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Summary. L-systems have been widely used to model and graphically represent the
growth of plants [18]. In [4], the use of membrane computing for such tasks has been
proposed. In this paper we present a different approach, which makes use of the topol-
ogy of membrane structures to model the morphology of branching structures. We also
keep closer to reality by simulating their growth from buds, instead of rewriting existing
structures, as L-systems do.

1 Introduction

The growth of plants, considered as a function of time, have attracted the atten-
tion of scientific community for a very long time. Features such as the bilateral
symmetry of leaves, the central symmetry of flowers and more recently, the study
of self-similarity and fractal structure have been matter of study for computer
scientists, mathematicians, and life scientists among others.

In 1968, Aristid Lindenmayer presented a theoretical framework for studying
the development of simple multicellular organisms. The devices introduced in this
framework are known as parallel rewriting systems or L-systems.

L-systems were introduced for modeling multicellular organisms in terms of
division, growth, and death of individual cells [9, 10]. These organisms are treated
as an assembly of discrete units, which represent the individual cells. These systems
must be considered as dynamic models, which means that the form of the organism
is the result of development along time. This development is described in terms
of production rules, which are applied in parallel and are intended to capture the
simultaneous progress of time in all parts of the growing organisms.

Several years later, the range of applications of L-systems were extended to
higher plants and complex branching structures [2, 3]. In the first approach, the
essence of development of lower organisms is the replacement of individual cells by
sets of cells, in the terms established by the production rules of the system. On the
other hand, in L-systems modeling higher plants the units of information represent
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complex structures, such as branches or leaves, instead of individual cells. These
structures are replaced by other ones using the production rules.

In [4, 5] a first approach for using P systems to simulate the growth and
development of living plants is presented. This approach mixes L-systems and
P systems, dealing in fact with an L-system “factorized” into several units, which
are then computed in the compartments delimited by the membranes of the P
system.

L-systems use strings as data structures, which fits in a natural way with
sequential structures such as microorganisms or linear structure of fractals as the
Koch curve [7, 8]. Nonetheless, the visual interpretation of strings of symbols as
branching structures needs to add memory pointers in order to remember the point
and orientation in which the branches were developed. These memory facilities are
the key for developing several branches from the same point.

The topology of P systems is inherently a branching structure based on the
inclusion relation. In this paper we use this feature to present a framework for
modeling the topology of living plants, without the necessity of considering mem-
ory pointers. Besides, our approach is closer to reality than L-systems, in the sense
that we do not make “rewriting” over the membrane structure, but instead we use
evolution rules to expand it. This is inspired by the fact that mature structures
in plants, such as trunks and branches, keep their morphology along time. They
change only in length and width, and the growth of new structures (leaves, flowers,
new branches, and so on) is started only from specific points, already present.

The paper is organized as follows. First L-systems and the usual way of visualize
them are recalled in Sections 2 and 3. In Section 4, the variant of P systems used in
this paper, a restricted version of P systems with membrane creation, is presented.
The next section is devoted to the graphical visualization of the configurations
of these P systems, with some examples. Finally, conclusions and lines for future
research are presented.

2 L-systems

The key idea of L-systems for formalizing the development of plants is that of
rewriting. This is a technique for defining complex objects by successively replacing
parts of a simple initial object by using production rules.

The first formal definition of rewriting systems operating on strings of symbols
was proposed by Thue at the beginning of the twentieth century (see [19]), but
rewriting systems started to be widely considered after Chomsky’s work on formal
grammars [1], where the concept of rewriting is used to describe natural languages.

The essential difference of L-systems with respect to Chomsky grammars lies
in the method of applying production rules. In Chomsky grammars, production
rules are applied sequentially, whereas in L-systems they are applied in parallel:
in a derivation step all symbols of the string are rewritten.

