
Membrane Computing Schema Based on String
Insertions

Mario J. Pérez-Jiménez1, Takashi Yokomori2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
marper@us.es

2 Department of Mathematics
Faculty of Education and Integrated Arts and Sciences
Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku
Tokyo 169-8050, Japan
yokomori@waseda.jp

Summary. In this note we introduce the notion of a membrane computing schema for
string objects. We propose a computing schema for a membrane network (i.e., tissue-like
membrane system) where each membrane performs unique type of operations at a time
and sends the result to others connected through the channel. The distinguished features
of the computing models obtained from the schema are:

1. only context-free insertion operations are used for string generation,
2. some membranes assume filtering functions for structured objects(molecules),
3. the generating model and accepting model are obtained in the same schema, and

both are computationally universal,
4. several known rewriting systems with universal computability can be reformulated

in terms of membrane computing schema in a uniform manner.

The first feature provides the model with a simple uniform structure which facilitates a
biological implementation of the model, while the second feature suggests further feasi-
bility of the model in terms of DNA complementarity.

Through the third and fourth features, one may have a unified view of a variety
of existing rewriting systems with Turing computability in the framework of membrane
computing paradigm.

1 Introduction

In the theory of bio-inspired computing models, membrane systems (or P systems)
have been widely studied from various aspects of the computability such as the
optimal system designs, the functional relations among many ingredients in differ-
ent levels of computing components, the computational complexity and so forth.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

282 M.J. Pérez-Jiménez, T. Yokomori

Up to the present, major concerns are focused on the computational capability of
multisets of certain objects in a membrane structure represented by a rooted tree,
and there are a relatively limited amount of works in the membrane structure of
other types (like a network or graph) on string objects and their languages; those
are, for example, in the context of P system on graph structure ([15]), of the tissue
P systems ([10]) and of spiking neural P systems ([2, 6]).

On the other hand, in DNA computing theory, a string generating device called
insertion-deletion system has been proposed and investigated from the uniqueness
of non-rewriting nature in generating string objects. Among others, string insertion
operation with no context is of our particular interests, because of the relevance
to biological feasibility in terms of DNA sequences.

In this paper, we are concerned with tissue-like membrane systems with string
insertion operations and investigate the computational capability of those systems.
By using the framework of tissue-like membrane systems, however, our major focus
is on studying the new aspects of the computational mechanisms used in a variety
of existing models based on string rewriting.

To this aim, we propose the notion of a membrane computing schema which
provides a unified view and framework to investigate new aspects of the variety
of computational mechanisms. That is, by a membrane computing schema Π , we
represent a core structure of the computing model M at issue. At the same time,
we also consider an interpretation I to Π which specifies the details of M . Then,
we have M that is embodied as a tissue-like membrane system I(Π) with string
insertion operation.

The advantages of this schematic approach to computing are the following:
(1) High transparency of the computing mechanism is obtained from separating
the skeletal (core) part from other detailed specificity of the computation. (2)
Structural modularity of the computing model facilitates our better understanding
of the computing mechanism.

With this framework we will present not only new results of the computing
models with universal computability but also a unified view of those models from
the framework of tissue-like membrane system with string insertion operations.

2 Preliminaries

We assume the reader to be familiar with all formal language notions and notations
in standard use. For unexplained details, consult, e.g., [14, 16].

For a string x over an alphabet V (i.e., x in V ∗), lg(x) denotes the length of
x. For the empty string, we denote it by λ. For an alphabet V , V = {a | a ∈ V }.
A binary relation ρ over V is called an involution if ρ is injective and ρ2 is an
identity (i.e., for any a ∈ V , if we write ρ(a) = a, then it holds that ρ(a) = a). A
Dyck language Dk over V ∪ V is a language generated by a context-free grammar
G = ({S}, V, P, S), where P = {S → SS, S → λ} ∪ {S → aSa | a ∈ V } and k is
the cardinality of V .

Membrane Computing Schema Based on String Insertions 283

An insertion system ([9]) is a triple γ = (V, P,A), where V is an alphabet, A
is a finite set of strings over V called axioms, and P is a finite set of insertion
rules. An insertion rule is of the form (u, x, v), where u, x, v ∈ V ∗. We define
the relation 7→ on V ∗ by w 7→ z iff w = w1uvw2 and z = w1uxvw2 for some
insertion rule (u, x, v) ∈ P , w1, w2 ∈ V ∗. As usual 7→∗ denotes the reflexive and
transitive closure of 7→. The insertion language generated by γ is defined as follows:
L(γ) = {w ∈ V ∗| s 7→∗ w, s ∈ A}. An insertion rule of the form (λ, x, λ) is said to
be context-free, and we denote it by λ→ x.

We denote by RE,CF,LIN and RG the families of recursively enumerable
languages, of context-free languages, of linear languages, and of regular languages,
respectively.

