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Abstract

In this paper we investigate the almost sure practical stability for a class of stochas-
tic functional evolution equations. We establish some sufficient conditions based on the
construction of appropriate Lyapunov functional. The abstract results are then applied to
some illustrative examples.
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1 Introduction

Stochastic differential equations are useful for modeling physical, technical, biological and eco-
nomical dynamical systems in which significant uncertainty is present. In 1892, Lyapunov in-
troduced the concept of stability for deterministic dynamical systems and firstly established the
so-called Lyapunov second method of stability theory. The advantage of this method can judged
the stability of systems without knowledge of the solution of the systems explicitly. It is therefore
of great interest to be able to characterize the behavior of the solutions. Several interesting and
important variants to Lyapunov’s original concepts of stability were proposed in [1]-[3] and [14].
However, when the origin is not necessarily an equilibrium point, it is still possible to analyze the
asymptotic stability of solutions with respect to a small neighborhood of the origin, what yields
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to the concept of practical stability. It is worth mentioning some previous works on practical
stability in the deterministic framework, as for example, [1],[3]. Also we would like to mention
here the references [4, 5, 19, 20], among others. As for the stochastic case, we initiate the study
of this practical stability for non-delay stochastic partial differential equations in [14].

Needless to say that the asymptotic behavior of systems described by stochastic evolution
equations is a very important topic as the vast literature on this field shows (see [7, 8, 9, 10,
11, 12, 13, 16, 19, 20, 22, 23, 25]. Moreover, the consideration of memory terms in the mod-
els are fully justified as it is sensible to think that not only the present state of the systems
possesses influence in the future behavior of the problem, but also what has happened in the
past. Additionally, in the nonlinear and/or nonautonomous situations, it may happen that the
stability cannot always be exponential but can even be sub or super-exponential (see [12]). For
this reason, in this paper we will study the almost sure practical stability with general decay
rate and will illustrate the theory with some application examples.

The content of the paper is as follows. In section 2, we introduce the basic notations and
assumptions. In Section 3, we prove some sufficient conditions ensuring almost sure practical
stability of solutions to stochastic delay evolution equations. First we prove a sufficient condition
ensuring the convergence of solutions to zero with general decay rate, even in the case that zero
is not an equilibrium point. Later, we weaken the assumptions on the operators involved in the
model, obtaining a weaker result which will ensure the convergence to a ball with a small radius,
instead of the convergence of solutions to zero. In Section 4, we finally study two examples to
illustrate these results.

2 Basic notations and assumptions

Let V be a reflexible Banach space and H a real separable Hilbert space such that

V ⊂ H ≡ H∗ ⊂ V ∗,

where the injections are continuous and dense. In addition, we also assume both V and V ∗ are
uniformly convex.

We denote by ‖ . ‖, | . | and ‖ . ‖∗ the norms in V , H and V ∗ respectively, by (., .) the inner
product in H, and by < ., . > the duality between V and V ∗.

Assume {Ω,F ,P} is a complete probability space with a normal filtration {Ft}t≥0, i.e. F0

contains the null sets in F and Ft = ∩s>tFs, for all t ≥ 0, and let us consider a real valued
{Ft}-Wiener process {W (t)}t≥0.

Given h ≥ 0 , p ≥ 2 and T > 0, we denote by Ip(−h, T, V ) the closed subspace of
Lp(Ω × (−h, T ),F ⊗ B([−h, T ]),P ⊗ dt;V ) of all stochastic processes which are Ft-adapted
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for almost every t in (0, T ) (in what follows, a.e.t), where B([0, T ]) denotes the Borel σ-algebra
of subsets in [0, T ] and we will set Ft = F0 for t < 0. We write L2(Ω;C(−h, T ;H)) instead of
L2(Ω,F ,P ;C(−h, T ;H)), where C(−h, T ;H) denotes the space of all continuous functions from
[−h, T ] into H.
Let CH = C(−h, 0;H) with norm |ψ|CH = sup−h≤s≤0 |ψ(s)|, ψ ∈ CH ; LpV = Lp([−h, 0], V ) and
LpH = Lp([−h, 0], H).
On the other hand, given a stochastic process

X(t) ∈ Ip(−h, T, V ) ∩ L2(Ω;C(−h, T ;H)),

we associate with another stochastic process

Xt : Ω→ LpV ∩ CH ,

by means of the usual relation Xt(s)(ω) = X(t+ s)(ω), 0 ≤ t ≤ T , −h ≤ s ≤ 0.
Let us consider the following stochastic delay evolution equation in V ∗:{

dX(t) = (A(t,X(t)) + F (t,Xt))dt+G(t,Xt)dWt, t ∈ [0, T ],
X(t) = ψ(t), t ∈ [−h, 0],

