
(Tissue) P Systems Using Non-cooperative Rules
Without Halting Conditions

Markus Beyreder, Rudolf Freund

Faculty of Informatics
Vienna University of Technology
Favoritenstr. 9, A-1040 Wien, Austria
E-mails: {markus,rudi}@emcc.at

Summary. We consider (tissue) P systems using non-cooperative rules, but consider-
ing computations without halting conditions. As results of a computation we take the
contents of a specified output membrane/cell in each derivation step, no matter whether
this computation will ever halt or not, eventually taking only results completely con-
sisting of terminal objects only. The computational power of (tissue) P systems using
non-cooperative rules turns out to be equivalent to that of (E)0L systems.

1 Introduction

In contrast to the original model of P systems introduced in [5], in this paper we
only consider non-cooperative rules. Moreover, as results of a computation we take
the contents of a specified output membrane in each derivation step, no matter
whether this computation will ever halt or not, eventually taking only results
completely consisting of terminal objects. In every derivation step, we apply the
traditional maximal parallelism. Other derivation modes could be considered, too,
but, for example, applying the sequential derivation mode would not allow us to
go beyond context-free languages. As the model defined in this paper we shall take
the more general one of tissue P systems (where the communication structure of
the system is an arbitrary graph, e.g., see [4], [2]), which as a specific subvariant
includes the original model of membrane systems if the communication structure
allows for arranging the cells in a hierarchical tree structure.

The motivation to consider this specific variant of tissue P systems came during
the Sixth Brainstorming Week in Sevilla 2008 when discussing the ideas presented
in [3] with the authors Miguel Gutiérrez-Naranjo and Mario Pérez-Jiménez. They
consider the evolution of deterministic (tissue) P systems with simple (i.e., non-
cooperative) rules and aim to find a mathematically sound representation of such
systems in order to deduce their behaviour and, on the other hand, to find suitable
corresponding P systems for a given mathematical system with specific behaviour.
Whereas in that paper only deterministic P systems are considered, which allows
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for a mathematical representation like for deterministic 0L systems, and as well
real values for the coefficients assigned to the symbols are allowed, in this paper
we restrict ourselves to the non-negative integer coefficients commonly used in
traditional variants of (tissue) P systems.

We shall prove that the computational power of extended tissue P systems
using non-cooperative rules is equivalent to that of E0L systems when taking all
results appearing in the specified output cell consisting of terminal objects only.

The present paper is organized as follows. Section 2 briefly recalls the notations
commonly used in membrane computing and the few notions of formal language
theory that will be used in the rest of the paper; in particular, we report the defi-
nition of (extended) Lindenmayer systems. Section 3 is dedicated to the definition
of tissue P systems with non-cooperative rules working in the maximally parallel
derivation mode. The computational power of these classes of (extended) tissue
P systems is then investigated in Section 4 in comparison with the power of the
corresponding classes of (extended) Lindenmayer systems. Some further remarks
and directions for future research are discussed in the last section.

2 Preliminaries

We here recall some basic notions concerning the notations commonly used in
membrane computing (we refer to [6] for further details and to [9] for the actual
state of the art in the area of P systems) and the few notions of formal language
theory we need in the rest of the paper (see, for example, [8] and [1], as well as [7]
for the mathematical theory of L systems).

An alphabet is a finite non-empty set of abstract symbols. Given an alphabet V ,
by V ∗ we denote the set of all possible strings over V , including the empty string λ.
The length of a string x ∈ V ∗ is denoted by |x| and, for each a ∈ V , |x|a denotes
the number of occurrences of the symbol a in x. A multiset over V is a mapping
M : V −→ N such that M(a) defines the multiplicity of a in the multiset M (N
denotes the set of non-negative integers). Such a multiset can be represented by
a string a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗ and by all its permutations, with aj ∈ V ,

M(aj) ≥ 0, 1 ≤ j ≤ n. In other words, we can say that each string x ∈ V ∗

identifies a finite multiset over V defined by Mx = {(a, |x|a) | a ∈ V }. Ordering
the symbols in V in a specific way, i.e., (a1, . . . , an) such that {a1, . . . , an} = V ,
we get a Parikh vector