A matrix grammar with appearance checking is a constructG = (N,T, S,M, F),
where N,T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the
form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪ T (with
Ai ∈ N, xi ∈ (N ∪ T)∗, in all cases), and F is a set of occurrences of rules in M
(we say that N is the nonterminal alphabet, T is the terminal alphabet, S is the
axiom, while the elements of M are called matrices).

For w, z ∈ (N ∪T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An →
xn) in M and the strings wi ∈ (N∪T)∗, 1 ≤ i ≤ n+1, such that w = w1, z = wn+1,
and, for all 1 ≤ i ≤ n, either wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i , for some w′i, w

′′
i ∈

(N ∪ T)∗, or wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears
in F . (The rules of a matrix are applied in order, possibly skipping the rules in F
if they cannot be applied; we say that these rules are applied in the appearance
checking mode.) If F = ∅, then the grammar is said to be without appearance
checking (and F is no longer mentioned).

We denote by =⇒∗ the reflexive and transitive closure of the relation =⇒.
The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.

The family of languages of this form is denoted by MATac. When we use only
grammars without appearance checking, then the obtained family is denoted by
MAT . It is known that MAT ⊂MATac = RE.

A matrix grammar G = (N,T, S,M, F) is said to be in the binary normal form
if N = N1 ∪N2 ∪{S,#}, with these three sets mutually disjoint, and the matrices
in M are of one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ N2 ∪N2

2 ∪ T ∪ {λ},
3. (X → Y,A→ #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ,A→ x), with X ∈ N1, A ∈ N2, and x ∈ T ∪ {λ}.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A → # appearing in matrices of type 3; # is a trap-symbol, once introduced,
it is never removed. A matrix of type 4 is used only once, at the last step of a
derivation.

For each matrix grammar (with appearance checking) there effectively exists
an equivalent matrix grammar (with appearance checking) in the binary normal

284 M.J. Pérez-Jiménez, T. Yokomori

form. (Note that the definition of the binary normal form presented here is a
variant of the one in [4].)

A random context grammar is a construct G = (N,T, S, P), where N,T are
disjoint alphabets, S ∈ N , P is a finite set of rules of the form (A → x,Q,R),
where A→ x is a context-free rule (A ∈ N, x ∈ (N ∪ T)∗), Q and R are subsets of
N .

For α, β ∈ (N ∪ T)∗ we write α =⇒ β iff α = uAv, β = uxv for some
u, v ∈ (N ∪ T)∗, (A → x,Q,R) ∈ P , all symbols of Q appear in uv, and no
symbol of R appears in uv. We denote by =⇒∗ the reflexive and transitive closure
of the relation =⇒.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}. The
family of languages of this form is denoted by RC. It is known that RC = RE
([4]).

3 Membrane Computing Schema, Interpretation and
Languages

We now introduce the notion of a membrane computing schema in a general form,
then we will present a restricted version, from which a variety of specific com-
puting models based on insertion operations and filtering can be obtained in the
framework of a tissue-like membrane computing. That is, a membrane comput-
ing schema is given as a skeletal construct consisting of a number of membranes
connected with synapses (or channels) whose structure may be taken as a kind of
tissue P systems (e.g., [10]).

3.1 Membrane Computing Schema

A membrane computing schema of degree (k, p) is a construct

Π = (V, T, Syn, Com,Ope, F il, is, Out),

where:

(i) V is a finite alphabet with an involution relation ρ called the working alphabet.
(ii) T is a subset of V called the terminal alphabet.
(iii) Syn ⊆ (Com×Ope)∪(Ope×Com)∪(Com×(SubF il∪{SF}))∪({FF}×Com)

∪ (SubF il×Ope) ∪ {(SF, FF), (FF,Out)},
where Com = {Com1, · · · , Comp} called a set of communication cells,

Ope = {Ope1, · · · , Opek} called a set of operation cells,
Fil = {SF, FF} ∪ SubF il called a set of filtering cells,
where SubF il = {FF1, · · · , FFt} called a set of subfilter cells.

Syn determines the tissue membrane structure of Π . (See Figure 1. In the
figure, the thick arrow indicates multiple arrows of one-way or two-way direc-
tions.)

Membrane Computing Schema Based on String Insertions 285

(iv) Each cell Comi serves as a communication channel. That is, any string x in
the cell Comi is sent out to all the cells indicated by Syn(Comi).

(v) Each cell Opej consists of a finite number of rules {σj1, · · · , σjs}, where each
σji is a string insertion operation of the form : λ→ u, where u ∈ V ∗.

(vi) SF and FF , called structured filter and final filter, are associated with two
languages LSF and LFF over V , respectively. Further, each cell FFi, called
subfilter, is also associated with a language LFFi .

(vii) is(= Com1) is the distinguished cell (to designate some specific role).
(viii) Out is the output cell (for obtaining the outputs).