(2.1)

where T > 0 and the initial datum ψ ∈ Ip(−h, 0, V ) ∩ L2(Ω;CH).
As we are mainly interested in the stability analysis of solutions to equation (2.1), we shall
assume that for each ψ ∈ Ip(−h, 0, V ) ∩ L2(Ω;CH) there exists a process

X(t) ∈ Ip(−h, T, V ) ∩ L2(Ω;C(−h, T ;H)),

which is solution to equation (2.1) for every T > 0, in other words, X(t) satisfies the following
integral equation in V ∗:{

X(t) = ψ(0) +
∫ t

0
(A(s,X(s)) + F (s,Xs))ds+

∫ t
0
G(s,Xs)dWs, ∀t ∈ [0, T ],

X(t) = ψ(t), t ∈ [−h, 0].
(2.2)

This happens, for instance, if A(t, .) : V → V ∗ is a family of (nonlinear) operators defined a.e.t.
satisfying there exists t ∈ R+ such that A(t, 0) 6= 0 and fulfilling the following assumptions :

1. Measurability: for every x ∈ V , the map t ∈ (0, T ) 7→ A(t, x) ∈ V ∗ is Lebesgue measurable,
a.e. t.

2. Hemicontinuity: The map θ ∈ R 7→< A(t, x + θy), z >∈ R is continuous for every
x, y, z ∈ V , a.e. t.

3. Boundedness: There exists β > 0, c > 0 such that

||A(t, x)||∗ ≤ c||x||p−1 + β for all x ∈ V, a.e.t.
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4. Coercivity: There exist α > 0, λ, γ ∈ R such that

−2 < A(t, x), x > +λ|x|2 + γ ≥ α||x||p for all x ∈ V, a.e.t.

5. Monotonicity:

λ|x− y|2 −
(
2 < A(t, x)− A(t, y), x− y >

)
≥ 0 for all x, y ∈ V, a.e.t.

Also F (t, .) : [0, T ] × CH → V ∗ is a family of Lipschitz continuous operators defined a.e.t. and
G(t, .) : [0, T ]× CH → H is another family of Lipschitz operators defined a.e.t. (see [7], [8] and
also [24]) and satisfying there exists t ∈ R+ such that G(t, 0) 6= 0.

Unless otherwise is stated, we will assume that U(t, x) is a C1,2-positive appropriate Lyapunov
functional such that for any x ∈ V and t ∈ R+, U ′x(t, x) ∈ V , and satisfies some additional
assumptions which enable us to apply the Itô formula for the process X(t), solution to equation
(2.1) (see [21]).

3 Practical stability of stochastic delay evolution equa-

tion

We first state the definition of almost surely convergence of solutions to a small ball centered at
the origin.

Definition 3.1. The ball Br := {x ∈ H/|x| ≤ r}, r > 0 is said to be almost surely globally
practically uniformly exponentially stable with respect to the system (2.1) if:

For any initial value ψ ∈ Ip(−h, 0, V )∩L2(Ω;CH) such that 0 < |X(t, ψ)|−r, for all t ≥ t0 ≥ 0,
P-a.s., where X(t, ψ) denotes the solution of (2.1), it holds that

lim
t→∞

sup
1

t
ln(|X(t, ψ)| − r) < 0, P− a.s. (3.1)

System (2.1) is said to be almost surely globally practically uniformly exponentially stable
if there exists r > 0 such that Br is almost surely globally practically uniformly exponentially
stable.

Next we state the definition of practical convergence to zero with general decay rate.

Definition 3.2. Let λ(t) be a positive function defined for sufficiently large t > 0, say t ≥ T > 0,
and satisfying that λ(t) ↑ +∞ as t → +∞. A solution X(t) to equation (2.1) (defined in the
future, i.e. for t large enough) is said to decay to zero almost surely with decay function λ(t)
and order at least γ > 0, if there exists a function r(·) such that r(t) → 0 as t → +∞, and its
generalized Lyapunov exponent is less than or equal to −γ with probability one, i.e.

lim
t→+∞

sup
ln
(
|X(t)| − r(t)

)
ln(λ(t))

≤ −γ, P− a.s.
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If in addition 0 is solution to equation (2.1), the zero solution is said to be almost surely practically
asymptotically stable with decay function λ(t) and order at least γ, if there exist r(t) → 0 as
t → +∞ such that every solution to equation (2.1) decays to zero almost surely with decay
function λ(t) and order at least γ.

