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“The words, the sad words,
Sometimes surround the time

As a pipe, the water which flows within.”
Nichita Stănescu

Summary. Starting from Shannon theory of information, we present the case of pro-
ducing information in the form of multisets, and encoding information using multisets.
We compute the entropy of a multiset information source by constructing an equientropic
string source (with interdependent symbols), and we compare this with a string informa-
tion source with independent symbols. We then study the encoder and channel part of
the system, obtaining some results about multiset encoding length and channel capacity.

1 Motivation

The attempt to study information sources which produce multisets instead of
strings, and ways to encode information on multisets rather than strings, originates
in observing new computational models like membrane systems which employ
multisets [5]. Membrane systems have been studied extensively and there are plenty
of results regarding their computing power, language hierarchies and complexity.
However, while any researcher working with membrane systems (called also P
systems) would agree that P systems process information, and that living cells
and organisms do this too, we are unaware of any attempt to precisely describe
natural ways to encode information on multisets or to study sources of information
which produce multisets instead of strings. One could argue that, while some of
the information in a living organism is encoded in a sequential manner, like in
DNA for example, there might be important molecular information sources which
involve multisets (of molecules) in a non-trivial way.

A simple question: given a P system with, say, 2 objects a and 3 objects b
from a known vocabulary V (suppose there are no evolution rules), how much
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information is present in that system? Also, many examples of P systems perform
various computational tasks. Authors of such systems encode the input (usually
numbers) in various ways, some by superimposing a string-like structure on the
membrane system [1], some by using the natural encoding or the unary numeral
system, that is, the natural number n is represented with n objects, for example,
an. However, just imagine a gland which uses the bloodstream to send molecules to
some tissue which, in turn, sends back some other molecules. There is for sure an
energy and information exchange. How to describe it? Another, more general way
to pose that question is: what are the natural ways to encode numbers, and more
generally, information on multisets, and how to measure the encoded information?

If membrane systems, living cells and any other (abstract or concrete) multiset
processing machines are understood as information processing machines, then we
believe that such questions should be investigated. According to our knowledge,
this is the first attempt of such an investigation. We start from the idea that a
study of multiset information theory might produce interesting, useful results at
least in systems biology; if we understand the natural ways to encode information
on multisets, there is a chance that Nature might be using similar mechanisms.

Another way in which this investigation seems interesting to us is that there
is more challenge in efficiently encoding information on multisets, because they
constitute a poorer encoding media compared to strings. Encoding information
on strings or even richer, more organized and complex structures are obviously
possible and have been studied. Removing the symbol order, or their position
in the representation as strings can lead to multisets carrying a certain penalty,
which deserves a precise description. Order or position do not represent essential
aspects for information encoding; symbol multiplicity, a native quality of multisets,
is enough for many valid purposes. We focus mainly on such “natural” approaches
to information encoding over multisets, and present some advantages they have
over approaches that superimpose a string structure on the multiset. Then we
encode information using multisets in a similar way as it is done using strings.

There is also a connection between this work and the theory of numeral systems.
The study of number encodings using multisets can be seen as a study of a class
of purely non-positional numeral systems.

2 Entropy of an Information Source

Shannon’s information theory represents one of the great intellectual achievements
of the twentieth century. Information theory has had an important and significant
influence on probability theory and ergodic theory, and Shannon’s mathematics is
a considerable and profound contribution to pure mathematics.

Shannon’s important contribution comes from the invention of the source-
encoder-channel-decoder-destination model, and from the elegant and general solu-
tion of the fundamental problems which he was able to pose in terms of this model.
Shannon has provided significant demonstration of the power of coding with delay
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in a communication system, the separation of the source and channel coding prob-
lems, and he has established the fundamental natural limits on communication. As
time goes on, the information theoretic concepts introduced by Shannon become
more relevant to day-to-day more complex process of communication.

2.1 Short Review of Shannon Information Theory

We use the notions defined in the classical paper [6] where Shannon has formulated
a general model of a communication system which is tractable to a mathematical
treatment.

