
A Linear Solution for Subset Sum Problem with
Tissue P Systems with Cell Division

Daniel Dı́az-Pernil, Miguel A. Gutiérrez-Naranjo,
Mario J. Pérez-Jiménez, Agust́ın Riscos-Núñez

Research Group on Natural Computing
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
{sbdani,magutier,marper,ariscosn}@us.es

Summary. Tissue P systems are a computing model in the framework of Membrane
Computing where the tree-like membrane structure is replaced by a general graph. Re-
cently, it has been shown that endowing these P systems with cell division, NP-complete
problems can be solved in polynomial time. In this paper we present a solution to the
Subset Sum problem via a family of such devices, and we also include the formal verifi-
cation of such solution. This is the first solution to a numerical NP-complete problem
by using tissue P systems with cell division.

1 Introduction

Membrane Computing is a bio-inspired computing model based on the assumption
that the processes taking place in the compartmental structure of a living cell can
be interpreted as computations. The devices of this model are generically called P
Systems.

In the initial definition of the cell-like model of P systems [6], membranes are hi-
erarchically arranged in a tree-like structure. Its biological inspiration comes from
the morphology of cells, where small vesicles are surrounded by larger ones. This
biological structure can be abstracted into a tree-like graph, where the root repre-
sents the skin of the cell (i.e. the outermost membrane) and the leaves represent
membranes that do not contain any other membrane (elementary membranes).
Besides, two nodes in the graph are connected if they represent two membranes
such that one of them contains the other one.

Recently, new models of P systems have been explored. One of them is the
model of tissue P systems where the tree-like membrane structure is replaced by
a general graph. This model has two biological inspirations (see [3, 4]): intercellu-
lar communication and cooperation between neurons. The common mathematical
model of these two mechanisms is a net of processors dealing with symbols and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

114 D. Dı́az-Pernil et al.

communicating these symbols along channels specified in advance. The communi-
cation among cells is based on symport/antiport rules, which were introduced as
communication rules for P systems in [5]. In symport rules, objects cooperate to
traverse a membrane together in the same direction, whereas in the case of an-
tiport rules, objects residing at both sides of the membrane cross it simultaneously
but in opposite directions.

This paper is devoted to the study of the computational efficiency of tissue
P systems with cell division. In literature, different models of cell-like P systems
have been successfully used in order to design efficient solutions to NP-complete
problems (see, for example, [2] and the references therein). These solutions are
obtained by generating an exponential amount of workspace in polynomial time
and using parallelism to check simultaneously all the candidate solutions.

From the seminal definition of tissue P systems [3, 4], several research lines have
been developed and other variants have arisen (see [1] and references therein). One
of the most interesting variants of tissue P systems was presented in [8], where the
definition of tissue P systems is combined with the one of P systems with active
membranes, yielding tissue P systems with cell division. The biological inspiration
is clear: alive tissues are not static networks of cells, since cells are duplicated
via mitosis in a natural way. One of the main features of such tissue P systems
with cell division is related to their computational efficiency. In [8], a polynomial-
time solution to the NP-complete problem SAT is shown, and in [1] a linear-time
solution for the 3-COL problem was presented. In this paper we go on with the
research in this model and present a linear-time solution to another well-known
numerical NP-complete problem: the Subset Sum problem.

The paper is organized as follows: first we recall some preliminary concepts
and the definition of tissue P systems with cell division. Next, recognizing tissue P
systems are briefly described. A linear–time solution to the Subset Sum problem is
presented in the following section, including a short overview of the computation
and the formal verification of the solution. Finally, some conclusions and lines for
future research are presented.

2 Preliminaries

In this section we briefly recall some of the concepts used later on in the paper.
An alphabet, Σ, is a non empty set, whose elements are called symbols. An

ordered sequence of symbols is a string. The number of symbols in a string u is
the length of the string, and it is denoted by |u|. As usual, the empty string (with
length 0) will be denoted by λ. The set of strings of length n built with symbols
from the alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is
a subset from Σ∗.

A multiset m over a set A is a pair (A, f) where f : A → N is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) > 0}
and its size is defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its support

is the empty set (resp. finite).

Subset Sum with Tissue P Systems with Cell Division 115

A finite multiset m = (A, f) will be denoted as m = {{xf(x1)
1 , . . . , x

f(xk)
k }},

where supp(m) = {x1, . . . , xk}, or alternatively as the string x
f(x1)
1 · · ·xf(xk)

k . The
union of multisets will be denoted as concatenation when using the string notation.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For details, see the handbook [7].

3 Tissue P Systems with Cell Division

In the first definition of the model of tissue P systems [3, 4] the membrane structure
did not change along the computation. The main features of tissue P systems with
cell division, from the computational point of view, are that cells obtained by
division have the same labels as the original cell, and if a cell is divided, then
its interaction with other cells or with the environment is blocked during the
mitosis process. In some sense, this means that while a cell is dividing it closes
all its communication channels. This features imply that the underlying graph is
dynamic, as nodes can be added during the computation by division and the edges
can be deleted/re-established for dividing cells.

Actually, the underlying graph of connections between cells will not be handled
explicitly: the initial structure is implicitly given by the number of initial cells
(nodes) and the communication rules (marking edges that connect nodes); the
opening/closing edges will be controlled by the semantics.