Now, we can state and prove one of our main results in this paper.

Theorem 3.1. Let U(t, x) be an appropriate Lyapunov functional. Assume that lnλ(t) is uni-
formly continuous on t ∈ [T,+∞) and there exists a constant τ ≥ 0 such that

lim
t→∞

sup
ln ln(t)

lnλ(t)
≤ τ.

Assume that there exist constants q ∈ N∗, m > 0, µ ≥ 0, b ≥ 0, ν, θ ≥ 0, a non-increasing
function ξ(t) > 0 and a continuous non-negative function ϕ(t) such that

(a)|x|qλ(t)m ≤ U(t, x), ∀(t, x) ∈ R+ × V.

(b) For a solution X(t) to (2.1), defined in the future, it holds∫ t

0

U
′

s(s,X(s))ds+

∫ t

0

< U
′

x(s,X(s)), A(s,X(s)) + F (s,Xs) > ds

+
1

2

∫ t

0

(U
′′

xx(s,X(s))G(s,Xs), G(s,Xs))ds

+

∫ t

0

ξ(s)(U
′

x(s,X(s)), G(s,Xs))
2ds

≤ ζψ(t) + %(t) +

∫ t

0

ϕ(s)U(s,X(s))ds,

where ζψ(t) is a non-negative function depending on the initial datum ψ and %(t) 6= 0, for all
t ≥ 0, is a function independent on ψ such that limt→∞ %(t) = 0.

(c) lim
t→∞

sup
ln ζψ(t)

lnλ(t)
≤ ν, lim

t→∞
sup

∫ t
0
ϕ(s)ds

lnλ(t)
≤ θ.

lim
t→∞

sup
ln
(
c+ %(t)

λ(t)δ

)
lnλ(t)

≤ b, lim
t→∞

inf
ln ξ(t)

lnλ(t)
≥ −µ.

where δ = (µ+ τ + 2ε) ∨ (ν + ε) for arbitrary ε > 0 and{
c = exp(ε(µ+ ε)), if δ = µ+ τ + 2ε,
c = 1, if δ = ν + ε.

(3.2)
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(d)

q∑
k=1

|x|q−k
[ |%(t)|
λ(t)m

] k−1
q ≥ 1, for all t ≥ 0.

Then,

lim
t→+∞

sup
ln
(
|X(t)| −

( |%(t)|
λ(t)m

) 1
q

)
lnλ(t)

≤ −
[
m−

(
θ + b+

(
(µ+ τ) ∨ ν

))]
, P− a.s.

In particular, if m > θ + b +
(
(µ + τ) ∨ ν

)
, the solution X(t) decays to zero almost surely with

decay function λ(t) and order at least

γ =
[
m−

(
θ + b+

(
(µ+ τ) ∨ ν

))]
.

Proof. Assume that λ(t)m|x|q − |%(t)| > 0 for all t ≥ 0 and x ∈ H. Then, we immediately have
λ(t)m|x|q − |%(t)| ≤ λ(t)m|x|q ≤ U(t, x). Now, observe that

λ(t)m|x|q − |%(t)| = λ(t)m
(
|x|q − |%(t)|

λ(t)m
)

= λ(t)m
(
|x|q −

(
(
|%(t)|
λ(t)m

)
1
q
)q)

= λ(t)m
(
|x| − (

|%(t)|
λ(t)m

)
1
q
)(
|x|q−1 + |x|q−2(

|%(t)|
λ(t)m

)
1
q + ...+ (

|%(t)|
λ(t)m

)
q−1
q
)

= λ(t)m
(
|x| − (

|%(t)|
λ(t)m

)
1
q
) q∑
k=1

|x|q−k
[ |%(t)|
λ(t)m

] k−1
q

≥ λ(t)m
(
|x| − (

|%(t)|
λ(t)m

)
1
q
)
.

Therefore, λ(t)m
(
|x| − (

|%(t)|
λ(t)m

)
1
q
)
≤ U(t, x) and ln

[
λ(t)m

(
|x| − (

|%(t)|
λ(t)m

)
1
q
)]
≤ ln

(
U(t, x)

)
. Thus

ln
[(
|x| − (

|%(t)|
λ(t)m

)
1
q
)]

+m ln(λ(t)) ≤ ln
(
U(t, x)

)
.

