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ABSTRACT-Proper planning of drayage operations is fundamental in the quest for the economic 
viability of intermodal freight transport. The work we present here is a dynamic optimization model 
which uses real-time knowledge of the fleet's position, permanently enabling the planner to 

reallocate tasks as the problem conditions change. Stochastic trip times are considered, both in the 
completion of each task and between tasks 
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1. INTRODUCTION 

Road transport has been and continues to be prevalent for the on land movement of freight. However, 

increasing road congestion and the necessity to find more sustainable means of transport has determined 
different governments to promote inter-modality as an alternative. For inter-modality to become viable for 

trips shorter than 700 km a cost reduction is necessary. Final road trips (drayage) represent 40% of the 

intermodal transport costs. It is possible to overcome this disadvantage and make intermodal transport more 

competitive through proper planning of the drayage operation. 

Traditionally, optimization efforts focused on drayage operations concentrate on improving the cost and 
quality of service through the collaboration between drayage companies. Along this line, Morlok and 

Spasovic (1994) develop an integer programming model to plan truck and container movements in a 

centralised manner. They contemplate different payment options for drayage services and conclude that 

centralised management of drayage operations would result in savings between 43% and 63%, as well as an 

improvement in quality of service. 

Following the path opened by De Meulemeester et al (1997) and Bodin et al (2000), the number of 

references on centralised drayage management has increased significantly over the last years, but most of 

them consider the problem only from a static and deterministic perspective. The main objective is normally 

the assignment of transportation tasks to the different vehicles, often with the presence of time windows 

(Wang and Regan, 2002). The first part of the work by Cheung and Hang (2003) develops a deterministic 

model with time windows, which is then solved by means of the discretization of each task's start and end 

time, and by incorporating the concept of dummy tasks for the beginning and the end of the vehicle's day. 

Ileri et al (2006) cover a large number of task types, both simple and combined, as well as the costs 

involved in drayage operations, and solve the problem with a column generation method. Smilovik (2006) 

and Francis et al (2007) incorporate flexible tasks where only the origin or the destination is precisely 

known. 

Many works also include randomness in the generation of tasks (Bent and Van Hentenryck, 2004; 

Bertsimas, 1992; Gendreau et aI, 1995) or dynamism in their assignment (Bent and Van Hentenryck, 2004; 

Psaraftis, 1995; Wang et aI, 2007). However, it is hard to fmd randomness in trip times (Laporte et aI, 

1992), which is appropriate when the intermodal terminal requiring drayage operations is close to a large 

urban centre. Cheung and Hang (2003) and Cheung et al (2005) do consider the dynamic and stochastic 

characteristics of the drayage problem and solve it with a rolling window heuristic, but this randomness 

only affects the duration of the task, and not the displacement time between different tasks. 
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The work we present here considers random trip times both in the completion of each task and between 

tasks. It also incorporates real-time knowledge of the vehicles' position, which permanently enables the 

planner to reassign the tasks in case the problem conditions change. Section 3 generalizes the drayage 
problem as an Multi-Resource Routing Problem with flexible tasks. Section 4 describes the solution 

methodology for the dynamic and stochastic drayage problem, and section 5 applies this methodology to 

series of random test cases and summarizes the results. Section 6 summarizes the main conclusions of the 

work. 

2. DRAYAGE PROBLEM DESCRIPTION 

The drayage operation can be modeled as a Multi-Resource Routing Problem with Flexible Tasks 

(MRRP-FT) (Smilowitz, 2006). In a MRRP-FT multiple resources have to be used to complete a series of 
tasks. The MRRP-FT is defined as follows: 

GIVEN: A set of tasks (both well defmed and flexible) that require the use of some resources, with certain 

service times for each resource and time windows; a fleet of each resource type; operating hours at all 

locations; and a network with stochastic travel times. 

FIND: A set of routes for each resource type that satisfies all the tasks while meeting an objective function 

(minimize operation costs) and observing operating rules for both tasks and resources. 

The region where the drayage operations are performed is represented by a graph G = (N, A). The nodes 
i E N represent the different facilities of interest for the problem: terminals, depots, loading/unloading 

points. To each of these nodes is associated a time to attach/detach the container to/from the vehicle, Ti' 
Between each pair of nodes i, j EN there is an arc (i,j) characterized by the transit time Tij' not known in 

advance. The transit time has a discrete distribution associated, TT if known. 

Every day a series of drayage tasks T must be completed, and the failure to do so implies a given 

subcontracting cost. The drayage tasks can be classified in two groups: well-defined tasks, Tw' and flexible 

tasks, Tf. Each t E T has a time window [a;m ,b;m] associated. This window limits the time period in 

which the task has to be completed. 