3.2 Interpretation of Π

In order to embody a membrane computing schema Π , we need to give more
information about Π which specifies each operation in Ope, and materializes SF
and FF . Let us consider such an interpretation I to the schema Π which enables
us to have a computing model I(Π) that is feasible in a practical sense.

[Notation] For any x in Com ∪ SubF il ∪ {FF}, let Syn(x) = { j | (x, yj) ∈
Syn} and for any y in Ope∪SupF il∪{SF}, let Syn−1(y) = { i | (xi, y) ∈ Syn}.
(Note that both Syn(x) and Syn−1(y) refer to sets of indices.)

Formally, an interpretation I to Π is a construct I = ({R1, · · · , Rk}, LSF ,
LFF , {LFFi | 1 ≤ i ≤ t}), where

(i) Ri specifies a set of insertion operations used in Opei (for i = 1, · · · , k)
(ii)LSF (LFF) materializes a concrete specification about the function of SF (FF ,

respectively). In practical operational phases (described below), we assume the
following:
• In the cell SF , each string is assumed to form a certain structure (e.g.,
structured molecule based on hybridization in terms of H-bonds via minimal
energy principle). SF takes as input a string u over V and allows it to filter
through if it is in LSF (otherwise, the string u is lost). Then, after building up
a structured form s(u) of u, SF removes all parts of structures from s(u) and
produces as output the concatenation of all remaining strings. The output v is
sent out to the cell FF .
• FF receives as input a string v over V (from SF). A string v filters through
if it is in LFF and is sent out to Out. Otherwise, it is sent out to all cells
indicated by Syn(FF).
• Each FFi receives as input a string u over V . Then, a string v filters through
if it is in LFFi and is sent out to all cells indicated by Syn(FFi). Otherwise,
it is lost.
• Filtering applies simultaneously to all strings in the filtering cell.

Note that in the case SubF il is empty in a given Π , an interpretation to Π is
simply written as I = ({R1, · · · , Rk}, LSF , LFF).

286 M.J. Pérez-Jiménez, T. Yokomori

Fig. 1. Modular Structure of Membrane Network in Π

3.3 Transitions and Languages

Given a schema Π and its interpretation I , we now have a membrane system I(Π)
based on string insertions. In what follows, we define a transition sequence of I(Π)
and the language associated with I(Π).

The (p+ 1)-tuple of languages over V represented by (L1, . . . , Lp, Lout) consti-
tutes a configuration of the system, where each Li represents the set of all strings
in the cell Comi (for all i = 1, · · · , p), and Lout is the set of strings presented in
the output cell at some time instance.

Let C1 = (L1, . . . , Lp, Lout) and C2 = (L′1, . . . , L
′
p, L
′
out) be two configurations

of the system.
We define one transition from C1 to C2 in the following steps:

(0) Pre-checking Step: For each ` = 1, · · · , t, let Syn−1(FF`) = {`1, · · · , `q}
and consider L[`] = ∪qi=1L`i . Then, each cell FF` filters out all strings of L[`] that
are not in LFF` , and all strings that have passed through are sent to all the cells
indicated by Syn(FF`). (In the case of t = 0, this step is skipped.)

(1) Evolution Step: For each j = 1, · · · , k, let σj1, · · · , σjs be all the operations
given in Opej .

Suppose that we apply operations σji : λ → uji (1 ≤ i ≤ s) to a string v
which means that each σji is applied to v simultaneously. Further, when we apply

Membrane Computing Schema Based on String Insertions 287

σji to v, the location in v to insert uji is nondeterministically chosen and the
result σji(v) is considered as the set of all possible strings obtained from v by σji.
(Note that if two or more rules share the same location to insert, then all possible
permutations of those rules are considered to apply to the location.) The result of
such an application of all operations in Opej to v is denoted by Opej(v).

Let L(j) = ∪tm=1Ljm , where Syn−1(Opej) = {j1, · · · , jt}. Then, the total result
performed by Opej to L(j) is defined as

Opej(L(j)) = ∪v∈L(j)Opej(v).

This result is then sent out to all cells indicated by Syn(Opej) simultaneously.

(2) Filtering Step: For each i = 1, · · · , p, let L̃i = ∪rn=1Opein(L(in)), where
Syn(Comi) = {i1, · · · , ir}. Further, let Le = ∪gn=1L̃in , where Syn−1(SF) =
{i1, · · · , ig}.

SF takes as input the set Le and produces as output a set of strings Lf . (Recall
that in the cell SF , each string u is assumed to form a certain structure, and the
output of SF is the reduced string by removing structural parts from u in LSF .)
Then, SF sends out Lf to FF . (Any element of Le that was filtered off by SF is
assumed to be lost.)

Finally, the cell FF filters out strings of Lf depending upon whether they are
in LFF or not. All strings in Lf that passed through FF are sent out to Out,
while others are simultaneously sent to Comi for all i ∈ Syn(FF) or they are all
lost if Syn(FF) = ∅.