Applying the Itô formula we obtain

U(t,X(t)) = U(0, ψ(0)) +

∫ t

0

U
′

s(s,X(s))ds

+

∫ t

0

< U
′

x(s,X(s)), A(s,X(s)) + F (s,Xs) > ds

+
1

2

∫ t

0

(U
′′

xx(s,X(s))G(s,Xs), G(s,Xs))ds

+

∫ t

0

(U
′

x(s,X(s)), G(s,Xs))dW (s). (3.3)
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Now, from the uniform continuity of lnλ(t), we can ensure that for each ε > 0 there exist two

positive integers N = N(ε) and k1(ε) such that if
k − 1

2N
≤ t ≤ k

2N
, k ≥ k1(ε), it follows

∣∣∣ lnλ( k

2N

)
− lnλ(t)

∣∣∣ ≤ ε.

On the other hand, due to the exponential martingale inequality

P
{
ω; sup

0≤t≤w

[
M(t)− u

2

∫ t

0

(U
′

x(s,X(s)), G(s,Xs))
2ds
]
> σ

}
≤ e−uν ,

for any positive constants u, σ and w, where

M(t) =

∫ t

0

(U
′

x(s,X(s)), G(s,Xs))dW (s).

In particular, for the preceding ε > 0, if we set u = 2ξ
( k

2N

)
, σ = ξ

( k

2N

)−1

ln
k − 1

2N
, w =

k

2N
,

k = 2, 3, ..., we can then apply the Borel-Cantelli lemma to obtain that, for almost all ω ∈ Ω,
there exists an integer k0(ε, ω) > 0 such that∫ t

0

(U
′

x(s,X(s)), G(s,Xs))dW (s) ≤ ξ
( k

2N

)−1

ln
k − 1

2N

+ ξ
( k

2N

)∫ t

0

(U
′

x(s,X(s)), G(s,Xs))
2ds

≤ ξ
( k

2N

)−1

ln
k − 1

2N

+

∫ t

0

ξ(s)(U
′

x(s,X(s)), G(s,Xs))
2ds,

for 0 ≤ t ≤ k

2N
, k ≥ k0(ε, ω). Replacing this into equation (3.3), we see that P-a.s.

U(t,X(t)) ≤ U(0, ψ(0)) + ξ
( k

2N

)−1

ln
k − 1

2N
+

∫ t

0

U
′

s(s,X(s))ds

+

∫ t

0

< U
′

x(s,X(s)), A(s,X(s)) + F (s,Xs) > ds

+
1

2

∫ t

0

(U
′′

xx(s,X(s))G(s,Xs), G(s,Xs))ds

+

∫ t

0

ξ(s)(U
′

x(s,X(s)), G(s,Xs))
2ds,
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for 0 ≤ t ≤ k

2N
, k ≥ k0(ε, ω). Using condition (b) we derive that P-a.s.

U(t,X(t)) ≤ U(0, ψ(0)) + ξ
( k

2N

)−1

ln
k − 1

2N
+ ζψ(t) + %(t),

+

∫ t

0

ϕ(s)U(s,X(s))ds,

for 0 ≤ t ≤ k

2N
, k ≥ k0(ε, ω). By virtue of the Gronwall lemma we derive that P-a.s.

U(t,X(t)) ≤
(
U(0, ψ(0)) + ξ

( k

2N

)−1

ln
k − 1

2N
+ ζψ(t) + %(t)

)
× exp

(∫ t

0

ϕ(s)ds
)
,

for 0 ≤ t ≤ k

2N
, k ≥ k0(ε, ω). On the other hand, thanks to condition (c) and the uniform

continuity of lnλ(t) there exists a positive integer k1(ε) such that whenever t ≥ k1(ε)

ζψ(t) ≤ λ(t)ν+ε,

∫ t

0

ϕ(s)ds ≤ (θ + ε) lnλ(t), ξ
( k

2N

)−1

≤ eε(µ+ε)λ(t)µ+ε,

for
k − 1

2N
≤ t ≤ k

2N
, k ≥ k1(ε). Also

ln
k − 1

2N
≤ ln t ≤ ln

k

2N
for

k − 1

2N
≤ t ≤ k

2N
.