(|x|a1
, . . . , |x|an

)
associated with x. The set of all multisets

over V is denoted by MV , the set of all Parikh vectors by Ps (V ∗). In the following,
we shall not distinguish between multisets and the corresponding Parikh vectors.
Given two multisets x and y, with x, y ∈ V ∗, we say that the multiset x includes
the multiset y, or the multiset y is included in the multiset x, and we write x w y,
or y v x, if and only if |x|a ≥ |y|a, for every a ∈ V . The union of two multisets x
and y is denoted by xty and is defined to be the multiset with |x t y|a = |x|a+|y|a,
for every a ∈ V . For m,n ∈ N, by [m..n] we denote the set {x ∈ N | m ≤ x ≤ n}.
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An extended Lindenmayer system (an E0L system for short) is a construct
G = (V, T, P,w), where V is an alphabet, T ⊆ V is the terminal alphabet, w ∈ V ∗

is the axiom, and P is a finite set of non-cooperative rules over V of the form
a → x. In a derivation step, each symbol present in the current sentential form is
rewritten using one rule arbitrarily chosen from P . The language generated by G,
denoted by L(G), consists of all the strings over T which can be generated in this
way by starting from w. An E0L system with T = V is called a 0L system. As
a technical detail we have to mention that in the theory of Lindenmayer systems
usually it is required that for every symbol a from V at least one rule a → w in
P exists. If for every symbol a from V exactly one rule a → w in P exists, then
this Lindenmayer system is called deterministic, and we use the notations DE0L
and D0L systems. By E0L and 0L (DE0L and D0L) we denote the families of
languages generated by (deterministic) E0L systems and 0L systems, respectively.
It is known from [8] that CF ⊂ E0L ⊂ CS, with CF being the family of context-
free languages and CS being the family of context-sensitive languages, and that
CF and 0L are incomparable, with

{
a2n | n ≥ 0

} ∈ D0L− CF .
As the paper deals with P systems where we consider symbol objects, we will

also consider E0L systems as devices that generate sets of (vectors of) non-negative
integers; to this aim, given an E0L system G, we define the set of non-negative
integers generated by G as the length set N(G) = { |x| | x ∈ L(G) } as well as
Ps (G) to be the set of Parikh vectors corresponding to the strings in L (G). In
the same way, the length sets and the Parikh sets of the languages generated by
context-free and context-sensitive grammars can be defined. The corresponding
families of sets of (vectors of) non-negative integers then are denoted by NX and
PsX, for X ∈ {E0L, 0L, DE0L,D0L,CF, CS}, respectively.

3 Tissue P Systems With Non-cooperative Rules

Now we formally introduce the notion of tissue P systems with non-cooperative
rules by giving the following definition.

Definition 1. An extended tissue P system with non-cooperative rules is a con-
struct

Π = (n, V, T, R, C0, i0)

where

1. n is the number of cells;
2. V is a finite alphabet of symbols called objects;
3. T ⊆ V is a finite alphabet of terminal symbols ( terminal objects);
4. R is a finite set of multiset rewriting rules of the form

(a, i) → (b1, h1) . . . (bk, hk)

for i ∈ [1..k] , a ∈ V as well as bj ∈ V and hj ∈ [1..n] , j ∈ [1..k];
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5. C0 = (w1, . . . , wn), where the wi ∈ V ∗, i ∈ [1..n], are finite multisets of objects
for each i ∈ [1..n],

6. i0 is the output cell.

A rule (a, i) → (b1, h1) . . . (bk, hk) in Ri indicates that a copy of the symbol a
in cell i is erased and instead, for all j ∈ [1..k], a copy of the symbol bj is added
in cell hj .

In any configuration of the tissue P system, a copy of the symbol a in cell i is
represented by (a, i), i.e., (a, i) is an element of V × [1..n].

Π is called deterministic if in every cell for every symbol from V exactly one
rule exists.

From the initial configuration specified by (w1, ..., wn), the system evolves by
transitions getting from one configuration to the next one by applying a maximal
set of rules in every cell, i.e., by working in the maximally parallel derivation mode.
A computation is a sequence of transitions. In contrast to the common use of P
systems to generate sets of multisets, as a result of the P system we take the
contents of cell i0, provided it only consists of terminal objects only, at each step
of any computation, no matter whether this computation will ever stop or not,
i.e., we do not take into account any halting condition. The set of all multisets
generated in that way by Π is denoted by L (Π). If we are only interested in the
number of symbols instead of the Parikh vectors, the corresponding set of numbers
generated by Π is denoted by N (Π).

The family of sets of multisets generated by tissue P systems with non-
cooperative rules with at most n cells in the maximally parallel derivation mode is
denoted by PsEtOPn (noncoop, maxpar). Considering only the length sets instead
of the Parikh vectors of the results obtained in the output cell during the computa-
tions of the tissue P systems, we obtain the family of sets of non-negative integers
generated by tissue P systems with non-cooperative rules with at most n cells in
the maximally parallel derivation mode, denoted by NEtOPn (noncoop, maxpar).
The corresponding families generated by non-extended tissue P systems – where all
symbols are terminal – are denoted by XtOPn (noncoop, maxpar), X ∈ {Ps,N}.
For all families generated by (extended) tissue P systems as defined before, we
add the symbol D in front of t if the underlying systems are deterministic. If the
number of cells is allowed to be arbitrarily chosen, we replace n by ∗.