Let Lff be the set of all strings that were filtered off by FF . Then, we define
C2 = (L′1, . . . , L

′
p, L
′
out) by setting for each i = 1, · · · , p

L′i =

{
Lff , if i ∈ Syn(FF),

L̃i, otherwise.

Further, let L′out = Lout ∪ Lf (Out), where Lf (Out) = Lf − Lff (the set of all
stings that have passed through FF and been sent to Out).

Remarks.
(1) Each cell in Com not only provides a buffer for storing intermediate results in
the computation process but also transmits them to the cells specified by Syn.
(2) The system has a global clock and counts time in such a way that every cell
(including communication cells) takes one unit time to perform its task irrespective
of the existence of strings in it, while a pre-checking step by a subfilter cell FFi is
assumed to be executed within the unit time for its corresponding operation cells
in Syn(FFi).

Let I be an interpretation of Π . When we have a transition from C1 to C2 of
I(Π), we write C1 =⇒ C2. A configuration C0 = ({w}, ∅, · · · , ∅), where w ∈ V ∗, is
called the initial configuration. A sequence of transitions between configurations
of the system I(Π), starting from the initial configuration, is called a computation
of I(Π).

288 M.J. Pérez-Jiménez, T. Yokomori

Let =⇒∗ be the reflexive and transitive closure of =⇒. For any n ≥ 0, let

C0 =⇒n Cn = (L1,n, · · · , Lp,n, L(n)
out) be a computation of I(Π) with n transitions

from C0. We consider two types of computing models induced from I(Π); one is
the generating model and the other the accepting model.

[Generating Model] In the case of a generating model, we consider all compu-
tations whose results are present in the output cell. That is, we define the language
generated by I(Π) as follows:

Lg(I(Π)) = ∪n≥0L
(n)
out.

[Accepting Model] In the case we consider an accepting model, let w be an input
string. Then, we assume that if w is recognized, then the result Yes or No is present
in the output cell after a certain number of transitions from C0 = ({w}, ∅, · · · , ∅).
Thus, we define the language accepted by I(Π) as follows:

La(I(Π)) = {w ∈ T ∗ | Y es ∈ L(n)
out for some n ≥ 0}.

For a class of interpretations I to Π , we denote by LMSx(Π, I) the family of
all languages Lx(I(Π)) specified by those systems as above, where I is in I. That
is,

LMSx(Π, I) = {Lx(I(Π)) | I ∈ I},
where x is in {a, g}.

4 Characterizations by Membrane Schema Π0

The structure of the membrane computing schema Π introduced in the previous
section seems to be general enough to induce a computing device with universal
computability power by finding an appropriate interpretation. In what follows, we
will show that such a universal computability can be realized by much simpler
schemas together with appropriate interpretations of moderately simple filtering
cells.

First we consider the following simple membrane computing schema:

Π0 = (V, T, Syn, Com,Ope, F il, is, Out),

where:

(1) V , T , Ope, is and Out are the same as in Π ,
(2) Fil = {SF, FF} (i.e., SubF il is empty),
(3) Com = {Com1, Com2},
(4) Syn = {Com1, Opei), (Opei, Com2) | 1 ≤ i ≤ k}

∪{(FF,Com1), (Com2, SF), (SF, FF), (FF,Out)} (see (a) of Figure 2).

We are now in a position to present our first result.

Membrane Computing Schema Based on String Insertions 289

Theorem 4.1 There exists IG such that RE = LMSg(Π0, IG).

Proof. We prove only the inclusion ⊆. (The opposite inclusion is a consequence of
the Turing-Church thesis.)

Let L be any language in RE that is generated by a Chomsky type-0 gram-
mar G = (N,T, S, P). Then, we consider the following interpretation IG =
(RG, LSF , LFF), where

(i) For each r : u → v in P , construct Rr = {λ → vr, λ → uRr}, and let
RG = { Rr | r ∈ P}.

(ii) • LSF is given as following language:
Lmir = V ∗{ wwR | w ∈ V ∗}V ∗ = { xwwRy | x, y, w ∈ V ∗ } .

That is, a string filters through SF iff it is an element in Lmir, where
V = N ∪T ∪{r | r ∈ P}. (Recall that, by definition of SF , any string in SF is
assumed to form a structure, and we assume the hybridization by involution
relation ρ over V . Specifically, SF performs two functions: it only accepts all
structures of molecules containing a special hairpin ww, and then it removes
the portion of a hairpin from the structure and send out the rest part of the
string to FF (see (b) of Figure 2). The structures rejected by SF are all lost.)
• LFF is simply given as T ∗, so that only strings in T ∗ can pass through FF
and are sent to the output cell Out. Other strings are all sent to Com1. (Note
that (FF,Com1) is in Syn of Π0.)