We therefore obtain that, for almost all ω ∈ Ω,

lnU(t,X(t)) ≤ ln
(
U(0, ψ(0)) + λ(t)µ+τ+2εeε(µ+ε) + λ(t)ν+ε + %(t)

)
+ (θ + ε) lnλ(t),

for
k − 1

2N
≤ t ≤ k

2N
, k ≥ k1(ε). Hence

lim
t→+∞

sup
lnU(t,X(t))

lnλ(t)
≤ δ + θ + ε+ b, P− a.s.

Taking into account that ε > 0 is arbitrary and using (a) and

ln
[(
|x| − (

|%(t)|
λ(t)m

)
1
q
)]

+m ln(λ(t)) ≤ ln
(
U(t, x)

)
,
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we can deduce

lim
t→+∞

sup
ln
(
|X(t)| −

( |%(t)|
λ(t)m

) 1
q

)
lnλ(t)

≤ −
[
m−

(
θ + b+

(
(µ+ τ) ∨ ν

))]
, P− a.s.

as required. 2

Remark 3.2. In the next theorem we will weaken the assumptions imposed on the operators
in our model and, as a counterpart, we will obtain a weaker convergence too. In fact, instead
of obtaining practical convergence to zero with general decay rate, we will deduce only practical
convergence to a ball.

Theorem 3.3. Let U(t, x) be an appropriate Lyapunov functional. Assume that lnλ(t) is uni-
formly continuous on t ∈ [T,+∞) and there exists a constant τ ≥ 0 such that

lim
t→∞

sup
ln ln(t)

lnλ(t)
≤ τ.

Assume that there exist constants q ∈ N∗, m > 0, µ ≥ 0, b > 0, ν, θ ≥ 0 and a small constant
% > 0, a non-increasing function ξ(t) > 0 and a continuous non-negative function ϕ(t) such that

(a)|x|qλ(t)m ≤ U(t, x), ∀(t, x) ∈ R+ × V.
(b) For a solution X(t) to defined in the future it holds equation (2.1)∫ t

0

U
′

s(s,X(s))ds+

∫ t

0

< U
′

x(s,X(s)), A(s,X(s)) + F (s,Xs) > ds

+
1

2

∫ t

0

(U
′′

xx(s,X(s))G(s,Xs), G(s,Xs))ds

+

∫ t

0

ξ(s)(U
′

x(s,X(s)), G(s,Xs))
2ds

≤ ζψ(t) + %+

∫ t

0

ϕ(s)U(s,X(s))ds,

where ζψ(t) is a non-negative function depending on the initial datum ψ.

(c) lim
t→∞

sup
ln ζψ(t)

lnλ(t)
≤ ν, lim

t→∞
sup

∫ t
0
ϕ(s)ds

lnλ(t)
≤ θ,

lim
t→∞

inf
ln ξ(t)

lnλ(t)
≥ −µ.

(d)λ(t) ≥ b;

q∑
k=1

|x|q−k
[ %
bm

] k−1
q ≥ 1, for all t ≥ 0.
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Then,

lim
t→+∞

sup
ln
(
|X(t)| −

(
%
bm

) 1
q

)
lnλ(t)

≤ −
[
m−

(
θ +

(
(µ+ τ) ∨ ν

))]
, P− a.s.

In particular, if m > θ+
(
(µ+ τ)∨ ν

)
and λ(t) = et, the ball Br with r =

(
%
bm

) 1
q is almost surely

globally practically uniformly exponentially stable.

Proof. Assuming that bm|x|q − % > 0, for all x ∈ H, then bm|x|q − % ≤ λ(t)m|x|q ≤ U(t, x).
Now, observe that

bm|x|q − % = bm
(
|x|q − %

bm
)

= bm
(
|x|q −

(
(
%

bm
)

1
q
)q)

= bm
(
|x| − (

%

bm
)

1
q
)(
|x|q−1 + |x|q−2(

%

bm
)

1
q + ...+ (

%

bm
)
q−1
q
)

= bm
(
|x| − (

%

bm
)

1
q
) q∑
k=1

|x|q−k
[ %
bm

] k−1
q

≥ bm
(
|x| − (

%

bm
)

1
q
)
.

According to the hypothesis that λ(t) ≥ b, for all t ≥ 0 and bm|x|q − % > 0, we can observe that

λ(t)m
(
|x| − (

%

bm
)

1
q
)
≤ λ(t)m|x|q ≤ U(t, x).

Therefore, ln
[
λ(t)m

(
|x| − (

%

bm
)

1
q
)]
≤ ln

(
U(t, x)

)
and ln

[(
|x| − (

%

bm
)

1
q
)]

+m ln(λ(t)) ≤ ln
(
U(t, x)

)
.