Formally, a tissue P system with cell division of initial degree q ≥ 1 is a tuple
of the form Π = (Γ,w1, . . . , wq, E ,R, i0), where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. w1, . . . , wq are strings over Γ .
3. E ⊆ Γ .
4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, . . . , q}, i 6= j, u, v ∈ Γ ∗.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .

5. i0 ∈ {0, 1, 2, . . . , q}.
A tissue P system with cell division of degree q ≥ 1 can be seen as a set of q
cells labelled by 1, 2, . . . , q. We shall use 0 as the label of the environment, and i0
for the output region (which can be the region inside a cell or the environment).
As we said before, the underlying graph expressing connections between cells is
implicit, being determined by the communication rules: the nodes are the cells and
the edges indicate if it is possible for pairs of cells to communicate directly. The
communication rule (i, u/v, j) can be applied over two cells i and j such that u is
contained in cell i and v is contained in cell j, and neither i nor j are being divided.
The application of this rule means that the objects of the multisets represented
by u and v are interchanged between the two cells.

The strings w1, . . . , wq describe the multisets of objects placed initially in the
q cells of the system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them in an arbitrarily large amount of copies.

116 D. Dı́az-Pernil et al.

The division rule [a]i → [b]i[c]i can be applied over a cell i containing object a.
The application of this rule divides this cell into two new cells with the same label.
All the objects in the original cell are replicated and copied in each of the new
cells, with the exception of the object a, which is replaced by the object b in the
first new cell and by c in the second one. Since both new cells keep the same label
as their father cell, they keep the same connections too. There is no connection
between both new cells.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a cell can only be used for one rule (non-deterministically chosen when there are
several possibilities), but any object which can participate in a rule of any form
must do it, i.e, in each step we apply a maximal set of rules. This way of applying
rules has only one restriction: when a cell is divided, the division rule is the only
one which is applied for that cell in that step; the objects inside that cell do not
move in that step.

4 Recognizing Tissue P Systems with Cell Division

NP-completeness has been usually studied in the framework of decision problems.
Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

In order to study the computational efficiency, a special class of tissue P systems
is introduced in [8]: recognizing1 tissue P systems.

A recognizing tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ,Σ,w1, . . . , wq, E ,R, iin, i0), where

• (Γ,w1, . . . , wq, E ,R, i0) is a tissue P system with cell division of degree q ≥ 1
(as defined in the previous section).

• The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in an initial multiset w1, . . . , wq, but not present in E .

• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• The output region i0 is the environment.
• All computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

The computations of the system Π with input w ∈ Γ ∗ start from a configura-
tion of the form (w1, w2, . . . , wiin

w, . . . , wq; E), that is, after adding the multiset
w to the contents of the input cell iin. We say that the multiset w is recognized
by Π if and only if the object yes is sent to the environment, in the last step
1 In [8] they were called recognizer tissue P systems.

Subset Sum with Tissue P Systems with Cell Division 117

of all its associated computations. We say that C is an accepting (resp. rejecting)
computation if the object yes (resp. no) appears in the environment associated
with the corresponding halting configuration of C.

Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizing tissue P systems with
cell division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

In the above definition we have imposed to every tissue P system Π(n) a confluent
condition, in the following sense: every computation of a system with the same
input multiset must always give the same answer. The pair of functions (cod, s)
are called a polynomial encoding of the problem in the family of P systems.

We denote by PMCTD the set of all decision problems which can be solved
by means of recognizing tissue P systems with cell division in polynomial time.

5 A Solution for the Subset Sum Problem

The Subset Sum problem is the following one: Given a finite set A, a weight
function, w : A → N, and a constant k ∈ N, determine whether or not there exists
a subset B ⊆ A such that w(B) = k.

Next, we shall prove that the Subset Sum problem can be solved in a linear
time by a family of recognizing tissue P systems with cell division. We shall address
the resolution via a brute force algorithm.

We shall use a tuple (n, (w1, . . . , wn), k) to represent an instance of the problem,
where n stands for the size of A = {a1, . . . , an}, wi = w(ai), and k is the constant
given as input for the problem.

118 D. Dı́az-Pernil et al.

Theorem 1. Subset Sum∈ PMCTD.

Proof. Let A = {a1, . . . , an} be a finite set, w : A → N a weight function, and
k ∈ N. Let g : N× N → N be a function defined by

g(n, k) =
(n + k)(n + k + 1)

2
+ n

This function is primitive recursive and bijective between N× N and N and com-
putable in polynomial time. Let us denote by u = (n, (w1, . . . , wn), k), where
wi = w(ai), 1 ≤ i ≤ n, the given instance of the problem. We define the polyno-
mially computable function s(u) = g(n, k).