For any n ≥ 1, let C0 = ({S}, ∅, ∅) =⇒n Cn = (L1,n, L2,n, L
(n)
out) be a computation

with n transitions in IG(Π0). Suppose that S =⇒n−1 α⇒r β in G, where α = xuy,
β = xvy and r : u→ v is used. Then, we can show that

(i) α is in L1,(n−1),

(ii) β′ = xvruuRry is in SF , and
(iii) after filtering by SF , the reduced string of β′, i.e., a string xvy(= β) is

sent to FF .
In FF , if β is not in T ∗, then it is sent to Com1 and, therefore, in L1,n, where

Cn = (L1,n, L2,n, L
(n)
out). Otherwise, β is sent to L

(n)
out. That is, if β is in L(G), then

we have that β is in Lg(IG(Π0)).

Conversely, suppose that for any n ≥ 1, α is in L1,n. Then, there exists α′ =
α1ww

Rα2 in Com2 such that α = α1α2. From the way of constructing RG, there
uniquely exists r : u → v in P such that Rr = {λ → vr, λ → uRr} and w = ru.
(No other Rr′(r

′ 6= r) can make a substring wwR by insertion operations because
of the uniqueness of r.)

Therefore, we can write α′ = α1ruu
Rrα2 for some α1, α2. Then, there must

exist α′1 such that α1 = α′1v because of the rule λ → vr. Hence, we have that
α′ = α′1vruu

Rrα2 from which we can derive that α′1uα2 is in L1,(n−1). Thus, there
exists a derivation: α′1uα2 =⇒r α

′
1vα2 = α in G. By iteratively applying the above

argument, we eventually conclude that there exists a derivation S =⇒n α in G.

290 M.J. Pérez-Jiménez, T. Yokomori

Taking L1,0 = {S} into consideration, it holds that for any n ≥ 0, L1,n = {α |
S =⇒n α in G }. If α is in Lg(IG(Π0)), then it is also in L(G). Thus, we have that
L(G) = Lg(IG(Π0)), which completes the proof. 2

Note. The language Lmir used for LSF can be replaced with the simpler
(regular) language LG = ∪r∈PV ∗{ruuRr}V ∗, where r : u→ v ∈ P and P is from
a given G. However, we choose Lmir here because of its independence of G.

Fig. 2. Membrane Computing Schema: Π0

Theorem 4.2 There exists IM such that RE = LMSa(Π0, IM).

Proof. We use the same strategy as in Theorem 4.1, but start with a (nondeter-
ministic) Turing machine M . That is, let L be any language in RE accepted by
M = (Q,T, U, δ, p0, B, F), where B(/∈ U) is a blank symbol. (Without loss of gen-
erality, we may assume that M immediately stops as soon as it enters into a final
state of F .) An instantaneous description (ID) of M is represented by a string
xpay in U∗QU∗, where xay is the tape content (x, y ∈ U∗, a ∈ U) and M is in the
state p(∈ Q) and the tape head is on a.

Given an input w(∈ T ∗), M starts computing w from the state p0, which
is represented by an ID: p0w. (We assume that the tape content has the left-
boundary (the leftmost of w) and no right-boundary where blank symbols B are
initially filled.) In general, suppose that a transition rule (p, a) → (q, c, i) ∈ δ is
applied to an ID xbpay. Then, we have a transition between IDs of M :

• xbpay =⇒ xbcqy (if i = R and a 6= B),
• xbpay =⇒ xqbcy (if i = L and a 6= B),
• xbpa =⇒ xbcq (if i = R, a = B and y = λ),

Membrane Computing Schema Based on String Insertions 291

• xbpa =⇒ xqbc (if i = L, a = B and y = λ).

Thus, in each case one can consider a rewriting rule : for example, a rule pa→ cq
for the case (i). Let PM be the set of rewriting rules obtained from δ in this manner.
We define an interpretation IM = (RM , LSF , LFF) as follows:

(i) For each r : u → v in PM , construct Rr = {λ → vr, λ → uRr}, and let
RM = { Rr | r ∈ PM}.

(ii)LSF is the same as the one in IG.
(iii) LFF is given as V ∗FV ∗, where V = U ∪Q ∪ {B} ∪ {r | r ∈ PM}.

Let w be any string in T ∗ and n ≥ 0. Then, from the way of constructing
IM together with discussion above, it is easily seen that p0w =⇒n xqy for some

q ∈ F , x, y ∈ U∗ iff there exists Y es ∈ L(n)
out such that C0 = ({w}, ∅, ∅) =⇒n Cn =

(L1,n, L2,n, L
(n)
out). Thus, we have that L(M) = La(IM (Π0)), which completes the

proof. 2

5 Further Results by Some Variants of Membrane Schema

We give now another membrane computing schema Π1,t which is a variant of Π0

and also able to induce a family of computing devices I(Π1,t) (with an appropriate
interpretation I) that can characterize RE.