Applying once more the Itô formula,

U(t,X(t)) = U(0, ψ(0)) +

∫ t

0

U
′

s(s,X(s))ds

+

∫ t

0

< U
′

x(s,X(s)), A(s,X(s)) + F (s,Xs) > ds

+
1

2

∫ t

0

(U
′′

xx(s,X(s))G(s,Xs), G(s,Xs))ds

+

∫ t

0

(U
′

x(s,X(s)), G(s,Xs))dW (s). (3.4)

Proceeding as in the proof of Theorem 3.1, We therefore obtain that for almost all ω ∈ Ω

lnU(t,X(t)) ≤ ln
(
U(0, ψ(0)) + λ(t)µ+τ+2εeε(µ+ε) + λ(t)ν+ε + %

)
+ (θ + ε) lnλ(t),
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for
k − 1

2N
≤ t ≤ k

2N
, k ≥ k1(ε). Hence

lim
t→+∞

sup
lnU(t,X(t))

lnλ(t)
≤ (µ+ τ + 2ε) ∨ (ν + ε) + θ + ε, P− a.s.

Taking into account that ε > 0 is arbitrary and using (a) and

ln
[(
|x| − (

%

bm
)

1
q
)]

+m ln(λ(t)) ≤ ln
(
U(t, x)

)
,

we can deduce

lim
t→+∞

sup
ln
(
|X(t)| −

(
%
bm

) 1
q

)
lnλ(t)

≤ −
[
m−

(
θ +

(
(µ+ τ) ∨ ν

))]
, P− a.s.

as required. 2

Remark 3.4. Notice that the hypothesis λ(t) ≥ b can be omitted in assumption (d) since
λ(t)→ +∞ as t→ +∞.

4 Examples

Now, we illustrate our abstract results with two examples.

Example 4.1. We consider the following one dimensional model with constant time delay{
dX(t) =

[
− q−1

1+t
X(t) + 1

1+t
X(t− h)

]
dt+ (1 + t)−qdWt, t ∈ [0, T ],

X(t) = ψ(t), t ∈ [−h, 0],
(4.1)

where q > 2 and T , h > 0 and |ψ|C ≥ 1. This problem can be set in our formulation by taking
V = H = R, p = 2. We will write C instead of CH . From the standard theory on stochastic
differential equations with delays, it is straightforward that the preceding problem possesses a
unique solution for each initial datum fixed in the space I2(−h, 0; R) ∩ L2(Ω;C). Define for

u ∈ R and φ ∈ C, A(t, u) = −(q − 1)u

1 + t
, F (t, φ) =

1

1 + t
φ(−h) and G(t, φ) = (1 + t)−q, t ∈ [0, T ].

Now we consider U(t, y) = (1 + t)2q−2|y|2. Then, it is easy to check that for arbitrary σ > 1,
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ξ(t) =
1

4(1 + t)σ
, we have

∫ t

0

U
′

s(s,X(s))ds+

∫ t

0

< U
′

x(s,X(s)), A(s,X(s)) + F (s,Xs) > ds

+
1

2

∫ t

0

(U
′′

xx(s,X(s))G(s,Xs), G(s,Xs))ds

+

∫ t

0

1

4(1 + s)σ
(U
′

x(s,X(s)), G(s,Xs))
2ds

≤
∫ t

0

1

(1 + s)2
ds+

∫ t

0

1

(1 + s)σ+2
U(s,X(s))ds

+ 2

∫ t

0

(1 + s)2q−3X(s)X(s− h)ds

≤
∫ t

0

1

(1 + s)2
ds+

∫ t

0

1

(1 + s)σ+2
U(s,X(s))ds

+

∫ t

0

1

(1 + s)
U(s,X(s))ds

+

∫ t

0

(1 + s)2q−3|X(s− h)|2ds

= 1− 1

1 + t
+

∫ t

0

1

(1 + s)σ+2
U(s,X(s))ds+

∫ t

0

1

(1 + s)
U(s,X(s))ds

+

∫ t

0

(1 + s)2q−3|X(s− h)|2ds

≤ |ψ|2C −
1

1 + t
+

∫ t

0

1

(1 + s)σ+2
U(s,X(s))ds+

∫ t

0

1

(1 + s)
U(s,X(s))ds

+

∫ t

0

(1 + s)2q−3|X(s− h)|2ds.