3.1 A well-known example

Consider the D0L system with the only rule a → aa, i.e.,

G = ({a} , {a} , {a → aa} , a) .

As is well known, the language generated by G is
{
a2n | n ≥ 0

}
and therefore

N (G) = {2n | n ≥ 0}.
The corresponding deterministic one-cell tissue P system is

Π = ({a} , {a} , {(a, 1) → (a, 1) (a, 1)} , (a)) .
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Obviously, we get L (Π) = Ps (L (G)) and N (G) = N (Π).

We should like to point out that in contrast to this tissue P system without
imposing halting, there exists no tissue P system with only one symbol in one cell

Π = ({a} , {a} , R, (w))

that with imposing halting is able to generate {2n | n ≥ 0}, because such systems
can generate only finite sets (singletons or the empty set):

• if w = λ, then N (Π) = {0};
• if R is empty, then N (Π) = {|w|};
• if w 6= λ and R contains the rule a → λ, then N (Π) = {0}, because no

computation can stop as long as the contents of the cell is not empty;
• if w 6= λ and R is not empty, but does not contain the rule a → λ, then R

must contain a rule of the form a → an for some n ≥ 1, yet this means that
there exists no halting computation, i.e., N (Π) is empty.

4 The Computational Power of Tissue P Systems With
Non-cooperative Rules

In this section we present some results concerning the generative power of (ex-
tended) tissue P systems with non-cooperative rules; as we shall show, there is a
strong correspondence between these P systems with non-cooperative rules and
E0L systems.

Theorem 1. For all n ≥ 1,

PsE0L = PsEtOPn (noncoop,maxpar)
= PsEtOP∗ (noncoop,maxpar) .

Proof. We first show that

PsE0L ⊆ PsEtOP1 (noncoop,maxpar) :

Let G = (V, T, P, w) be an E0L system. Then we construct the corresponding
extended one-cell tissue P system

Π = (1, V, T, R, (w) , 1)

with
R = {(a, 1) → (b1, 1) . . . (bk, 1) | a → b1 . . . bk ∈ P} .

Due to the maximal parallel derivation mode applied in the extended tissue P
system Π, the derivations in Π directly correspond to the derivations in G. Hence,
L (Π) = Ps (L (G)).
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As for all n ≥ 1, by definition we have

PsEtOP1 (noncoop, maxpar) ⊆ PsEtOPn (noncoop,maxpar) ,

it only remains to show that

PsEtOP∗ (noncoop,maxpar) ⊆ PsE0L :

Let
Π = (n, V, T,R, (w1, . . . , wn) , i0)

be an extended tissue P system. Then we first construct the E0L system

G = (V × [1..n] , T0, P, w)

with
w = tn

i=1hi (wi)

(t represents the union of multisets) and

T0 = hi0 (T ) ∪ ∪j∈[1..n],j 6=i0hj (V )

where the hi : V ∗ → {(a, i) | a ∈ V }∗ are morphisms with hi (a) = (a, i) for a ∈ V
and i ∈ [1..n], as well as

P = R ∪ P ′

where P ′ contains the rule (a, i) → (a, i) for a ∈ V and i ∈ [1..n] if and only if
R contains no rule for (a, i) (which guarantees that in P there exists at least one
rule for every b ∈ V × [1..n]).

We now take the projection h : T ∗0 → T ∗ with h ((a, i0)) = a for all a ∈ T and
h ((a, j)) = λ for all a ∈ V and j ∈ [1..n], j 6= i0. Due to the direct correspondence
of derivations in Π and G, respectively, we immediately obtain Ps (h (L (G))) =
L (Π).

As E0L is closed under morphisms (e.g., see [8], vol. 1, p. 266f.) and therefore
L (Π) = Ps (L (G′)) for some E0L system G′, we finally obtain L (Π) ∈ PsE0L.
¤

As an immediate consequence of Theorem 1, we obtain the following results:

Corollary 1. For all n ≥ 1,

NE0L = NEtOPn (noncoop,maxpar)
= NEtOP∗ (noncoop,maxpar) .