The membrane computing schema Π1,t is given as follows:

Π1,t = (V, T, Syn, Com,Ope, F il, is, Out),

where:

(1) V , T , Ope, is and Out are the same as in Π0.
(2) Com = {Com1}.
(3) Fil = {SF, FF} ∪ SubF il, where SubF il = {FFi | 1 ≤ ∀i ≤ t} or = ∅ (t = 0).
(4) Syn = {(Com1, FFi), (FFi, Opei) | 1 ≤ i ≤ t}∪{(Com1, Opej) | t+1 ≤ j ≤ k}

∪(Opei, Com1) | 1 ≤ ∀i ≤ k} ∪ {(Com1, SF), (SF, FF), (FF,Out)}.
(aee (a) of Figure 3).

Note: In (3) and (4) above, t can take any integer between 0 and k, and when
t = 0, it means the corresponding set is empty.

The difference between Π1,t and Π0 is that Π1,t has only one Com1, while
several Opeis possibly require subfiltering cells FFi for prechecking of strings.

Notation. We denote by Π1.5 a schema Π1,t where 1 ≤ t < k, and write Π1 for
a schema Π1,k(i.e., t coincides with k).

Theorem 5.1 There exists IGm such that RE = LMSg(Π1.5, IGm).

292 M.J. Pérez-Jiménez, T. Yokomori

Fig. 3. Membrane Computing Schema Π1.5

Proof sketch. We use a similar argument to the one in the proof of Theorem 4.1
and start with a matrix grammar. That is, let L be any language in RE generated
by a matrix grammar Gm = (N,T, S,M, F) with appearance checking, where
N = N1 ∪N2 ∪ {S,#}, and we may assume that G is in the binary normal form.

We consider the following interpretation IGm = (RGm , LSF , LFF , {LFFi | 1 ≤
i ≤ t}), where

(i) (1) Let k be the cardinality of M and t be the number of appearance checking
matrix rules in M . For each appearance checking rule mi : (X → Y,A → #)
(1 ≤ i ≤ t), construct Rmi = {λ→ Y smi , λ→ Xsmi}.
(2) For other rules mj : (X → Y,A → x) in M (where Y ∈ N1 ∪ {λ}, x ∈
T ∪ N2 ∪ N2

2 ∪ {λ}; t + 1 ≤ j ≤ k), construct Rmj = {λ → Y smj , λ →
Xsmj , λ→ xrmj , λ→ Armj}. Then, let RGm = {Rm1 , · · · , Rmk}.

(ii) • LSF is given as the regular language Lmat = LsLm, where

Ls = {smXXsm | m : (X → Y,A→ #) ∈M}∗, and

Lm = (T ∪ {rmAArm | m : (X → Y,A→ y) ∈M})∗.

• LFFi is given as follows: Let t be the number of appearance checking matrix
rules in M . For each appearance checking rule mi : (X → Y,A → #) (1 ≤
i ≤ t), consider Lmi = (V ∪ V)∗ − (V ∪ V)∗{A}(V ∪ V)∗, where V = T ∪N ∪
{sm, rm | m ∈ M}. Then, LFFi is given as Lmi . (Thus, FFi performs in such
a way that it allows only strings in Lmi to pass through and send them to the
cell Opei. Other strings are all lost.)

Membrane Computing Schema Based on String Insertions 293

• Finally, LFF is given as T ∗, so that only strings in T ∗ can pass through FF
and are sent to Out.

Let C0 = ({XA}, ∅), where (S → XA) ∈M , and consider a transition sequence

C0 =⇒n Cn = (L1,n, L
(n)
out). Then, for any α ∈ (N ∪ T)∗ and n ≥ 0, it holds that

α ∈ L1,n iff XA =⇒n α in Gm. Thus, we have L(Gm) = Lg(IGm(Π1.5)). 2

Theorem 5.2 There exists IGr such that RE = LMSg(Π1, IGr).

Proof sketch. We use the same argument as the one in the proof of Theorem
5.1, but we start with a random context grammar Gr = (N,T, S, P) generating
an arbitrary recursively enumerable language L. (See Preliminary section.) Then,
consider the following interpretation IGr = (RGr , LSF , LFF , {LFFi | 1 ≤ i ≤ k}),
where

(i) Let k be the cardinality of P . For each rule ri : (A → x,Q,R) (1 ≤ i ≤ k),
construct Rri = {λ→ xri, λ→ Ari}. Then, let RGri = {Rri | ri ∈ P}.

