence
of N numbers sorted.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a

b

c=min(a,b)

d=max(a,b)

a

b

c=max(a,b)

d=min(a,b)

a

b

c=(1-s)a+sb

d=sa+(1-s)b

(a) Increasing comparator

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a

b

c=min(a,b)

d=max(a,b)

a

b

c=max(a,b)

d=min(a,b)

a

b

c=(1-s)a+sb

d=sa+(1-s)b

(b) Decreasing comparator

Fig. 1. Network devices

Following [14] it is customary to represent a network as an ordered set of
N lines (wires) connected by a set of compare-exchange devices (comparators, for
brevity). A comparator has two input terminals, a and b, and produces two output
terminals c and d. If the comparator is increasing, Fig. 1(a), then c = min(a, b)
and d = max(a, b), while if the comparator is decreasing, Fig. 1(b), c = max(a, b)
and d = min(a, b). A bitonic sorting network for N = 8 is represented in Fig. 2(a).

A network can also be represented as a directed acyclic graph [8].

Definition 1 (Network). A network T of size N is a directed acyclic graph such
that:

1. there are N nodes, called input terminals, with in-degree 0 and out-degree 1,
labeled from 0 to N − 1;

Spiking Neural P Systems – A Natural Model for Sorting Networks 95

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

(a) A bitonic sorting network of size N = 8. The
network can be partitioned in three stages, each
containing bitonic mergers of size 2, 4, and 8, re-
spectively.

0

1

2

3

4

5

6

7

(b) The bitonic merger for N = 8 represented as
a graph.

Fig. 2. The bitonic sorting network and the bitonic merger of size 8.

2. there are N nodes, called output terminals, with in-degree 1 and out-degree 0,
labeled from 0 to N − 1;

3. all the remaining nodes u, representing comparators, have in-degree and out-
degree 2.

In Fig. 2(b) is represented the bitonic merger under the above formalism.
We define the depth of a node u of network T , d(u), as the length of the longest

path in T from an input node to u. The depth of network T , d(T), is the maximum

96 R. Ceterchi, Al.I. Tomescu

depth of a node of in-degree and out-degree 2 in T . Any network can be viewed as
a series of steps, each containing at most N/2 parallel devices. Each step t contains
the nodes of T at depth t.

The arcs of a network can be partitioned in N arc-disjoint paths, each joining
an input node to an output node. Such a partition yields a line-representation of
T , as in [14].

3 Spiking Neural P Systems for Sorting Networks

We note that the above representation is a theoretical model which indicates the
comparisons between input values. However, in the context of SN P systems, this
model has a straightforward implementation. Each wire is now represented by a
synapse between two neurons, and each value x travels between two neurons as x
spikes, one spike per time unit. Comparators are implemented by a set of neurons
which send the minimum and the maximum (as number of spikes) through desig-
nated synapses. Once these two ingredients are at hand, we proceed to construct
a SN P system in the same way the original sorting network was constructed.

Ionescu and Sburlan [11] introduced a SN P system which sorts N numbers,
and consisted of 3 layers of N neurons each. The first layer was made up of input
neurons which in the initial configuration contained the input values codified as
numbers of spikes. At each time unit these neurons sent one spike each to the
second layer. This layer decanted the spikes to the third layer, where the output
neurons were located. After a number of steps equal to the maximum value of
the N numbers, the ith output neuron received the ith smallest value, codified
as number of spikes, sorting thus in ascending order. In a way, the idea of the
algorithm is the same as that of bead sort [4].

In this section we are concerned only with comparators of two elements, hence
with SN P systems which sort two numbers (called for brevity SN P comparators).
In Fig. 3(a) we give an ascending comparator, and in Fig. 3(b) we give a descending
comparator. The SN P ascending comparator functions in the following way: the
first layer of neurons (labelled with i) initially contains the values to be compared,
codified as number of spikes. At each step they instantaneously send one spike to
both s0 and s1. As long as both s0 and s1 receive spikes, only s0 sends one spike
to o0 and o1. After one input neuron has consumed its spikes, the minimum is
obtained in o0. There will be only one input neuron to send spikes to s0 and s1.
In this case, s0 forgets its spikes, and s1 sends them to o1, where the maximum is
obtained.