Definition 1. The quantity H is a reasonable measure of choice or information.

Consider an information source modeled by a discrete Markov process. For each
possible state i of the source there is a set of probabilities pi(j) associated to the
transitions to state j. Each state transition produces a symbol corresponding to
the destination state, e.g., if there is a transition from state i to state j, the symbol
xj is produced. Each symbol xi has an initial probability pi∈1..n corresponding to
the transition probability from the initial state to each state i.

We can also view this as a random variable X with xi as events with probabil-

ities pi, X =

(
x1 x2 · · · xn
p1 p2 · · · pn

)
.

There is an entropy Hi for each state. The entropy of the source is defined as
the average of these Hi weighted in accordance with the probability of occurrence
of the states:

H(X) =
∑

i

PiHi = −
∑

i,j

Pipi(j) log pi(j) (1)

Suppose there are two symbols xi, xj and p(i, j) is the probability of the suc-
cessive occurrence of xi and then xj . The entropy of the joint event is

H(i, j) = −
∑

i,j

p(i, j) log p(i, j)

The probability of symbol xj to appear after the symbol xi is the conditional
probability pi(j).

String Entropy

Consider an information source which produces sequences of symbols selected from
a set of n independent symbols xi with probabilities pi. The entropy formula for
such a source is given in [6]:

H(X) =

n∑

i=1

pi logb
1

pi
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2.2 Multiset Entropy

We consider a discrete information source modeled by a discrete-time first-order
Markov process (or Markov chain) which produces multiset messages (as opposed
to string messages). A message is a multiset of symbols. To compute the entropy
of such a source, we construct an equientropic source which produces strings with
mutually dependent symbols. Each string produced by this equientropic source is
an exponent of a multiset produced by the multiset source, because a multiset is
a string equivalence class.

The entropy of such a source is computed by Shannon’s formula 1, where Pi
is the probability of state i, and pi(j) is the transition probability from state i to
state j. To compute the probability of the state i we must first observe what is
specific for the multisets. The corresponding state trees are presented in the next
figures.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��

��
��

��
��

��
��?

?

?

�
�
�
�
�

�
��=

Z
Z
Z
Z
Z
Z
ZZ~

�
�
���

�
�
�
�	

A
A
A
AU








�

J
J
J
Ĵ
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Fig. 1. String source states tree

We take the Pi for the first level of the tree, and because P0 = 1 we get:

Pi = P0p0(i) = pi (2)

To compute the transition probability pi(j) we know that for multisets p(i, j) =
0 for i > j.

Let N be the number of all symbols (with repetition allowed). Then the most
probable number of symbols xj is pjN . For i ≤ j, in order to obtain j after i, we
observe that the symbols xi>j cannot be produced. Therefore, the probability to
obtain j after i is given by the number of favorable cases over all possible cases
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Fig. 2. Multiset source states tree

pi(j) =
pjN

N −
i−1∑

j=1

pjN

=
pj
n∑

j=i

pj

namely

pi(j) =





0, i > j
pj∑n
j=i pj

, i ≤ j (3)

Theorem 1. The entropy formula of a multiset generating information source is:

H(X) = −
n∑

i=1

pi

n∑

j=i

pj∑n
k=i pk

log

(
pj∑n
k=i pk

)
. (4)

Proof. From 1, 2, and 3 we infer

H(X) = −
∑

i,j,i≤j
pi

pj∑n
k=i pk

log

(
pj∑n
k=i pk

)

= −
n∑

i=1

pi

n∑

j=i

pj∑n
k=i pk

log

(
pj∑n
k=i pk

)
.

Proposition 1. When the events are equiprobable, i.e., pi =
1

n
, then
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H(X) =
logn!

n
.

Proof. We substitute
1

n
for pi in equation (4), and get

H(X) = −
n∑

i=1

1

n

n∑

j=i

(
1
n∑n
j=i

1
n

log

(
1
n∑n
j=i

1
n

))

= − 1

n

n∑

i=1

n∑

j=i

1

n− i+ 1
log

1

n− i+ 1

= − 1

n

n∑

i=1

(
1

n− i+ 1
log

1

n− i+ 1

) n∑

j=i

1

=
1

n

n∑

i=1

log(n− i+ 1)

=
1

n

n∑

i=1

log i =
logn!

n
.