Well-defined tasks represent movements between terminals and customers or vice versa, being both, 

origin 0/ E N and destination d/ E N of the movement known. Time windows for well-defined tasks can 

be flexible, as shown in Figure 1: if the task represents the pickup of a container in the terminal, this task 

can never start before the train or vessel arrival, on the other hand, if the drayage driver is late then the task 

can still be completed although it will be penalized. In this last example, a given amount will have to be 

paid for the time the container remains waiting at the terminal. In a similar manner, if the task represents 

the delivery of a container to the terminal and it is completed before the allocated time, the container will 

also be subject to a waiting cost. This cost has been considered proportional to the waiting time. 

Flexible tasks represent the movement of empty containers between customers and the depot. Delivery 

or collection movements of an empty container can take place between a customer and the depot, but also 

between customers under certain circumstances. For example, from a customer who has requested the 

collection of an empty container directly to another who has requested the delivery of an empty container, 

given that their time windows overlap. Therefore, for flexible tasks only the origin or destination is known 

a priori, and therefore multiple scenarios, denoted as R/ ' are possible. The set of all movements, well

defined tasks and different scenarios generated by possible flexible tasks, is represented by M . 
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Figure 1: Types of time windows considered for well-defined tasks: hard (above) and flexible (below). 



In order to perform all the tasks requested a set of resources is available: containers, vehicles and 

drivers. Containers are linked to the movement of the tasks with no additional restrictions. Driver-vehicle 

pairs are considered and represented by V. Each pair is characterised by a location where the working day 

starts and ends. The different drivers have a time window for the start of their working day [a�ni , b�ni] and 

cannot work longer than MAXv hours a day. In addition, driver-vehicle pairs have different costs per unit 

of time depending on vehicle stopping or moving. 
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Figure 2: Use of real-time information. 

In order to enrich the model with the dynamic condition, a geographic positioning system by satellite 

(GPS, Galileo, Glonass) is considered in order to provide real time information about the position of each 

vehicle. This data is used to improve the solution dynamically. Figure 2 shows a scheme of the functioning 

of the dynamic part of the system considered. 

3. GENETIC ALGORITHM FOR STOCHASTIC TRANSIT TIME DRA YAGE 
PROBLEM 

The static drayage problem is a NP hard problem extremely difficult to solve analytically. Exact 
solutions have been found for small problems, but computation time is high. The stochastic problem 
appears undoubtedly unsolvable analytically, even more so if flexible tasks are incorporated. Furthermore, 
the use of the real time information about the geographic position of the vehicles requires a high-speed 
procedure to fmd the solutions. An evolutionary algorithm has been used to solve the problem. 

Genetic Algorithm 

population = InitPopulation 
for i=l :max iter 

end 

fitness = Evaluation (population); 
parents = Selection TOP; 
childl = GeneticCross(parents); 
child2 = Mutate (parents); 
population=p0pulation+child 1 +child2; 
dead=SelectionBOTTOM(population); 
population = population - dead; 
population=PopuGeneration 

The chromosome which represents each solution is as shown in Wang et al (2007). In this 
representation, each chromosome is composed of some genes and each gene represents a task to complete. 
Each task is associated to a fixed gene. This gene is characterized by four features, first being the vehicle to 
which the task is associated, and is used to identify the order in which each vehicle completes the tasks. For 
example, in the table 1 the routes represented by the chromosome would be: vehicle 1, task17 task27 
task4; and vehicle 2, task37 task67task5. 



Ie of chromosome 
2 4 5 6 

1.123 1.673 2.234 1.942 2.440 2.294 

The parameters of the genetic algorithm were tested with a sample of problems, and no clear tendency 
was observed in its performance. The population size was finally set to 100 individuals, 99 of which were 
initially generated at random and the last one by an insertion heuristic, which also provided the base for 
comparison of the effectiveness of the algorithm. In each generation, 4 are selected out of the 10 best 
individuals, and they are then allowed to cross and mutate with probabilities of 0.9 and 0.1 respectively. 4 
out of the 10 worst individuals are then eliminated from the resulting population. The repetition of 
individuals is allowed in the population, which speeds up the performance of the algorithm, and when the 
average fitness of the population is only 10% worse than the best individual the population is regenerated 
randomly except only for that best individual. 

The crossover operator switches the genes of two parents between two tasks which are selected 
randomly. The mutation operator selects randomly a gene of the parent individual and changes its first digit 
to another possibility. 