The simplest class of L-systems are deterministic and context-free, called D0L-
systems. Let V denote an alphabet, V ∗ the set of all words over V , and V +
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the set of all nonempty words over V . A string 0L-system is an ordered triplet
G = 〈V, ω, P 〉 where V is the alphabet of the system, ω ∈ V + is a nonempty word
called the axiom, and P ⊂ V ×V ∗ is a finite set of production rules. A production
rule (a, v) is written as a → v. The letter a and the word v are called the predecessor
and the successor of this production rule, respectively. It is assumed that for any
letter a ∈ V , there is at least one word v ∈ V ∗ such that a → v ∈ P . If no
production rule is explicitly specified for a given predecessor a ∈ V , the identity
production a → a is assumed to belong to the set of productions P . A 0L-system
is deterministic (noted D0L-system) if and only if for each a ∈ V there is exactly
one v ∈ V ∗ such that a → v ∈ P .

Let µ = a1 . . . am be an arbitrary word over V . The word ρ = φ1 . . . φm ∈ V ∗ is
directly derived from (or generated by) µ, noted µ ⇒ ρ, if and only if ai → φi ∈ P
for all i ∈ {1, . . . ,m}. A word ψ is generated by µ in a derivation of length n if
there exists a developmental sequence of words µ0, µ1, . . . , µn such that µ0 = µ,
µn = ρ, and µ0 ⇒ µ1 ⇒ · · · ⇒ µn.

Note that in D0L-systems for all symbols of the alphabet α ∈ V there is exactly
one rewriting rule. Starting with the axiom ω ∈ V +, a sequence of strings µ0 = ω,
µ1, µ2, . . . is generated recursively, where the string µ(i+1) is obtained from the
preceding string µi by replacing simultaneously every symbol in µi.

3 Visualization of L-systems

Originally, L-systems were conceived for the study of multicellular organisms and
the neighborhood relations among their different cells. After the incorporation of
geometric features, L-systems became detailed enough to allow the use of com-
puter graphics for realistic visualizations of these multicellular organism and their
developmental processes. The first steps in this line can be found in the eighties’
literature [15, 20], but the most popular graphical interface for L-systems was in-
troduced by P. Prusinkiewicz [16, 17] based on the previous Papert’s concept of
turtle graphics [12]. In an informal description, we can consider a turtle standing
on a sheet of paper facing in a given direction. The tail of the turtle is full of ink
and it traces a line on the sheet when the turtle moves. The turtle obeys several
commands: move forward by a fixed length l drawing or not the corresponding
segment; turn left or right by a fixed angle δ.

More formally, a state of the turtle is defined as a triplet (x, y, α), where (x, y)
represent the Cartesian coordinates of the turtle’s position and the angle α rep-
resent the direction in which the turtle is facing. Given a step size l and an angle
increment δ, the turtle responds to the following commands:

• F : the state of the turtle changes from (x, y, α) to (x + l cos α, y + l sin α, α).
A line segment between (x, y) and (x + l cosα, y + l sin α) is drawn.

• f : analogous to the previous command, the state of the turtle changes from
(x, y, α) to (x + l cosα, y + l sin α, α). The segment is not drawn.

• +: the state of the turtle changes from (x, y, α) to (x, y, α + δ).
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• −: the state of the turtle changes from (x, y, α) to (x, y, α− δ).

This method has been profusely used to interpret strings. For example, the
representation of the string F + F −−F + F with initial state (0, 0, 0), l = 2cm,
and δ = 60 degrees is depicted in Figure 1.

Fig. 1. The representation of the string F + F −−F + F

According to these rules, the turtle interprets a character string as a sequence
of line segments. Note that different strings can lead to the same graphical repre-
sentation.

If we want to model tree-like shapes and branching structures, then new fea-
tures have to be added. For that, an extension of turtle interpretation to strings
with brackets is considered. Two new symbols are introduced to delimit a branch:
the symbols “[” and “]”. The turtle interpretation of the symbols is the following,
when [ is read, the turtle should remember its current direction and position. Then
the branch can be drawn by the usual interpretation. Termination of the branch
is marked by ]. The turtle must then return to the location of the branch point,
which it remembers. The formal interpretation of the symbols is the following.

• [ : push the current state of the turtle onto a push-down stack. The information
saved on the stack contains the turtle’s position and orientation, and possibly
other attributes such as the color and width of lines being drawn.

• ] : pop a state from the stack and make it the current state of the turtle. No
line is drawn, although in general the position of the turtle changes.

For example, the representation of the string F [+F [+F [+F ][F ]][F [F ][−F ]]][F
[F [+F ][F ]][−F [+F ][F ]]] with initial state (0, 0, 90), l = 2cm, and δ = 22.5 degrees
is shown in Figure 2.