We shall provide a family of tissue P systems where each P system solves all
the instances of the Subset Sum problem with the same size. The weight function
w of the concrete instance will be provided via an input multiset determined via
the function cod(u) = {{vwi

i : 1 ≤ i ≤ n}} ∪ {{qk}}.
Next, we shall provide a family Π = {Π(g(n, k)) : n, k ∈ N} of rec-

ognizing tissue P systems with cell division which solve the Subset Sum prob-
lem in a linear time. For each (n, k) ∈ N × N we shall consider the system
Π(g(n, k)) = (Γ,Σ, ω1, ω2,R, E , iin, i0), where

• Γ = Σ(n) ∪ {Ai, Bi : 1 ≤ i ≤ n}
∪ {zi : 1 ≤ i ≤ n + dlog ne+ dlog(k + 1)e+ 11}
∪ {ci : 1 ≤ i ≤ n + 1}
∪ {di : 1 ≤ i ≤ dlog ne+ dlog(k + 1)e+ 4}
∪ {ei : 1 ≤ i ≤ dlog ne+ 1}
∪ {Bij : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ dlog(k + 1)e+ 1}
∪ {b, f1, g1, g2, p,D, T, S, N, yes, no}

• Σ = {q} ∪ {vi : 1 ≤ i ≤ n}
• ω1 = z1 b c1 yes no
• ω2 = DA1 · · ·An

• R is the following set of rules:
1. Division rules:

r1,i ≡ [Ai]2 → [Bi]2[λ]2 for i = 1, . . . , n
2. Communication rules:

r2,i ≡ (1, zi/zi+1, 0) for i = 1, . . . , n + dlog ne+ dlog(k + 1)e+ 10
r3,i ≡ (1, ci/c2

i+1, 0) for i = 1, . . . , n
r4 ≡ (1, cn+1/D, 2)
r5 ≡ (2, cn+1/d1e1, 0)
r6,i ≡ (2, ei/e2

i+1, 0) for i = 1, . . . , dlog ne
r7,i ≡ (2, di/di+1, 0) for i = 1, . . . , dlog ne+ dlog(k + 1)e+ 3
r8,i ≡ (2, edlog ne+1Bi/Bi1, 0) for i = 1, . . . , n
r9,i,j ≡ (2, Bij/B2

ij+1, 0) for i = 1, . . . , n, j = 1, . . . , dlog(k + 1)e
r10,i ≡ (2, Bidlog(k+1)e+1vi/p, 0) for i = 1, . . . , n
r11 ≡ (2, pq/λ, 0)
r12 ≡ (2, ddlog ne+dlog(k+1)e+4/g1f1, 0)

Subset Sum with Tissue P Systems with Cell Division 119

r13 ≡ (2, f1p/λ, 0)
r14 ≡ (2, f1q/λ, 0)
r15 ≡ (2, g1/g2, 0)
r16 ≡ (2, g2f1/T, 0)
r17 ≡ (2, T/λ, 1)
r18 ≡ (1, bT/S, 0)
r19 ≡ (1, Syes/λ, 0)
r20 ≡ (1, zn+dlog ne+dlog(k+1)e+11b/N, 0)
r21 ≡ (1, Nno/λ, 0)

• E = Γ − {yes, no}
• iin = 2, is the input cell
• i0 = env, is the output cell

The design is structured in the following stages:

• Generation Stage: The initial cell labelled by 2 is divided into two new cells;
and the divisions are iterated n times until a cell has been produced for each
possible candidate solution. Simultaneously to this process, two counters (ci

and zi) evolve in the cell labelled by 1: the first one controls the step in which
the communication between cells 2 and cell 1 starts and the second one will be
useful in the output stage.

• Pre–checking Stage: When this stage starts, we have 2n cells labelled by 2, each
of them encoding a subset of the set A. In each such a cell, as many objects p as
the weight of the corresponding subset will be produced. Recall that there are
k copies of the object q in every cell labelled by 2 (since they were introduced
as part of the input multiset).

• Checking Stage: In each cell labelled by 2, the number of copies of objects p
and q are compared. The way to do that is removing from the cell in one step
all possible pairs (p, q). After doing so, if some objects p or q remain in the
cell, then the cell was not encoding a solution of the problem; otherwise, the
weight of the subset of A encoded on the cell equals to k and hence it encodes
a solution to the problem.

• Output Stage: The system sends to the environment the right answer according
to the results of the previous stage:
– Answer yes: After the checking stage, there is a cell labelled by 2 without

objects p nor q. In this case, such a cell sends an object T to the cell 1.
This object T causes the cell 1 to expel an object yes to the environment
(see rules r17 – r19).

– Answer no: Every cell labelled by 2 contains some objects p or q. In this
case, no object T arrives to the cell labelled by 1 and an object no is sent
to the environment.

The proof will be concluded in Subsection 5.2. Before going on, let us informally
present an overview of the computation.

120 D. Dı́az-Pernil et al.

5.1 An overview of the computation

First of all, we recall the polynomial encoding of the Subset Sum problem in the
family Π constructed above. Let u = (n, (w1, . . . , wn), k) be an instance of the
problem, s(u) = g(n, k) and cod(u) = {{vwi

i : 1 ≤ i ≤ n}} ∪ {{qk}}.
Next, we describe informally how the recognizing tissue P system with cell

division Π(s(u)) with input cod(u) works. Let us start with the generation stage.
Recall that if a division rule is triggered in a cell, then communication rules cannot
be simultaneously applied to the contents of such cell. In this stage we have two
parallel processes:

• On the one hand, in the cell labelled by 1 we have two counters: zi, which will
be used in the answer stage, and ci, which will be multiplied until getting 2n

copies in exactly n steps.
• On the other hand, in the cells labelled by 2, the division rules are applied.

For each object Ai (which codifies a member of the set A) we obtain two cells
labelled by 2: one of them has an element Bi and the other does not.

When all divisions have been done, after n steps, we shall have 2n cells with label
2 and each of them will contain the encoding of a subset of A. At this moment,
the generation stage ends and the pre-checking stage begins.