12



We now estimate the last integral by splitting it and using a change of variable∫ t

0

(1 + s)2q−3|X(s− h)|2ds = |ψ|2C
∫ 0

−h
(1 + s+ h)2q−3ds

+

∫ t−h

0

(1 + r + h)2q−3|X(r)|2dr

≤ |ψ|2C(1 + h)2q−3

∫ 0

−h
ds

+ (1 + h)2q−3

∫ t−h

0

1

1 + s
U(s,X(s))ds

≤ h|ψ|2C(1 + h)2q−3 + (1 + h)2q−3

∫ t

0

1

1 + s
U(s,X(s))ds,

where we have used the inequality

(1 + r + h) ≤ (1 + r)(1 + h), h > 0, r ≥ 0.

Then,

ζψ(t) = |ψ|2C
[
h(1 + h)2q−3 + 1

]
, ϕ(t) =

1

(1 + t)σ+2
+

(1 + h)2q−3 + 1

(1 + t)
, %(t) = − 1

1 + t
.

By some easy computation, we can check that

τ = 0, ν = 0, θ =
(1 + h)2q−3 + 1

2
µ =

σ

2
b = 0.

Hence, by virtue of theorem 3.1 it follows

lim
t→+∞

sup
ln
(
|X(t)| −

(
1

(1+t)(1+t2)m

) 1
q

)
ln(1 + t2)

≤ −
[
2q − 2−

(1

2

(
(1 + h)2q−3 + 1

)
+
σ

2

)]
, P− a.s.

We have then proved practical asymptotic decay to zero with decay function λ(t) = 1 + t2,

r(t) =
( 1

(1 + t)(1 + t2)m

) 1
q

and order at least

γ = 2q − 2−
(1

2

(
(1 + h)2q−3 + 1

)
+
σ

2

)
,

whenever

q − 1 >

(1

2

(
(1 + h)2q−3 + 1

)
+
σ

2

)
2

.
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Example 4.2. Consider the following semilinear stochastic partial differential equation:
dX(t, x) =

[
2α ∂2

∂x2X(t, x) + e
−t
2 X(t− h, x)

]
dt+ g(X(t, x))

[
X(t−h,x)
1+|X(t,x)| + e−

3t
2

]
dWt, t ∈ [0, T ],

X(t, x) = ψ(t, x), t ∈ [−h, 0], x ∈ [0, π],
X(t, 0) = X(t, π) = 0, t ≥ 0,

(4.2)
where α > 0, h > 0 and |ψ|C ≥ 1; g(.) : R → R is a bounded Lipschitz continuous function
such that g(0) 6= 0 and |g(x)| ≤ K, x ∈ R, K > 0. Define V = W 1,2

0 ([0, π]), H = L2[0, π] and
denote by ||.|| and |.| the norms in V and H respectively; by (., .) the inner product in H. We

can set this problem in our formulation by taking A(t, u)(x) = 2α
∂2u(x)

∂x2
for u ∈ V , x ∈ [0, π];

F (t, φ)(x) = e
−t
2 φ(−h)(x) and G(t, φ)(x) = g(φ(0))

[ φ(−h)(x)

1 + |φ(0)(x)|
+ e−

3t
2

]
, for φ ∈ CH , t ≥ 0,

x ∈ [0, π]. We will consider U(t, y) = e2t|y|2 which immediately satisfies the whole assumptions

required to apply Itô’s formula. It is easy to check that, if we take ξ(t) =
1

4e2t
, then∫ t

0

U
′

s(s,X(s))ds+

∫ t

0

< U
′

x(s,X(s)), A(s,X(s)) + F (s,Xs) > ds

+
1

2

∫ t

0

(U
′′

xx(s,X(s))G(s,Xs), G(s,Xs))ds

+

∫ t

0

1

4e2s
(U
′

x(s,X(s)), G(s,Xs))
2ds

≤ 2

∫ t

0

U(s,X(s))ds− 4α

∫ t

0

e2s||X(s)||2ds

+ 2

∫ t

0

e
3
2
s| < X(s), X(s− h) > |ds+ 2

∫ t

0

e2s|g(X(s))|2|X(s− h)|2ds

+ 2

∫ t

0

e2s|g(X(s))|2|X(s− h)|2 |X(s)|2

(1 + |X(s)|)2
ds

+ 2

∫ t

0

e−s|g(X(s))|2ds+ 2

∫ t

0

e−3s|g(X(s))|2U(s,X(s))ds

≤
∫ t

0

[
2 + 2K2e−3s

]
U(s,X(s))ds− 4α

∫ t

0

e2s||X(s)||2ds

+ 2

∫ t

0

e
3
2
s|X(s)||X(s− h)|ds+ 4K2

∫ t

0

e2s|X(s− h)|2ds

+ 2K2

∫ t

0

e−sds

≤
∫ t

0

[
2 + 2K2e−3s

]
U(s,X(s))ds+ 4K2I1 + I2 + I3 + 2K2I4,
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where I1 =