String Source Entropy vs. Multiset Source Entropy

Theorem 2. The entropy of a multiset-producing source is lower than or equal to
the entropy of an equiprobable string-producing source:

Hmultiset ≤ Hstring(xi−equiprobable)

Proof. We know that
∑n
i=1 pi = 1⇒∑n

k=i pk ≤ 1⇒
pj∑n
k=i pk

≥ pj (5)

Gibbs inequality suppose that P = {p1, p2, . . . , pn} is a probability distribu-
tion. Then for any other probability distribution Q = {q1, q2, . . . , qn} the following
inequality holds

−
n∑

i=1

pi log pi ≤ −
n∑

i=1

pi log qi (6)

Then
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Hm(X) = −
n∑

i=1

pi

n∑

j=i

pj∑n
k=i pk

log

(
pj∑n
k=i pk

) (5)
≤

≤ −
n∑

i=1

pi

n∑

j=i

pj∑n
k=i pk

log pj = −
n∑

i=1

pi∑n
k=i pk

n∑

j=i

pj log pj

(6)
≤

(6)
≤ −

n∑

i=1

pi∑n
k=i pk

n∑

j=i

pj log qj

with Qi = {qj |where, j = i, n and
∑n
j=i qj = 1}, and qj =

1

n− i+ 1
:

−
n∑

i=1

pi∑n
k=i pk

n∑

j=i

pj log qj = −
n∑

i=1

pi∑n
k=i pk

n∑

j=i

pj log
1

n− i+ 1

= −
n∑

i=1

pi∑n
k=i pk

(
log

1

n− i+ 1

) n∑

j=i

pj =

n∑

i=1

pi log(n− i+ 1) ≤

≤
n∑

i=1

pi logn = log n = Hstring(X)xi−equiprobable

Corollary 1. When X is equiprobable, Hm ≤ Hs.

Proof. For pi =
1

n
we have

Hmultiset =
1

n

n∑

i=1

log i =
logn!

n
≤ logn = Hstring

Maximum Entropy for a Multiset Source

For a multiset source, equiprobable events do not generate the maximum entropy.
This is obtained by maximizing expression 4, which seems difficult in the general
case, but we give an example for the simplest case - with two events (a binary
multiset source):

X =

(
x1 x2

p1 p2

)

The multiset entropy for these events is: Hmultiset(X) = −p1(p1 log p1 +
p2 log p2). Let p = p1 ⇒ Hmultiset(X) = −p[p log p + (1 − p) log(1 − p)]. Since
this function has only one maximum in [0, 1], we need to solve:

H
′
multiset(X) = 2p[log(1− p)− log p]− log(1− p) = 0.

A numerical solution is p ≈ 0.703506. The maximizing probability distribution is

X ≈
(

x1 x2

0.703506 0.296494

)
and the maximum entropy is

Hmultiset(X) ≈ 0.427636< Hstring(Xequiprobable) = log 2 ≈ 0.6931472.
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3 Multiset Encoding and Channel Capacity

After exploring the characteristics of a multiset generating information source, we
move to the channel part of the communication system. Properties of previously
developed multiset encodings are analyzed in [2, 3]. A formula for the capacity
of multiset communication channel is derived based on the Shannon’s general
formula. Please note that one can have a multiset information source and a usual
sequence-based encoder and channel. All the following combinations are possible:

Source/Encoder Sequential Multiset

Sequential [6] this paper

Multiset this paper this paper

Table 1. Source/Encoder types

3.1 String Encoding

We shortly review the results concerning the string encoding.

Encoding Length

We have a set of symbols X to be encoded, and an alphabet A. We consider the
uniform encoding. Considering the length l of the encoding, then X = {xi =
a1a2 . . . al | aj ∈ A}.