For each cell 2, an object D is changed by a copy of the counter ci. In this way,
2n copies of D will appear in the cell 1, and in each cell labelled by 2 there will be
an object cn+1. The occurrence of such object cn+1 in the cells 2 will produce the
apparition of two counters:

(a) The counter di lets the checking stage start, since it produces the apparition
of the objects g1 and f1 after dlog ne+ dlog(k + 1)e+ 4 steps.

(b) The counter ei will be multiplied until obtaining 2dlog ne copies, ensuring that
at least n copies of edlog ne+1 will be available in the step n+ dlog ne+2. Then,
we trade objects edlog ne+1 and Bi against Bi1 for each element Ai in the subset
associated with the cell.
After that, for each 1 ≤ i ≤ n we get 2dlog(k+1)e copies of Bidlog(k+1)e+1,
ensuring that at least k + 1 copies will be available. Then for each element Ai

in the subset associated with the cell we get min{2dlog(k+1)e, w(ai)} copies of
object p, in the step n + dlog ne+ dlog(k + 1)e+ 5.

The checking takes place in the step n+dlog ne+dlog(k+1)e+6, when all pairs
of objects p and q present in any cell labelled by 2 are sent to the environment.
In this way, if the weight of the subset associated with a cell is equal to k, then
no object p or q remains in this cell in the next step. Otherwise, if the encoding is
not exactly of weight k, then at least one object p or q will remain in the cell. In
the next step the answer stage starts. Two cases must be considered for each cell:

• If no object p or q remain in the cell, the object f1 does not evolve, g1 evolves
to g2, and in the step n + dlog ne+ dlog(k + 1)e+ 8 the objects f1 and g2 are
traded against T from the environment. In the next step T is sent to the cell 1,

Subset Sum with Tissue P Systems with Cell Division 121

and in the step n + dlog ne+ dlog(k + 1)e+ 10, the objects T and b are sent to
the environment traded by S. Finally, in the step n+dlog ne+dlog(k+1)e+11
the objects S and yes are sent to the environment.

• If any object p or q remains in the cell, such object is sent to the environment
together with the object f1. This causes that the object b still remains in the
cell 2 after the step n + dlog ne+ dlog(k + 1)e+ 10. In this way, the objects b
and zn+dlog ne+dlog(k+1)e+11 are traded by the object N with the environment,
and in the step n + dlog ne+ dlog(k + 1)e+ 12 the objects N and no are sent
to the environment.

5.2 Verification

Next, we prove that the family of recognizing tissue P systems with cell division
described above solves the Subset Sum problem in a linear time, according to
Definition 1.

Before going on, let us remark that the defined family is consistent, i.e., all
systems of the family are recognizing tissue P systems with cell division. By con-
struction (type of rules and working alphabet) we can check that it is a family of
tissue P systems with cell division. Moreover, we shall prove next that all compu-
tations of all systems in the family always halt and in the last step of computations
either an object yes or no is sent to the environment.

Polynomial uniformity of the family

Next, we show that the family Π = {Π(g(n, k)) : n, k ∈ N} defined in Theorem 1
is polynomially uniform by Turing machines. To this aim we are going to show
that it is possible to build Π(g(n, k)) in polynomial time with respect to the size
of u.

It is easy to check that the rules of a system Π(g(n, k)), with n, k ∈ N of
the family are defined recursively from the values n and k. Besides, the necessary
resources to build an element of the family are of polynomial order with respect
to the same:

• Size of the alphabet: (n + 2) · dlog(k + 1)e+ 6n + 3dlog ne+ 28 ∈ O(n · log k)
• Initial number of cells: 2 ∈ θ(1).
• Initial number of objects: n + 6 ∈ θ(n).
• Number of rules: (n + 2) · dlog(k + 1)e+ 5n + 3dlog ne+ 26 ∈ O(n · log k)
• Maximal length of a rule: 3 ∈ θ(1).

Therefore, a deterministic Turing machine can build Π(g(n, k)) in a polynomial
time with respect to n and k.

Notice that every instance u = (n, (w1, . . . , wn), k) is introduced in the initial
configuration of its associated cellular system via an input multiset (i.e. an 1-ary
representation) and hence, |u| ∈ O(n + k) holds.

122 D. Dı́az-Pernil et al.

We would like to recall that the functions cod and s have been defined above
for an instance u = (n, (w1, . . . , wn), k) of the Subset Sum problem as follows:
cod(u) = {{vwi

i : 1 ≤ i ≤ n}} ∪ {{qk}}, and s(u) = g(n, k), respectively. Both
functions are computable in polynomial time and the pair (cod, s) is a polynomial
encoding of ISubsetSum in Π, since for each instance u of the Subset Sum problem
we have that cod(u) is an input multiset of the system Π(s(u)).

In order to settle the formal verification of the family of tissue P systems we
shall prove that all the systems of the family are polynomially bounded, and also
that they are sound and complete with respect to (SubsetSum, cod, s).

Polynomial boundness of the family

In order to ensure that the system Π(s(u)) with input cod(u) is polynomially
(indeed, linearly) bounded, it suffices to find the moment in which the computation
halts, or at least, an upper bound for it. As we shall show, the number of steps of
the computations of any system of the family can always be bounded by a linear
function. Nonetheless, we would like to stress that the amount of pre-computed
resources for each instance u is polynomial in the size of the instance, since cod(u)
needs to be computed and Π(s(u)) needs to be built.