∫ t

0

e2s|X(s− h)|2ds, I2 = 2

∫ t

0

e
3
2
s|X(s)||X(s− h)|ds, I3 = −4α

∫ t

0

e2s||X(s)||2ds

and I4 =

∫ t

0

e−sds.

I1 ≤
∫ h

0

|X(s− h)|2e2sds+

∫ t

h

e2s|X(s− h)|2ds

≤ |ψ|2CH

∫ 0

−h
e2(h+u)du+

∫ t−h

0

e2(h+u)|X(u)|2du

≤ e2(h+t)|ψ|2CH

∫ 0

−h
du+

∫ t

0

e2(h+u)|X(u)|2du

≤ he2(h+t)|ψ|2CH + e2h
∫ t

0

U(s,X(s))ds.

On the other hand,

I2 ≤
∫ t

0

e
3
2
s|X(s)|2ds+

∫ t

0

e
3
2
s|X(s− h)|2ds

≤
∫ t

0

e−
s
2U(s,X(s))ds+

∫ h

0

e
3
2
s|X(s− h)|2ds+

∫ t

h

e
3
2
s|X(s− h)|2ds

≤
∫ t

0

e−
s
2U(s,X(s))ds+ |ψ|2CH

∫ 0

−h
e

3
2
(u+h)du+

∫ t−h

0

e
3
2
(u+h)|X(u)|2du

≤
∫ t

0

e−
s
2U(s,X(s))ds+ |ψ|2CHe

3
2
(t+h)

∫ 0

−h
du+

∫ t

0

e
3
2
(u+h)|X(u)|2du

≤
∫ t

0

e−
s
2U(s,X(s))ds+ h|ψ|2CHe

3
2
(t+h) + e

3
2
h

∫ t

0

e−
s
2U(s,X(s))ds,

and finally

I3 ≤ −4α

∫ t

0

U(s,X(s))ds+ 3K2e−t, I4 ≤ |ψ|2CH − e
−t.
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Therefore,∫ t

0

U
′

s(s,X(s))ds+

∫ t

0

< U
′

x(s,X(s)), A(s,X(s)) + F (s,Xs) > ds

+
1

2

∫ t

0

(U
′′

xx(s,X(s))G(s,Xs), G(s,Xs))ds

+

∫ t

0

1

4e2s
(U
′

x(s,X(s)), G(s,Xs))
2ds

≤
∫ t

0

[
4K2e2h + 2 + e−

s
2 + e

1
2
(3h−s) − 4α + 2K2e−3s

]
U(s,X(s))ds

+ |ψ|2CH
[
4K2he2(h+t) + he

3
2
(t+h) + 2K2

]
+K2e−t

≤
∫ t

0

ϕ(s)U(s,X(s))ds+ ζψ(t) + %(t),

where

ϕ(t) = 4K2e2h + 2 + e−
t
2 + e

1
2
(3h−t) − 4α + 2K2e−3t, %(t) = K2e−t, λ(t) = et

and
ζψ(t) = |ψ|2CH

[
4K2he2(h+t) + he

3
2
(t+h) + 2K2

]
, r(t) = Ke−

3
2
t.

Therefore, constants in theorem 3.1 can be chosen as follows
τ = 0, µ = ν = m = q = 2, θ = 2 + 4K2e2h − 4α, b = 0. Hence we deduce that

lim
t→+∞

sup
ln
(
|X(t)| −Ke− 3

2
t
)

t
≤ −

[
2−

(
4 + 4K2e2h − 4α

)]
, P− a.s.

If 2 > 4 + 4K2e2h − 4α, the solution is almost surely exponentially stable with decay function
λ(t) = et and order at least γ = 2−

(
4 + 4K2e2h − 4α

)
.

Remark 4.3. Although in our examples we have only considered constant delays, one can also
analyze those cases in which the delay in the model is represented by some variable delay function
or even in distributed form.
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[24] E. Pardoux, Équations aux Dérivées Partielles Stochastiques Non Linéaires Monotones,
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