Consider the SN P system modeling an ascending comparator and the numbers
x and y to be sorted. In order to be able to use these SN P systems as building
blocks of a bitonic sorting network, we assume that instead of loading the numbers
x and y as spikes in i0 and i1 in the initial configuration, they are fed one by one
to these input neurons by another neuron.

Spiking Neural P Systems – A Natural Model for Sorting Networks 97

a ! a

a ! a

a2 ! a

a ! "

a2 ! "

a ! a

a ! a

a ! a

a2 ! a

a ! !

a2 ! !

a ! a

i0

i1 o1

o0

i0

i1 o1

o0

min

max

max

min

s0

s1

s0

s1

(a) Increasing comparator

a ! a

a ! a

a2 ! a

a ! "

a2 ! "

a ! a

a ! a

a ! a

a2 ! a

a ! !

a2 ! !

a ! a

i0

i1 o1

o0

i0

i1 o1

o0

min

max

max

min

s0

s1

s0

s1

(b) Decreasing comparator

Fig. 3. SN P systems modeling comparators

Lemma 1 (Composition lemma). Suppose that in each time unit from t0 until
t0+(x−1) neuron i0 receives one spike and that in rest it does not receive any spike.
Analogously, suppose that in each time unit from t0 to t0+(y−1) neuron i1 receives
one spike, and that in rest it does not receive any spike. Then neuron o0 does not
receive any spike, except for time moments from t0+2 until t0+2+(min(x, y)−1),
when it receives one spike at each moment. Analogously, neuron o1 does not receive
any spike, except for time moments from t0 +2 until t0 +2+(max(x, y)−1), when
it receives one spike at each moment.

Proof. Consider the time moments t, with t0 ≤ t ≤ t0 + (min(x, y) − 1). Both
neurons i0 and i1 receive spikes and in turn send them through the synapses (by
the rule a→ a). s0 and s1 receive two spikes each, neuron s0 sends one spike to o0

and o1 (by the rule a2 → a), while neuron s1 forgets them (by the rule a2 → λ).
Therefore at time moment t + 2 neurons o0 and o1 receive one spike each. From
time moment t0 + min(x, y) onward, only one neuron of i0 and i1 sends spikes,
hence the configuration of the synapses of s0 and s1 prevent o0 from receiving
other spikes. The first part of the claim is proved.

98 R. Ceterchi, Al.I. Tomescu

At each time moment t, with t0 + min(x, y) ≤ t ≤ t0 + (max(x, y)− 1), neuron
o1 receives one spike at moment t+2. After time moment t0 +max(x, y) there are
no other spikes entering in system, hence from time moment t0 + 2 + max(x, y)
onward there will be no other spikes entering neuron o1.

A similar lemma is valid in the case of a SN P decreasing comparator.
Assume that we are given a network T as a graph, and that we have a line-

representation of it (i.e. a set of N arc-disjoint path linking input terminals with
output terminals). Hence, we extend Definition 1, by labeling edges, apart from
input and output terminals. For every path that begins with input terminal labeled
i, we label all its edges with i. More formally, we have the following definition.

Definition 2 (Edge labeling). Given a graph T as in Definition 1 representing
a sorting network, and a line-representation of T , we attach to each edge e ∈ E(T)
that belongs to a path in the line representation of T beginning with i, label l(e) =
l(i) (supposing that i is labeled with l(i)).

For example, in Figure 5 we have a labeled bitonic merger.
A SN P system modeling a sorting network given as a graph is obtained in

the following way. For each input terminal node i we have a corresponding in-
put neuron ii. For each comparator (ascending / descending) we have the s- and
o-neurons of a SN P comparator (ascending / descending). For each edge of the
graph between two comparators we have synapses between corresponding SN P
comparators. The output terminal nodes are the o-neurons of the last SN P com-
parators. Additionally, we add to all o-neurons, except the output ones, the rule
a→ a.