The fitness of each individual represents the total costs of the resulting routes. The costs contemplated 
in each route are: 

Fixed cost per vehicle 
Distance cost 
Waiting cost of containers at the terminals due to early arrival or late collection 
Cost of task loss, assimilated to the subcontracting cost of that task to an external company 

However, trip times are stochastic, so the fitness needs to be calculated as an estimation of the 
expected costs. An iterative algorithm was developed to complete that estimation, calculating the 
probability of reaching the next link of the route at a given time and the resulting costs involved. If the 
arrival time of the vehicle to the beginning of a given task is prior to the opening of its time window, the 
vehicle will wait, or else incur in a proportional cost. On the other hand, if the arrival is posterior to the 
closure of the time window, there is a higher penalty due to the waiting cost at the terminal or to the 
possible task loss (because of the departure of the train or vessel). If two tasks on the same route are both 
flexible and complementary, they will be combined and completed at the same time, thus avoiding the 
return to the depot. 

With the real time information about the position of the vehicles, the input data to the algorithm will be 
dynamically updated and used to find the best routes depending on the current circumstances. This update 
can be done: 

Every a fixed time, for example 15 min. 
When a task is fmished 
When a car position is diverted of its expected position. 

4. TEST PROBLEM AND RESULT 

In order to test the performance of the algorithm for problems of different size and characteristics, we 
built a set of random drayage problems using the problem generator (see Table 2). 

Table 2· Problem set 
Problem Task No of well- No of flexible Fleet 

code number defmed tasks tasks size 

Al 20 0 20 5 

A2 5 15 5 

A3 10 10 5 

A4 15 5 5 

A5 20 0 5 
Bl 30 0 30 7 
B2 5 25 7 

B3 10 20 7 

B4 15 15 7 

B5 20 10 7 



B6 25 5 7 
B7 30 0 7 

C1 40 0 40 9 

C2 10 30 9 

C3 20 20 9 

C4 30 10 9 

C5 40 0 9 

The generator of problem randomly distributes the customers, the intermodal terminal and the 
depot in a 100x100 area. The well-defmed tasks consist, with equal probability, either of pickup or delivery 
of containers at the terminal, and flexible tasks will imply either collection or delivery of empty containers 
at the customers, also with equal probability. 

Time windows for well-defined tasks range from 30 min. to 4 h. with a uniform stochastic distribution, 
and their start time is fixed randomly in the day. Time windows for flexible tasks will be open from the 
beginning of the day until the specified time for empty container deliveries and from the specified time 
until the end of the day for empty container collections. Those specified times are also generated randomly 
with a uniform distribution. 

To simplify calculations, the time horizon is discretised in 5 minute intervals. Finally, to simulate in 
real time the position of each vehicle, a speed uniformly distributed between 45 and 55 kmlh is calculated 
for each 5-minute period. 

For each random problem, we determined the improvement of the genetic algorithm with respect 
to the insertion heuristic in the first iteration (see Table 3, column 2), the average improvement of the 
estimated cost for the best solution in iteration i+ 1 with respect to the simulated cost on iteration i (column 
4), and the estimated cost reduction between the first and last iteration of the genetic algorithm (column 5). 
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Al 12.7 6 2.19 31.88 

A2 0.8 7 1.47 16.48 

A3 0 8 0.28 16.08 

A4 2.88 11 1.41 31.16 

A5 9.6 14 3.46 31.11 

B1 3.61 7 1.21 22.75 

B2 4.36 9 1.27 39.41 

B3 2.26 11 1.04 30.69 

B4 4.04 9 1.43 23.04 

B5 0 12 0.21 32.91 

B6 l .36 13 1.22 30.19 

B7 7.74 16 1.45 38.32 

C1 1.66 7 0.68 12.87 

C2 0.17 9 0.82 16.34 

C3 1.42 13 1.85 25.13 

C4 4.84 17 2.39 37.34 

C5 9.83 18 2.05 33.42 



5. CONCLUSION 

We have shown in this paper the importance of the exact knowledge of real-time vehicle locations in a 
drayage fleet, through the use of a satellite positioning system. This knowledge, together with an 
optimization algorithm based on metaheuristics, enables real-time management of the fleet in a changing 
environment, which reduces operation costs by as much as 30%. These results are especially valuable for 
intermodal operations in congested metropolitan areas, where travel times are stochastic due to congestion. 
Besides, given that we modeled the problem as a MRRP with flexible tasks, both intermodal drayage 
operations and the repositioning of empty containers can be optimized at the same time. 

To solve the drayage problem, we developed a real-time optimization model based on a genetic 
algorithm that operates with stochastic cost estimations, and we tested it with a series of drayage problems 
generated randomly. The genetic algorithm improves the initial solution, provided by an insertion heuristic, 
with an average improvement of around 2% in each dynamic iteration for the type of problems considered. 
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