If pi = P (xi) = 1
n , then we have

H(X) =

n∑

i=1

1

n
logb(n) = logb(n) ≤ l

It follows that n ≤ bl. For n ∈ N, n − bx = 0 implies x0 = logb n and so
l = dx0e = dlogb ne.

Channel Capacity

Definition 2. [6] The capacity C of a discrete channel is given by

C = lim
T→∞

logN(T )

T

where N(T ) is the number of allowed signals of duration T .
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Theorem 3. [6] Let b
(s)
ij be the duration of the sthsymbol which is allowable in

state i and leads to state j. Then the channel capacity C is equal to logW where
W is the largest real root of the determinant equation:

∣∣∣∣∣
∑

s

W−b
(s)
ij − δij

∣∣∣∣∣ = 0

where δij = 1 if i = j, and zero otherwise.

3.2 Multiset Encoding

We present some results related to the multiset encoding.

Encoding Length

We consider a set X of N symbols, an alphabet A, and the length of encoding l,
therefore:

X = {xi = an1
1 an2

2 . . . anbb |
∑b

j=1 nj = l, aj ∈ A}.
Proposition 2. Non-uniform encodings over multisets are shorter than uniform
encodings over multisets.

Proof. Over multisets we have

1. for an uniform encoding: N ≤ N(b, l) =

〈
b
l

〉
=

(
b+ l − 1

l

)
=

(b+ l − 1)!

l!(b− 1)!
=

∏b−1
i=1 (l + i)

(b− 1)!
. If x0 is the real root of n−

∏b−1
i=1 (x + i)

(b− 1)!
= 0 then l = dx0e.

2. for non-uniform encoding: N ≤ N(b+ 1, l− 1) =

〈
b+ 1
l − 1

〉
=

(
b+ l − 1
l − 1

)

=
(b+ l − 1)!

(l − 1)!b!
=

∏b−1
i=0 (l + i)

b!
=
l

b

∏b−1
i=1 (l + i)

(b− 1)!
=
l

b
N(b, l). Let x

′
0 be the real

root of n−
∏b−1
i=0 (x+ i)

b!
= 0. Then l′ =

⌈
x
′
0

⌉
.

From n − N(b, x0) = 0 and n − x
′
0

b
N(b, x

′
0) = 0 we get N(b, x0) =

x
′
0

b
N(b, x

′
0).

In order to prove l > l′ ⇐⇒ x0 > x′0, let suppose that x0 ≤ x
′
0. We have x

′
0 >

b (for sufficiently large numbers), and this implies that N(b, x0) ≤ N(b, x
′
0) <

x
′
0

b
N(b, x

′
0). Since this is false, it follows that x0 > x′0 implies l ≥ l′.

Channel Capacity

We consider that a sequence of multisets is transmitted along the channel. The
capacity of such a channel is computed for base 4, then some properties of it for
any base are presented.
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Multiset channel capacity in base 4

Fig. 3. Multiset channel capacity

In Figure 3 we have a graph G(V,E) with 4 vertices V = {S1, S2, S3, S4} and
E = {(i, j) | i, j = 1..4, i ≤ j} ∪ {(i, j) | i = 4, j = 1..3}

In Theorem 3 we get b
(ak)
ij = tk because we consider that the duration to

produce ak is the same for each (i, j) ∈ E. The determinant equation is

∣∣∣∣∣∣∣∣

W−t1 − 1 W−t2 W−t3 W−t4

W−tΓ W−t2 − 1 W−t3 W−t4

W−tΓ 0 W−t3 − 1 W−t4

W−tΓ 0 0 W−t4 − 1

∣∣∣∣∣∣∣∣
= 0

If we consider tΓ = tk = t, then the equation becomes

1− 4

W t
+

3

W 2t
− 1

W 3t
= 0, andWreal =

t

√√√√√4 +
3

√
47−3

√
93

2 +
3

√
47+3

√
93

2

3
≈ t
√

3.147899.

Therefore C = log4
t
√

3.147899 for t = 1, and so C ≈ 0.827194.