Proposition 1. The family Π = {Π(g(n, k)) : n, k ∈ N} is polynomially bounded
with respect to (SubsetSum, cod, s).

Proof. (Sketch). We shall informally go through the stages of the computation
in order to estimate a bound for the number of steps. The computation will be
studied in more detail when addressing the soundness and completeness proof.

Let u = (n, (w1, . . . , wn), k) be an instance of the Subset Sum problem. We
shall study what happens during the computation of the system Π(s(u)) with
input cod(u) which processes such instance in order to find the halting step, or at
least, an upper bound for it.

First, the generation stage lasts exactly n steps, where all the divisions of the
cells of the system are performed.

After that, the pre-checking stage starts with the rule r4. In the following
step the object d1 arrives to all cells 2 and the counter di starts. At the step
n+ dlog ne+ dlog(k +1)e+5, the last element of the counter di is reached and the
checking stage ends. In this way, in the (n + dlog ne+ dlog(k + 1)e+ 6)-th step of
the computation the checking takes place. Recall that only one step is needed for
the checking, as rule r11 takes out in parallel all pairs (p, q) from all cells 2.

The last one is the answer stage. The longest case is obtained when the answer
is negative. In this case there is one step where only the counter zi is working since
no element T has reached the cell 1. In the next step an object N is brought from
the environment and, finally, in the (n + dlog ne+ dlog(k + 1)e+ 12)-th step, the
object no is sent to the environment.

Therefore, there exists a linear bound with respect to (n+log k) on the number
of steps of the computation.

Subset Sum with Tissue P Systems with Cell Division 123

Soundness and Completeness of the family

In order to prove the soundness and completeness of the family Π with respect
to (SubsetSum, cod, s), we shall prove that given an instance u of the Subset Sum
problem, the system Π(s(u)) with input cod(u) sends out an object yes if and
only if the answer to the problem for the considered instance u is affirmative, and
the object no is sent out otherwise.

Proposition 2. The family Π = {Π(g(n, k)) : n, k ∈ N} is sound and complete
with respect to (SubsetSum, cod, s).

Proof. In order to complete the proof we shall proceed through a number of aux-
iliary results.

Remark 1. Given a computation C we denote the configuration at the i-th step as
Ci. Moreover, Ci(1) will denote the multiset associated to cell 1 in such configura-
tion.

We start with the generation stage (i.e., the n first steps of the computation).
It consists of two parallel processes, each of them in one cell.

Lemma 1. If C is an arbitrary computation of the system, then for all j such that
0 ≤ j ≤ n, Cj(1) = {{zj+1, c

2j

j+1, b, yes, no}} holds.

Proof. We shall reason by induction on j.
Base Case. We have C0(1) = {z1, c1, b, yes, no}, and thus the lemma holds for

j = 0.
Case j < n → j + 1. Let j be such that 1 ≤ j < n and we have,

by inductive hypothesis, Cj(1) = {{zj+1, c
2j

j+1, b, yes, no}}. In this configura-
tion, only the rules r3,j+1 and r4,j+1 can be applied to cell 1, and therefore
Cj+1(1) = {{zj+2, c

2(j+1)

j+2 , b, yes, no}}.

Lemma 2. If C is an arbitrary computation of the system, then:

1. For each subset V ⊆ {1, . . . , n} there exists only one cell 2 in Cn whose multiset
is cod(u) ∪ {{D}} ∪ {{Bi : i ∈ V }}

2. There exist exactly 2n cells labelled by 2 in configuration Cn

Proof. It is clear that division rules cannot be applied in parallel over the same
cell. At this point there is an intrinsic non-determinism of the system. We have to
apply all the division rules, but the order is non-deterministically chosen.

At time 0, there are n division rules that can be applied. When we apply one
of them to the cell labelled by 2, for example, r1,i (1 ≤ i ≤ n) we eliminate the
object Ai and will obtain two new cells, in the first one an object Bi will appear,
but not in the second one. The remaining contents of the original cell will be in
the two new cells as well.

In the following step, another division rule can be applied to the two cells
labelled by 2. As described above, the object Aj that triggers the rule disappears,

124 D. Dı́az-Pernil et al.

and a new object Bj appear in one of the new cells (note that the two cells may
chose different objects Aj). This process is repeated in all cells 2 for each division
rule.

It is clear that by triggering a division rule r1,j we get two different cells. Only
one of them containing Bj . On the other hand, each object Ai appears exactly
once in their initial configuration. Therefore, after applying n division rules we
obtain 2n cells labelled by 2.

Moreover, let V be a subset of {1, . . . , n}, if for each division rule [Ai]2 →
[Bi]2[λ]2 we focus on the cell containing Bi only for i ∈ V (we select the other cell
otherwise), then after n division steps we will have a cell labelled by 2 such that
Bj belongs to the cell if and only if j ∈ V , irrespectively of the order in which the
division rules are applied.