More formally, we construct and label the SN P system in the following recur-
sive way.

i) for each input terminal node i we have a corresponding input neuron ii = ii,1,
0 ≤ i ≤ n− 1;

ii) for each comparator at depth 1 ≤ k ≤ d(T) with incident edges labeled with
i and j, i < j, we add the s- and o-neurons of a SN P comparator, connected
in the previously specified way. With the notations in Figure 3, let s0 and
s1, and o0 and o1 be the s-, and o-neurons, respectively, just added. We add
synapses between the following pairs of neurons: (ii,k, s0), (ii,k, s1), (ij,k, s0),
(ij,k, s1). Additionally, if k < d(T) , we label o0 with oi,k = ii,k+1, and o1 with
oj,k = ij,k+1; else we label o0 with oi,k = oi, and o1 with oj,k = oj .

As an example, Figure 4 depicts a SN P system which models the bitonic
merger of size N = 8.

Theorem 1. For any SN P comparator at depth k corresponding to a comparator
with incident edges i < j which carry values x and y, respectively, we have that

1a) in each time moment from 2(k− 1) until 2(k− 1) + x neuron ii,k receives one
spike;

Spiking Neural P Systems – A Natural Model for Sorting Networks 99

o0,1=i0,2

o4,1=i4,2

o1,1=i1,2

o5,1=i5,2

o2,1=i2,2

o6,1=i6,2

o3,1=i3,2

o7,1=i7,2

o0,2=i0,3

o2,2=i2,3

o4,2=i4,3

o6,2=i6,3

o1,2=i1,3

o3,2=i3,3

o5,2=i5,3

o7,2=i7,3

o0,3=o0

o1,3=o1

o2,3=o2

o3,3=o3

o4,3=o4

o5,3=o5

o6,3=o6

o7,3=o7

i0=i0,1

i1=i1,1

i2=i2,1

i3=i3,1

i4=i4,1

i5=i5,1

i6=i6,1

i7=i7,1

Fig. 4. A SN P system modeling the bitonic merger of size N = 8.

1b) in each time moment from 2(k− 1) until 2(k− 1) + y neuron ij,k receives one
spike.

In case of an ascending comparator,

2a) in each time moment from 2k until 2k + min(x, y) neuron oi,k receives one
spike;

2b) in each time moment from 2k until 2k + max(x, y) neuron oj,k receives one
spike.

In case of a descending comparator,

3a) in each time moment from 2k until 2k + max(x, y) neuron oi,k receives one
spike;

3b) in each time moment from 2k until 2k + min(x, y) neuron oj,k receives one
spike.

Proof. We prove the claim by induction on k. When k = 1 we are at time moment
t = 0. We have explained previously that the behaviour of the system when the
spikes are loaded initially in the input neurons is identical to when they are fed
one by one to these neurons. Claims 2 and 3 are true from Lemma 1 and t0 = 0.

100 R. Ceterchi, Al.I. Tomescu

We now suppose that the claim is true for k, with 1 ≤ k < log N , and prove
it for k + 1. From claims 2b and 3b of the induction hypothesis, we know that
oi,k = ii,k+1 receives one spike from 2k until 2k + u, where u is the value carried
by wire i before the comparator at depth k +1. Analogously, oj,k = ij,k+1 receives
one spike from 2k until 2k + v, where v is the value carried by wire t before the
comparator at depth k+1. This proves claims 1a and 1b. If we take t0 = 2k, x = u,
and y = v in Lemma 1, we have that claims 2 and 3 are true.

Corolary 1 Given a network T of size N , if we replace the comparator nodes by
the appropriate SN P systems sub-networks, the result is still a sorting network.

The sorting network obtained with SN P systems works differently than
the initial one. At time moment 2d(T) + min{x0, . . . , xN−1} all output neu-
rons contain the value min{x0, . . . , xN−1} as number of spikes a. Let us denote
with min1 = min({x0, . . . , xN−1} \ {min(x0, . . . , xN−1)}). Then at time moment
2d(T)+min1 all output neurons o1, . . . , oN−1 contain min1 spikes and o0 remains
with min{x0, . . . , xN−1}. Finally, at 2d(T) + max{x0, . . . , xN−1} we have in oN−1

the value max{x0, . . . , xN−1}, and all other output neurons contain the initial set
in ascending order.