Multiset channel capacity in base b

The determinant equation is
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∣∣∣∣∣∣∣∣∣∣∣∣∣

W−t1 − 1 W−t2 W−t3 · · · W−tb

W−tΓ W−t2 − 1 W−t3 · · · W−tb

W−tΓ 0 W−t3 − 1 · · · W−tb
...

...
...

...
W−tΓ · · · 0 W−tb−1 − 1 W−tb

W−tΓ 0 0 · · · W−tb − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Proposition 3. If tΓ = tk = t, then the determinant equation becomes

(1− 1

W t
)b−1 − 1

W t
= 0. (7)

The capacity C is given by C = logbW , where W is the largest real root of the
equation (7). Considering x = W−t, then we have

W =
1
t
√
x
⇒ C = −1

t
logb x. (8)

Since we need the largest real root W then we should find the smallest positive
root x of the equation

(1− x)b−1 − x = 0 (9)

Let fb(x) = (1− x)b−1 − x.

Lemma 1. For all b there is a unique xb ∈ (0, 1) such that fb(xb) = 0.

Proof. We have f ′b(x) = −(b− 1)(1− x)b−2 − 1.

• b is odd ⇒ f ′b(x) = 0 has the real root x = 1 +
1

k−1
√
k
> 1 and so f ′b(x) < 0 for

all x ∈ (−∞, 1];
• b is even ⇒ f ′b(x) ≤ 0 for all x ∈ R.

Therefore fb(x) is decreasing for x ∈ (0, 1), fb(0) = 1 and fb(1) = −1. Then there
exists a unique xb ∈ (0, 1) such that fb(xb) = 0.

Lemma 2. The smallest positive root of Equation (9) is decreasing with respect to
b. More exactly, for all b we have xb ≥ xb+1, where xb is the smallest positive root
of fb(x) = 0.

Proof. fb+1(x) − fb(x) = (1 − x)b − x − ((1 − x)b−1 − x) = −x(1 − x)b−1. Then
fb+1(x)− fb(x) ≤ 0 for all x ∈ (0, 1). Since fb+1(xb) ≤ 0 and fb+1(0) = 1, then we
have xb+1 ∈ (0, xb) according to Lemma 1.

Theorem 4. Channel capacity is an increasing function with respect to b.

Proof. This follows by Lemma 2 and Equation (8).

Remark 1. When n = 2, the capacity is C =
1

t
.

Proof. From 1− 2

W t
= 0 we get C = log2

t
√

2 =
1

t
.
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4 Conclusion

Based on Shannon’s classical work, we present a multiset entropy formula of an
information source. We also present some relationships between this entropy and
the string entropy. For a binary multiset source, we compute an approximate max-
imal value for the entropy. Using the determinant capacity formula, we compute
the multiset channel capacity in base 4, and we describe some properties of the
multiset channel capacity in base b. As future work we plan to further explore the
properties of multiset based communication systems, and to develop some methods
for computing the maximal multiset entropy in the general case.

A poetic vision of communication

Nichita Stănescu (1933-1983) was a Romanian poet proposed for Nobel Prize for
literature. Here is his view of words and communication, first in Romanian and
then in English (translation is ours).

“Cuvintele / nu au loc decât ı̂n centrul lucrurilor, / numai ı̂nconjurate de
lucruri. // Numele lucrurilor / nu e niciodata afară.

Şi totuşi / cuvintele, tristele, / ı̂nconjoară câteodata timpul / ca o ţeavă,
apa care curge prin ea. // ... ca şi cum ar fi lucruri..., / oho, ca şi cum
ar fi lucruri...”

“Words / do not belong but are in the center of things, / only surrounded
by things. // The names of the things are never outside.

But still / the words, the sad words, / sometimes surround the time / as
a pipe, the water which flows within.// ... as they would be things...,
/ oh, as they would be things.”

Nichita Stănescu

“For Nichita Stănescu, the pipe of words is for time what the communica-
tion channel is for a message; time flows through the pipe made of words
as a message passes as a fluid through that which we call a communication
channel.”

Solomon Marcus [4]
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