Proof. Given an E0L system G, we construct the corresponding extended tissue
P system Π as above in Theorem 1; then we immediately infer N (G) = N (Π).
On the other hand, given an extended tissue P system Π, by the constructions
elaborated in Theorem 1, we obtain

N (Π) = N (G′) = {|x| | x ∈ h (L (G))}
and therefore N (Π) ∈ NE0L. ¤
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Corollary 2. For X ∈ {Ps, N}, X0L = XtOP1 (noncoop,maxpar) .

Proof. This result immediately follows from the constructions elaborated
in Theorem 1 with the specific restriction that for proving the inclusion
PstOP1 (noncoop,maxpar) ⊆ Ps0L we can directly work with the symbols of
V from the given non-extended tissue P system Π for the 0L system G to be
constructed (instead of the symbols from V × {1}) and thus do not need the pro-
jection h to get the desired result L (Π) = L (G) ∈ Ps0L. Besides this important
technical detail, the results of this corollary directly follow from Theorem 1 and
Corollary 1, because any non-extended system corresponds to an extended system
where all symbols are terminal. ¤

For tissue P systems with only one cell, the non-cooperative rules can also
be interpreted as antiport rules in the following sense: an antiport rule of the
form a/x in a single-cell tissue P system means that the symbol a goes out to
the environment and from there (every symbol is assumed to be available in the
environment in an unbounded number) the multiset x enters the single cell. The
families of Parikh sets and length sets generated by (extended, non-extended)
one-cell tissue P systems using antiport rules of this specific form working in the
maximally parallel derivation mode are denoted by XEtOP1 (anti1,∗,maxpar) and
XtOP1 (anti1,∗,maxpar) for X ∈ {Ps, N}, respectively. We then get the following
corollary:

Corollary 3. For X ∈ {Ps, N},

XEtOP1 (anti1,∗,maxpar) = XE0L

and
XtOP1 (anti1,∗,maxpar) = X0L.

Proof. The results immediately follow from the previous results and the fact
that the application of an antiport rule a/b1 . . . bk has exactly the same ef-
fect on the contents of the single cell as the non-cooperative evolution rule
(a, 1) → (b1, 1) . . . (bk, 1). ¤

For one-cell tissue P systems, we obtain a characterization of the families gen-
erated by the deterministic variants of these systems by the families generated by
the corresponding variants of Lindenmayer systems:

Corollary 4. For X ∈ {Ps, N} and Y ∈ {noncoop, anti1,∗},

XED0L = XtEDOP1 (Y,maxpar)

and
XD0L = XtDOP1 (Y,maxpar) .
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Proof. As already mentioned in the proof of Corollary 2, the results immediately
follow from the constructions elaborated in Theorem 1 with the specific restriction
that for proving the inclusion PsEDtOP1 (noncoop,maxpar) ⊆ PsED0L we can
directly work with the symbols of V from the given (extended) deterministic tissue
P system Π for the ED0L system G to be constructed (instead of the symbols from
V × {1}) and thus do not need the projection h to get the desired result L (Π) =
L (G) ∈ PsED0L. The remaining statements follow from these constructions in a
similar way as the results stated in Corollaries 1, 2, and 3. ¤

The constructions described in the proofs of Corollary 2 and 4 cannot be ex-
tended to (non-extended, deterministic) tissue P systems with an arbitrary num-
ber of cells, because in that case again the application of a projection h would be
needed.

5 Conclusions and Future Research

In this paper we have shown that the Parikh sets as well as the length sets gener-
ated by (extended) tissue P systems with non-cooperative rules (without halting)
coincide with the Parikh sets as well as the length sets generated by (extended)
Lindenmayer systems.

In the future, we may also consider other variants of extracting results from
computations in (extended) tissue P systems with non-cooperative rules, for exam-
ple, variants of halting computations or only infinite computations, as well as other
derivation modes as the sequential or the minimally parallel derivation mode. For
the extraction of results, instead of the intersection with a terminal alphabet we
may also use other criteria like the occurrence/absence of a specific symbol.

As inspired by the ideas elaborated in [3], we may investigate in more detail the
evolution/behaviour of deterministic tissue P systems with non-cooperative rules
based on the mathematical theory of Lindenmayer systems: as there is a one-to-one
correspondence between deterministic tissue P systems with non-cooperative rules
in one cell and D0L systems, the well-known mathematical theory for D0L systems
can directly be used to describe/ investigate the behaviour of the corresponding
deterministic tissue P systems with non-cooperative rules.

Acknowledgements. The authors gratefully acknowledge the interesting discus-
sions with Miguel Gutiérrez-Naranjo and Mario Pérez-Jiménez on the ideas pre-
sented in their paper [3].
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