Lemma 3. If C is an arbitrary computation of the system, then for all i such that
1 ≤ i ≤ dlog ne+ dlog(k + 1)e+ 7, Cn+i(1) = {{zn+i+1, D

2n

, b, yes, no}} holds

Proof. In order to prove the lemma it suffices to observe the following:

• Cn(1) = {{zn+1, c
2n

n+1, b, yes, no}} holds from Lemma 1.
• There exist exactly 2n cells labelled by 2 in configuration Cn, each of them

containing an object D (this follows from Lemma 2).
• In the next step of the computation, only rules r4 and r2,n+1 are applicable on

cell 1, yielding Cn+1(1) = {{zn+1+1, D
2n

, b, yes, no}}
• During the rest of the checking stage, only rules of type r2,i are applicable on

cell 1, and the result follows.

Lemma 4. Let C be an arbitrary computation of the system. Then:

• For each subset V ⊆ {1, . . . , n} there exists only one cell 2 in Cn+1 whose
associated multiset is

cod(u) ∪ {{cn+1}} ∪ {{Bi : i ∈ V }}

• There exist exactly 2n cells labelled by 2 in configurations Cn+i, for 1 ≤ i ≤
dlog ne+ dlog(k + 1)e+ 12

Proof. Cn+1 is obtained from Cn by the application of the rules r4 and r2,n+1

and hence, 2n objects cn+1 in the cell 1 are traded against 2n objects D from
the cells 2 (one from each cell). Then Cn+1(1) = {{zn+2, D

2n

, b, yes, no}} and for
every V ⊆ {1, . . . , n} there exists only one cell 2 whose associated multiset is
cod(u) ∪ {{cn+1}} ∪ {{Bi : i ∈ V }}

Since no division rule has been applied in this step (actually, they will not be
applied anymore along the computation), the number of cells 2 remains the same
as in the previous configuration.

Lemma 5. Let C be an arbitrary computation of the system. For each i (1 ≤ i ≤
dlog ne + 1) and for each V ⊆ {1, . . . , n} there exists only one cell 2 in Cn+i+1

whose associated multiset is

cod(u) ∪ {{di, e
2(i−1)

i }} ∪ {{Bj : j ∈ V }}

Subset Sum with Tissue P Systems with Cell Division 125

Proof. We shall reason by induction on i.
Case i = 1. It suffices to note that r5 is the only rule that can be applied on

cells 2 in configuration Cn+1, and the result follows from the previous Lemma.
Case 1 ≤ i < dlog ne+ 1 → i + 1.
Let i be such that 1 ≤ i < dlog ne+1 and let us suppose that the result holds for

i. Let V be an arbitrary subset of {1, . . . , n}, then let us consider its associated cell
whose contents are indicated by inductive hypothesis. The only rules applicable to
this cell are r6,i and r7,i, and therefore the multiset of such cell 2 in Cn+i+2 will be

cod(u) ∪ {{di+1, e
2i

i+1}} ∪ {{Bj : j ∈ V }},

as we wanted to prove.

Lemma 6. Let C be an arbitrary computation of the system. For each l (1 ≤ l ≤
dlog(k + 1)e + 2) and for each V ⊆ {1, . . . , n} there exists only one cell 2 in
Cn+dlog ne+l+2 whose associated multiset is

cod(u) ∪ {{ddlog ne+l+1, e
(2dlog ne−|V |)
dlog ne+1 }} ∪ {{B2(l−1)

jl : j ∈ V }}

Proof. We shall reason by induction on l.
Case l = 1. Let V be an arbitrary subset of {1, . . . , n}, then from the previous

Lemma it follows that there exists a cell whose associated multiset in Cn+dlog ne+2

is cod(u) ∪ {{ddlog ne+1, e
2dlog ne

dlog ne+1}} ∪ {{Bj : j ∈ V }}. The next configuration for
this cell is obtained by applying rules r7,dlog ne+1 and r8,j for every j ∈ V :

• r7,dlog ne+1 allows the evolution of the counter d to ddlog ne+2 in each cell 2.
• Each r8,j allows the replacement of the objects Bj (together with a copy of

edlog ne+1) by Bj1.

and thus the result holds for l = 1.
Case 1 ≤ l < dlog(k + 1)e → l + 1.
Let l be such that 1 ≤ l < dlog ne+ 1 and let us suppose that the result holds

for l. That is, there exists only one cell 2 in Cn+dlog ne+l+3 with the multiset

cod(u) ∪ {{ddlog ne+l+1, e
2dlog ne−|V |
dlog ne+1 }} ∪ {{B2(l−1)

jl : j ∈ V }}

In the next step, rules r7,n+dlog ne+l+3 and r9,j,l, for every j ∈ V , will be applied
on this cell, and thus the multiset of such cell 2 in Cn+dlog ne+l+1+3 will be

cod(u) ∪ {{ddlog ne+l+2, e
2dlog ne−|V |
dlog ne+1 }} ∪ {{B2l

j(l+1) : j ∈ V }}

Lemma 7. Let C be an arbitrary computation of the system. For each V ⊆
{1, . . . , n} there exists only one cell 2 in Cn+dlog ne+dlog(k+1)e+5 whose associated
multiset is

{{p
P

j∈V wj , qk}}∪{{ddlog ne+dlog(k+1)e+4, e
2dlog ne−|V |
dlog ne+1 }}∪{{B2dlog(k+1)e−wj

j(dlog(k+1)e+1) : j ∈ V }}

126 D. Dı́az-Pernil et al.

Proof. Let V be an arbitrary subset of {1, . . . , n}. From the previous Lemma
(taking l = dlog(k+1)e+2), it follows that in Cn+dlog ne+dlog(k+1)e+4 there is a cell
2 associated with this subset whose content is indicated above. In the next step,
the following rules are applied:

• r7,dlog ne+dlog(k+1)e+3 allows the evolution of the counter ddlog ne+dlog(k+1)e+4.
• r10,j , for every j ∈ V , allow the replacement of all the existing objects vj

(recall that there are w(aj) copies of vj in cod(u)), together with objects
Bj(dlog(k+1)e+1) against

∑
j∈V wj objects p.