4 An n-Comparator Improvement

In the previous section we were concerned with constructing a SN P system which
implemented a given sorting network, each comparator having a corresponding
SN P systems. We now address the problem of comparators of more than two
values, and show how we can transform a network given as in Definition 1 into a
generalized one, with n-comparators which can sort n values. The only restriction
we make is that the network has comparators on only one direction (ascending or
descending). This is not a limiting assumption in our treatment of sorting with
spiking neural P systems, as, for example, a bitonic sorting network is a serial
and parallel connection of bitonic mergers, which have comparators of the same
direction. From [11] we have at hand a SN P system which can sort n values,
therefore we show how to assemble these building blocks to get a sorting SN P
system which can sort N values.

The idea of the algorithm we propose stems from the following observation.
Suppose we have N input terminals, and we can use comparators of at most n
values. We try to design the first step of the generalized network, and have that
the depth of the furthest comparator of the initial network that can be simulated
by one n-comparator is log2 n. Let this device be u and let i and j be its incident
edges. This implies that all prior devices involving lines i, j and all other lines that
they were connected with, have to be implemented by the same n-comparator as
the one which act on i and j. We call these lines predecessors of depth log n of u
and we say that they are mapped to the same comparator as i and j. In addition,
observe that as the n-comparator sorts the whole sequence of predecessors, then
it also implemented correctly the standard comparators.

Spiking Neural P Systems – A Natural Model for Sorting Networks 101

Definition 3 (Predecessors of a node). We denote by predecessors of depth m
of node u the set Pm(u) = {l(xy) | xy ∈ E(T) and there exists a path from y to u
of length m− 1}

Apart from u, at depth d(u) reside other devices between lines mapped to
the same comparator as i and j by the above procedure. These devices have to be
simulated by the same comparator holding i and j. We call these devices neighbours
of depth log n of u, and give the following definition.

Definition 4 (Neighbours of a device). We denote by neighbours of depth m
of node u of T having d(u) ≥ 2, the set Nm(u) = {v ∈ V (T) | d(v) ≥ 2 and
Pm(u) ∩ Pm(v) 6= ∅}

In order to simulate log n steps locally in one n-comparator, any n-comparator
should accommodate all the lines which compare values in these log n steps. This
imposes a limit on the number of neighbours of depth log n of a device u. More
specifically, we have the following property:

Property 1. We say that a network T of size N admits a generalized network with
comparators of n values if |Nlog n(u)| ≤ n/2, for any 1 ≤ s ≤ d(T)/ log n, and any
node u ∈ V (T) with d(u) = s log n.

Bearing all this in mind, we give an algorithm to construct dd(T)/ log ne map-
ping functions Ds which for any wire i ∈ {0, . . . , N − 1} indicates the comparator
to which is mapped at step s of the generalized network T ′.

0

1

2

3

4

5

6

7

0

4

1

2

5

6

7

3

0

2

4

1

6

3

7

5

0

1

2

4

3

5

7

6

0

4

1

2

5

6

7

3

u

v

Fig. 5. The bitonic merger of size 8, given as a graph. Edges are labeled as in Definition
2, according to the classical line-representation of the bitonic merger. Neighbouring nodes
u and v at depth 2 are shown in black. They have predecessors {0, 2, 4, 6}. The rest of
devices linking these lines are shown in gray.

102 R. Ceterchi, Al.I. Tomescu

Input: A network T of size N and a line-representation of it, n the
maximum capacity of one comparator. Network T has all
comparators of the same direction and satisfies Property 1.

Output: A sequence of functions Ds, 0 ≤ s < dd(T)/ log ne, with domain
{0, . . . , N − 1} representing a mapping of wires to comparators at
stage s of the generalized network T ′.

label edges of T as in Definition 2;
forall 0 ≤ s < bd(T)/ log nc do

set counter p = 0;
reset previous markings;
forall nodes u ∈ V (T) not marked, at depth d(u) = log n + s log n do

forall v ∈ Plog n(u) do
Ds(v) = p;

forall v ∈ Nlog n(u) do
mark node v;

p = p + 1;

// treatment of the special case when d(T) is not divisible by
log n
remaining-depth ← d(T) mod log n;
if remaining-depth > 0 then

s← bd(T)/ log nc;
set counter p = 0;
reset previous markings;
forall nodes u ∈ V (T) not marked, at depth d(T) do

forall v ∈ Premaining−depth(u) do
Ds(v) = p;

forall v ∈ Nremaining−depth(u) do
mark node v;

p = p + 1;

Algorithm 1: Deriving the mapping of wires to comparators in the generalized
network.