(ii) • LSF is defined by the regular language Lm (in LSF for IGm).
• LFFi is given as follows: For each rule ri : (A → x,Q,R), if A ∈ Q, then
let Lri = (V ∪ V)∗{A}(V ∪ V)∗{A}(V ∪ V)∗ ∩ ∩X∈Q−{A}(V ∪ V)∗{X}(V ∪
V)∗ ∩ ∩X∈R((V ∪ V)∗ − (V ∪ V)∗{X}(V ∪ V)∗). Otherwise (i.e., A /∈ Q), let
Lri = ∩X∈Q(V ∪V)∗{X}(V ∪V)∗ ∩∩X∈R((V ∪V)∗− (V ∪V)∗{X}(V ∪V)∗),
where V = N ∪ T ∪ {r | r ∈ P}. Then, LFFi is defined by Lri . (That is, each
FFi performs in such a way that it allows only strings in Lri to pass through
and send them to the cell Opei. Other strings are all lost.)
• Finally, LFF is given as T ∗, so that only strings in T ∗ can pass through FF
and are sent out to Out.

Let C0 = ({S}, ∅), where S is the starting symbol of Gr, and consider a

transition sequence C0 =⇒n Cn = (L1,n, L
(n)
out). Then, for any α ∈ (N ∪ T)∗

and n ≥ 0, it holds that α ∈ L1,n iff XA =⇒n α in Gr. Thus, we have that
L(Gr) = Lg(IGr (Π1)). 2

We give yet another membrane computing schema Π2 which is simpler than
Π0 but still able to provide the universal computability of those models induced
from the schema with appropriate interpretations, but at the price of increasing
the structural complexity in the filtering function SF .

The membrane computing schema Π2 is given as follows:

Π2 = (V, T, Syn, Com,Ope, F il, is, Out),

where:

(1) V , T , Ope, Fil, is and Out are the same as in Π0.
(2) Com = {Com1}.
(3) Syn = {(Com1, Opei), (Opei, Com1) | 1 ≤ i ≤ k}

∪{(Com1, SF), (SF, FF), (FF,Out)} (see (a) of Figure 4).

294 M.J. Pérez-Jiménez, T. Yokomori

From this simpler schema Π2, we can induce a family of computing devices I(Π2)
(with an appropriate interpretation I) that can characterize RE. (Note that Π2

is nothing but a schema Π1,0.)

Fig. 4. Membrane Computing Schema: Π2

Theorem 5.3 There exists I ′G such that RE = LMSg(Π2, I ′G).

Proof sketch. Let L be any language in RE that is generated by a Chomsky type-
0 grammar G = (V, T, S, P). Then, consider the following interpretation I ′G =
({RG}, LSF , LFF), where

(i) For each r : u → v in P , construct Rr = {λ → vr, λ → uRr}, and let
RG = ∪r∈PRr.

(ii)LSF adopts the Dyck language Dn, where n = |N ∪ T ∪ {r | r ∈ P}|.
(iii) LFF is given as T ∗, so that only strings in T ∗ can pass through FF and are

sent out to Out.

Consider a transition sequence C0 = ({S}, ∅) =⇒n Cn = (L1,n, L
(n)
out). Then, for

any α ∈ (N∪T)∗ and n ≥ 0, it holds that α ∈ L1,n iff S =⇒n α in G. Thus, we have
that L(G) = Lg(I

′
G(Π2)). (The proof is based on the fact that each recursively

enumerable language L can be represented in the form L = h(L′ ∩Dk)), where L′

is an insertion language, h is a projection and Dk is a Dyck language. (Theorem
3.1 in [13]). In order to understand the idea of the proof, it would be helpful to

Membrane Computing Schema Based on String Insertions 295

note that RG in Com1 generates the insertion language L′, while a pair of SF and
FF plays the same role as a pair of Dk and h.) 2

6 Concluding Remarks

In this paper we have introduced the notion of a membrane computing schema and
showed that several known computing models with the universal computability
can be reformulated in a uniform manner in terms of the framework of the schema
together with its interpretation. A similar idea in the context of grammar schema
has been proposed and discussed in [1, 5] to prove the computational completeness
of new type of P systems based on the framework of the random context grammars
for both string and multiset languages. (Note that the definition of random context
in those papers is not on a string to be rewritten but on the applicability of rules to
rewrite, different from the standard notion.) As for the communication by sending
objects and the use of filtering function, there are several papers that have been
devoted to studying the computational powers of communicating distributed H
systems (e.g., [3, 11]), and of the hybrid networks of evolutionary processors (e.g.,
[7, 8]).

Table 1 summarizes the results we have obtained. From the table, one can
have a unified view of a variety of computing models based on string rewriting.
For example, it is seen that there exists a trade-off between the complexity of
network structure in the schema and the complexity of the filtering SF .

More specifically, for new terminologies, L is a star language iff L = F ∗ for
some finite set F . Further, L is an occurrence checking language iff L = V ∗FV ∗

for some finite set F . Then, it should be noted that
(i) LG is a finite union of occurrence checking languages,
(ii) Ls and Lm are star languages,
(iii) Lri is a finite intersection of occurrence checking languages and their
complements,
(iv) Lmi is the complement of an occurrence checking language.