Remark 2. From this moment on, for the sake of simplicity, given V ⊆ {1, . . . , n}
we shall note by wV =

∑
j∈V wj , and we shall also note by trashV the following

multiset:
{{e2dlog ne−|V |

dlog ne+1 }} ∪ {{B2dlog(k+1)e−wj

j(dlog(k+1)e+1) : j ∈ V }}

Lemma 8. Let C be an arbitrary computation of the system and let V ⊆
{1, . . . , n}. We have the following:

• If k = wV then there exists only one cell 2 in Cn+dlog ne+dlog(k+1)e+6 whose
associated multiset is

{{f1, g1}} ∪ trashV

• If k < wV then there exists only one cell 2 in Cn+dlog ne+dlog(k+1)e+6 whose
associated multiset is

{{pwV −k, f1, g1}} ∪ trashV

• If k > wV then there exists only one cell 2 in Cn+dlog ne+dlog(k+1)e+6 whose
associated multiset is

{{qk−wV , f1, g1}} ∪ trashV

Proof. Let V be an arbitrary subset of {1, . . . , n}. From the previous Lemma, it
follows that in Cn+dlog ne+dlog(k+1)e+5 there is a cell 2 associated with this subset
whose content is indicated above. In the next step, the following rules are applied:

• r11 sends all existing pairs (p, q) to the environment. So, if k = wV then all
objects p and q will disappear of the cell. However, if k < wV then wV − k
objects p will remain in the cell, and conversely if k > wV then k−wV objects
q will remain in the cell.

• r12 trades the object ddlog ne+dlog(k+1)e+4 against the objects f1, g1.

Lemma 9. Let C be an arbitrary computation of the system, and let V be a subset
of {1, . . . , n}.

1. For each V such that wV = k, there exists one cell 2 such that:
a) its associated multiset in Cn+dlog ne+dlog(k+1)e+7 is {{f1, g2}} ∪ trashV

b) its associated multiset in Cn+dlog ne+dlog(k+1)e+8 is {{T}} ∪ trashV

Subset Sum with Tissue P Systems with Cell Division 127

c) For each i (1 ≤ i ≤ 4), its associated multiset in Cn+dlog ne+dlog(k+1)e+i+8

is trashV

2. For each V such that wV 6= k, there exists one cell 2 such that for each i (1 ≤
i ≤ 6) its associated multiset in Cn+dlog ne+dlog(k+1)e+i+6 is {{g2, p

wV −k−1}} ∪
trashV or {{g2, q

k−wV −1}} ∪ trashV

Proof. 1. From the previous Lemma, if k = wV then there exists only one cell 2
in Cn+dlog ne+dlog(k+1)e+6 whose associated multiset is

{{f1, g1}} ∪ trashV

Then, by applying the rule r15 (no other rule can be applied in this cell) we
obtain in the next step {{f1, g2}} ∪ trashV . After that, by applying the rule
r16 we obtain {{T}} ∪ trashV . Finally, by applying the rule r17 the element
T is sent to the cell labelled by 1. No more rules can be applied after this
moment in the cells labelled by 2. Therefore, for 1 ≤ i ≤ 4, the contents of the
cell in Cn+dlog ne+dlog(k+1)e+i+8 is the multiset trashV .

2. From the previous Lemma, if k < wV then there exists only one cell 2 in
Cn+dlog ne+dlog(k+1)e+6 whose associated multiset is

{{pwV −k, f1, g1}} ∪ trashV

Then, by applying the rule r13 an object p is sent to the environment together
with object f1. In parallel, rule r15 trades g1 against g2. No more rules can be
applied in the cell after this moment. Therefore, for 1 ≤ i ≤ 5, the contents of
the cell in Cn+dlog ne+dlog(k+1)e+i+7 is the multiset {{g2, p

wV −k−1}}∪ trashV).
Analogously for the case when k > wV (applying the rule r14 instead of r13).

Lemma 10. Let C be an arbitrary computation of the system. Let us suppose that
there exists V ⊆ {1, . . . , n} such that wV = k. Then

(a) Cn+dlog ne+dlog(k+1)e+9(1) = {{zn+dlog ne+dlog(k+1)e+10, D
2n

, b, yes, no, T}}
(b) Cn+dlog ne+dlog(k+1)e+10(1) = {{zn+dlog ne+dlog(k+1)e+11, D

2n

, S, yes, no}}
(c) Cn+dlog ne+dlog(k+1)e+11(1) = {{zn+dlog ne+dlog(k+1)e+11, D

2n

, no}}

Proof. The configuration of item (a) is obtained by the application of rules r17

and r2,n+dlog ne+dlog(k+1)e+9 to the previous configuration. Analogously, the con-
figurations of items (b) and (c) are obtained by the application of rules r18 and
r19 respectively.