5 Conclusions and Open Problems

This paper has proposed two models (which we call Model 2 and Model 3) of
simulating a sorting network with SN P systems and has proved the correctness of
the construction. These systems do not have a simple form as the one in [11] (Model
1), so their usefulness remains to be investigated. We consider here a number of
measures of the models: number of neurons, number of synapses, total number of
rules in all neurons, maximal length of rules, and time complexity.

Model 1 has three layers, with N neurons each. On the other hand, Model 2
has 1+2+ . . .+log N steps, each being implemented by 2N neurons. If we also add

Spiking Neural P Systems – A Natural Model for Sorting Networks 103

i0

i1

i2

i3

i4

i5

i6

i7

o0

o1

o2

o3

o4

o5

o6

o7

Fig. 6. A SN P system constructed from the generalized network of the bitonic merger
of size 8.

the N input neurons, we get a total number of neurons of N +N log N(log N +1).
In Model 3 the situation is similar, except that now we have log N(log N+1)

2 log n steps,

which give a total number of N + N log N(log N+1)
log n neurons. Even if in the two

proposed models this measure has increased by a factor of log2 N , we will see that
concerning other measures, we get a benefit of at least log2 N

N .
The number of synapses of Model 1 is quadratic in N , as we have synapses

between any pair of neurons in the first two layers. The total number of synapses
is 3N2+N

2 . In Model 2, for each step of the bitonic sorting network, we have 2N

synapses between i-neurons and s-neurons, and 2N
2 + N

2 between s-neurons and
o-neurons. In Model 3, at each step of the generalized network we have 3n2+n

2
N
n

synapses. This gives a total number of synapses in Model 2 of 7
2N log N(log N+1)

2 ,
and in Model 3 of 3n+1

2 N log N(log N+1)
2 log n .

Concerning the total number of rules, in Model 1 we have again a quadratic
dependence N2 + N . In Model 2 we have 3N rules in each step of the network,
hence 3N log N(log N+1)

2 rules in all. The number of rules per step in Model 3 is
N
n (n + n2), which gives a total of N(n + 1) log N(log N+1)

2 log n .

104 R. Ceterchi, Al.I. Tomescu

As in each time unit only one spike is discharged from the input neurons, then
the complexity of the algorithm of [11] is O(M), where M is the maximum of
the N numbers. As, in general, we have to sort N distinct numbers, then the
maximum of them is N , hence the complexity of the algorithm is Ω(N). The time
complexity of the two proposed models is O(M + d(T)), where d(T) is the depth
of the network being simulated (i.e. log2 N , and log2 N

log n , respectively). Usually, the
maximum number M does not depend on N , so we have O(M) = O(M + d(T)).

We also note that now the length of the rules is constant. An overview of these
measures are presented in Table 1.

An open problem that remains to be investigated is how to further reduce
the number of neurons of a sorting SN P system. We propose for scrutiny the
class of periodic sorting networks, which are composed of a sequence of identical
blocks. Since only one block needs to have a SN P system implementation, then
a periodic sorting network can be realized by recirculating the output of a block
back as its input. This results in savings in neurons and synapses. Consider for
example the odd-even sorting network of Batcher [5] which is composed of N
identical applications of a period of depth 2. This can provide a linear number of
neurons in N , with the same time complexity O(M).

However, the main difficulty behind such an approach is the ability to tell when
the numbers are sorted. We note that the output neuron holding the minimum
has to stop recirculating spikes before the output neuron holding the maximum.
The idea of a global clock holding a number of spikes proportional to the number
of times the identical blocks have to be applied is not enough.

Table 1. Comparison between the model proposed in [11] (Model 1), the direct simulation
of the bitonic sorting network with a SN P system (Model 2), and the simulation of a
generalized bitonic sorting network with n-comparators (Model 3). The models sort N
numbers, M being the maximum.