Since Π0 (or Π1) is more complex than Π2, one may see a trade-off between
the complexity of the schema and that of SF , telling that LG for single (or Lmat
for multiple) hairpin checking is simpler than Dk for nested hairpin checking.
This kind of trade-off can also be seen in complexity between a series of schemas
(Π1, Π1.5, Π2) and the corresponding SFs (Lm, Lmat, Dk).

It should be remarked that if we start with a programmed context-free gram-
mar Gpr ([4]), then we have the result that RE = LMSg(Π1, IGpr), where an
interpretation IGpr consists of Lm (for SF), T ∗ (for FF) and Lmi (for FFi),
which suggests that programmed context-free grammars can be regarded as hy-
brid systems between matrix grammars with appearance checking and random
context grammars.

296 M.J. Pérez-Jiménez, T. Yokomori

Table 1

Schema SF FF SubFil

Chomsky type-0 Π0 LG(∈ RG) T ∗ (N.A.)
Grammar or Lmir(∈ LIN)

Turing Π0 LM (∈ RG) V ∗FV ∗ (N.A.)
Machine or Lmir(∈ LIN)

Random Context Π1 Lm(∈ RG) T ∗ Lri(∈ RG)
Grammar

Matrixac Π1.5 Lmat = LsLm(∈ RG) T ∗ Lmi (∈ RG)
Grammar

Chomsky type-0 Π2 Dk(∈ CF) T ∗ (N.A.)
Grammar

In this paper we have just made the first step in the new direction towards
understanding and characterizing the nature of the Turing computability from the
novel viewpoint of modularity in the membrane computing schema. There remain
many questions for the future works:

• It would be the most interesting to study the relation between the complexity
of the language classes and that of SF within a given schema. For instance, we
can show that within the schema Π2, CF can be characterized by star (regular)
languages for SF .

• Instead of insertion operations we adopted in this paper, what kind of opera-
tions can be considered for the unique operation in the cells Ope? What kind
of different landscape of the computing mechanisms can be seen from the new
schema?

References

1. M. Cavaliere, R. Freund, M. Oswald, D. Sburlan: Multiset random context grammars,
checkers, and transducers. In Fourth Brainstorming Week on Membrane Computing
(M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F.J. Romero-Campero, eds.),
Fenix Editora, Sevilla, 2006, Vol. 1, 113–131.

2. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string lan-
guages generated by spiking neural P systems. In Fourth Brainstorming Week on
Membrane Computing (M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F.J.
Romero-Campero, eds.), Fenix Editora, Sevilla, 2006, Vol. 1, 169–193.

3. E. Csuhaj-Varju, L. Kari, Gh.Păun: Test tube distributed systems based on splicing.
Computers and AI, 15, 2-3 (1996), 211–232.

4. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

5. R. Freund, M. Oswald: Modeling grammar systems by tissue P systems working in
the sequential mode. In Proc. of Grammar Systems Workshop, Budapest, 2004.

6. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

Membrane Computing Schema Based on String Insertions 297

7. M. Margenstern, V. Mitrana, M.J. Pérez-Jiménez: Accepting hybrid networks of
evolutionary processors. Lecture Notes in Computer Science, 3384, Springer-Verlag,
Berlin, 2005, 235–246.

8. C. Martin-Vide, V. Mitrana, M.J. Pérez-Jiménez, F. Sancho-Caparrini: Hybrid net-
works of evolutionary processors. In Proc. of GECCO, Lecture Notes in Computer
Science, 2723, Springer-Verlag, Berlin, 2003, 401–412.

9. C. Martin-Vide, Gh. Păun, A. Salomaa: Characterizations of recursively enumer-
able languages by means of insertion grammars. Theoretical Computer Science, 205
(1998), 195–205.

10. C. Martin-Vide, Gh. Păun, J. Pazos, A. Rodriguez-Paton: Tissue P systems, Theo-
retical Computer Science, 296 (2003), 295–326.

11. Gh. Păun: Distributed architectures in DNA Computing based on splicing: Limiting
the size of components. In Proc. Conf. Unconventional Models of Computation (C.S.
Calude, J. Casti, M.J. Dinneen, eds.), Springer-Verlag, Berlin, 1998, 323–335.

12. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
13. Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori: Representations and characterizations

of languages in Chomsky hierarchy by means of insertion-deletion systems. Submit-
ted. 2007.

14. Gh. Păun, G. Rozenberg, A. Salomaa: DNA Computing. New Computing Paradigms.
Springer-Verlag, Berlin, 1998.

15. Gh. Păun, Y. Sakakibara, T. Yokomori: P systems on graph of restricted forms.
Publicationes Mathematicae Debrecen, 60 (2002), 635–660.

16. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer-Verlag,
Berlin, 1997.