Lemma 11. Let C be an arbitrary computation of the system. Let us suppose that
there does not exist any subset V ⊆ {1, . . . , n} such that wV = k. Then

(a) Cn+dlog ne+dlog(k+1)e+9(1) = {{zn+dlog ne+dlog(k+1)e+10, D
2n

, b, yes, no}}
(b) Cn+dlog ne+dlog(k+1)e+10(1) = {{zn+dlog ne+dlog(k+1)e+11, D

2n

, b, yes, no}}
(c) Cn+dlog ne+dlog(k+1)e+11(1) = {{D2n

, N, yes, no}}
(d) Cn+dlog ne+dlog(k+1)e+12(1) = {{D2n

, yes}}

128 D. Dı́az-Pernil et al.

Proof. The configuration of item (a) and (b) are obtained by the application of
rules r2,n+dlog ne+dlog(k+1)e+9 and r2,n+dlog ne+dlog(k+1)e+10 to the previous config-
uration. Analogously, the configurations of items (c) and (d) are obtained by the
application of rules r20 and r21 respectively.

5.3 Main Results

From the discussion in the previous sections and according to the definition of
solvability given in Definition 1, we deduce the following result:

Theorem 1. Subset Sum ∈ PMCTD.

As a consequence of this result we have:

Theorem 2. NP ∪ co−NP ⊆ PMCTD.

Proof It suffices to make the following observations: the Subset Sum problem
is NP-complete, SubsetSum ∈ PMCTD and the class PMCTD is stable under
polynomial-time reduction, and also closed under complement.

6 Conclusions and Future Work

The physical limitations of current silicon-based hardware have been one of the
triggers for the development of alternative models of computation (also known
as unconventional). In particular, the scientific community is getting increasingly
interested on computing models inspired by Nature. These new models abstract
features of living entities and use them as inspiration for designing algorithms
within new computing paradigms.

Membrane Computing is a new cross-disciplinary field of Natural Computing
which has reached an important success in its short life. In these years many results
have been presented related to the computational power of membrane devices, but
up to now no implementation in vivo or in vitro has been carried out.

As the classical complexity classes P and NP are very likely to be different,
the design of efficient solutions (in time) to NP-complete problems consequently
needs to handle an exponential amount of resources. Cellular Computing with
Membranes provides a framework where this trade-off between time and space is
formalized in a natural way, getting inspiration from the way new cells are created
(are born) from existing ones. Indeed, the mitosis process (cell division) is the
motivation for the model of tissue P systems with cell division used in this paper.
As the model allows all existing cells to be divided in parallel at every step, it
follows directly that one can produce 2n membranes in n steps. Using this ability,
we have presented in this paper a solution to a numerical NP-complete problem
using a family of recognizing tissue P systems with cell division.

More precisely, this paper deals with the design and formal verification of an
algorithm to solve a well-known problem in an efficient and uniform way, and in

Subset Sum with Tissue P Systems with Cell Division 129

this sense it is a theoretical result, mainly related to computational complexity
classes. We would like to stress that the result presented in this paper improves
previous designs (for other problems) in two senses. On the one hand, the size of
the rules is bounded by 3 and, on the other hand, the number of steps and the
initial resources are of O(log k) order instead of being linearly dependent on k.

This is the first design of a solution to a numerical problem in this frame-
work (up to our knowledge), and thus it may be useful as a template or guidance
when addressing other numerical problems. Besides, the strategies that have been
applied in the design presented in this paper can be also used when working on
similar models. For instance, there is a promising new paradigm within Membrane
Computing, namely Spiking Neural P systems, that is based on communication
between neurons (recall that the inspiration of tissue P systems comes from com-
munication and cooperation between cells in a tissue). Efficient resolution of hard
problems has not yet been addressed in this new model, but it may in a near future.
We would also like to mention as future work the development of software tools to
simulate such computational processes, as the existing simulators for other mem-
brane computing models have proved to be very useful as assistants for designing
P systems and for understanding the way they work.

Acknowledgment

The authors acknowledge the support of the project TIN2006-13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the project of excellence TIC-581 of the Junta de Andalućıa.

References

1. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: A
linear–time tissue P system based solution for the 3–coloring problem. Theoretical
Computer Science, to appear.

2. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero: A linear so-
lution for QSAT with Membrane Creation. In Membrane Computing. International
Workshop WMC6, Vienna, Austria, 2005, LNCS 3850, Springer, 2006, 241–252.

3. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón: A New Class of Sym-
bolic Abstract Neural Nets: Tissue P Systems. In Computing and Combinatorics:
8th Annual International Conference, COCOON 2002, Singapore, 2002, LNCS 2387,
Springer, 2002, 290–299.

4. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón: Tissue P systems. Theo-
retical Computer Science, 296 (2003), 295–326.

5. A. Păun, Gh. Păun: The power of communication: P systems with symport/antiport.
New Generation Computing, 20, 3 (2002), 295–305.

6. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

7. Gh. Păun: Membrane Computing – An Introduction. Springer, Berlin, 2002.

130 D. Dı́az-Pernil et al.

8. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez: Tissue P System with cell division.
In Second Brainstorming Week on Membrane Computing, Sevilla, Report RGNC
01/2004, (2004), 380–386.

9. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: A polynomial com-
plexity class in P systems using membrane division. In Proceedings of the 5th Work-
shop on Descriptional Complexity of Formal Systems, DCFS 2003, (2003), 284–294.