Measure Model 1 [11] Model 2 Model 3

Number of neurons 3N N + N log N(log N + 1) N + N log N(log N+1)
log n

Number of synapses 3N2+N
2

7
2
N log N(log N+1)

2
3n+1

2
N log N(log N+1)

2 log n

Number of rules N2 + N 3N log N(log N+1)
2

N(n + 1) log N(log N+1)
2 log n

Maximal length of rules N + 1 3 n + 1

Time complexity O(M) O(M + log2 N) = O(M) O(M + log2 N
log n

) = O(M)

References

1. A. Aggarwal, A.K. Chandra, M. Snir, “Communication Complexity of PRAMs”,
Theoretical Computer Science, vol. 71, no.1, pp. 3 - 28, Mar. 1990.

Spiking Neural P Systems – A Natural Model for Sorting Networks 105

2. M. Ajtai, J. Komlos, and E. Szemeredi, “An O(N log N) Sorting Network”, Proc.
15th Ann. ACM Symp. Theory of Computing, pp. 1-9, May 1983.

3. A. Alexandrov, M. Ionescu, K.E. Schauser, C. Scheiman, “LogGP: Incorporating
Long Messages into the LogP model”, Journal of parallel and distributed computing,
vol. 44, no. 1, pp. 71-79, 1997.

4. J.J. Arulanandham, “Implementing Bead – Sort with P Systems”, Unconventional
Models of Computation 2002 (C.S. Calude, M.J. Dinneen, F. Peper Eds.), LNCS
vol. 2509, pp. 115-125, 2002.

5. K.E. Batcher, “Sorting networks and their applications”, Proc. AFIPS Spring Joint
Comput. Conf., vol. 32, pp. 307-314, Apr. 1968.

6. G. Bilardi, “Merging and Sorting Networks with the Topology of the Omega Net-
work”, IEEE Transactions on Computers, vol. 38, no. 10, pp. 1396-1403, Oct. 1989.

7. D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R.
Subramonian, and T. von Eicken, “LogP: Towards a Realistic Model of Parallel
Computation”, Proc. Fourth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp.1-12, May 1993.

8. M. Dowd, Y. Perl, M. Saks, L. Rudolph, “The balanced sorting network”, Proc.
Second annual ACM symp. on Principles of distributed computing, pp. 161-172, 1983.

9. M. Dowd, Y. Perl, M. Saks, L. Rudolph, “The periodic balanced sorting network”,
JACM, vol. 36. no. 4, pp. 738-757, 1989.

10. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

11. M. Ionescu, D. Sburlan, “Some Applications of spiking neural P systems”, Pre-
proceedings of Membrane Computing, International Workshop - WMC8, Thessa-
loniki, Greece, pp. 383-394, 2007.

12. M.F. Ionescu, “Optimizing Parallel Bitonic Sort”, Tech. Report TRCS96-14, Dept.
of Comp. Sci., Univ. of California, Santa Barbara, July 1996.

13. M.F. Ionescu, K.E. Schauser, “Optimizing parallel bitonic sort”, Proc. 11th Int’l
Parallel Processing Symp., pp. 303-309, 1997.

14. D.E. Knuth, The art of computer programming, volume 3: sorting and searching,
second ed. Redwood City, CA: Addison Wesley Longman, 1998.

15. C. Kruskal, L. Rudolph, M. Snir. “A complexity theory of efcient parallel algorithms”,
Theoretical Computer Science, vol.71, no.1, pp. 95 - 132, Mar. 1990.

16. J.D. Lee, K.E. Batcher, “Minimizing Communication in the Bitonic Sort”, IEEE
Trans. on Parallel and Distributed Systems, vol. 11, no. 5, pp. 459-474, May 2000.

17. F. Leighton, “Tight Bounds on the Complexity of Parallel Sorting,” IEEE Trans.
Computers, vol. 34, no. 4, pp. 344-354, Apr. 1985.

18. M.S. Paterson, “Improved Sorting Networks with O(log N) Depth,” Algorithmica,
vol. 5, pp. 75-92, 1990.

19. L. Rudolph, “A robust sorting network”, IEEE Trans. Comput. C-32,4, pp. 326-335,
1985.