4 P Systems with Membrane Creation

Membrane computing is a branch of natural computing which abstracts from the
structure and the functioning of the living cell. In the basic model, membrane
systems (also frequently called P systems) are distributed parallel computing de-
vices, processing multisets of symbol-objects, synchronously, in the compartments
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Fig. 2. The string F [+F [+F [+F ][F ]][F [F ][−F ]]][F [F [+F ][F ]][−F [+F ][F ]]]

defined by a cell-like membrane structure. This research area was initiated by Gh.
Păun [14] at the end of 1998 and has flourished since then [13].

We can briefly describe this class of computing models as follows: consider a
membrane structure as in Figure 3, consisting of several membranes arranged in
a hierarchical structure inside a main membrane (called the skin) and delimiting
regions (the compartments bounded by a membrane and the immediately lower
membranes, if any). In the regions one places multisets of certain objects, that
is, sets of objects with multiplicities associated with the elements. The objects
correspond to chemicals evolving in the compartments of a cell and are represented
by symbols from a given alphabet. They evolve according to given evolution rules,
which are also localized, associated with the regions (hence with the membranes).
The rules are applied non-deterministically in a maximally parallel manner (in each
step, all objects which can evolve must do it). The objects can pass through the
membranes and, in their turn, the membranes can be dissolved, divided, created.
In this way, we get transitions from a configuration of the system to the next one.
Note that the process is synchronized; a global clock is assumed, marking the time
units for all the compartments of the system. A sequence of transitions constitutes
a computation.

Since Gh. Păun presented the initial model of cellular computing with mem-
branes, many different variants have been proposed. If the membrane structure
is considered to set a classification among them, two big groups are obtained: P
systems where the initial structure does not change along computations and P
systems where the hierarchical structure of the membranes vary (or can do it)
along computations. For P systems belonging to this latter group, we can find in
the literature rules that reduce the number of membranes (dissolution rule) and
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membrane

region

skin membrane
elementary membrane

aa

b

object

Fig. 3. A P system

rules that increase that number (membrane division rule and membrane creation
rule).

In this paper we will consider P systems which make use of membrane creation
rules, which was first introduced in [6, 11]. However, our needs are far simpler
than what the models found in the literature provide. This is the reason why we
introduce the new variant of restricted P systems with membrane creation.

A restricted P system with membrane creation is a construct Π = (O, µ,
w1, . . . , wm, R), where:

1. O is the alphabet of objects.
2. µ is the initial membrane structure, consisting of a hierarchical structure of m

membranes.
3. w1, . . . , wm are the multisets of objects initially placed in the m regions de-

limited by the membranes of µ.
4. R is a finite set of evolution rules, which can be of the two following kinds:

a) a → v, where a ∈ O and v is a multiset over O. This rule makes an object
a present in a membrane of µ evolve into a multiset of objects v.

b) a → [v], where a ∈ O and v is a multiset over O. This rule makes an object
a present in a membrane of µ create within the latter a new membrane
containing only the multiset of objects v.

The membrane structure (obtained from the membrane structure µ) together
with the objects contained in its membranes constitute the configuration of the
system. A computation step is performed applying to a configuration the evolution
rules of the system in the usual way within the framework of membrane computing,
that is, in a non-deterministic maximally parallel way: for a rule to be able to be
applied in a membrane, this latter must contain an object matching the left hand
side of the rule; this object is then consumed and the components indicated in the
right hand of the rule are created inside the membrane. The rules are applied in
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all the membranes simultaneously, and all the objects in them that can trigger a
rule must do it. When there are several possibilities to choose the evolution rules
to apply, non-determinism takes place.

5 Visualization of Restricted P Systems with Membrane
Creation

In this section we show how we can use, through a suitable graphical representa-
tion, restricted P systems with membrane creation to model branching structures.
The key point of the representation is noting than a membrane structure is in fact
a rooted tree of membranes, whose root is the skin membrane and whose leaves
are the elementary membranes. It seems therefore a perfect means to encode the
branching structure.

Once we have a membrane structure establishing the topology of the structure
we want to model, we will follow a variant of the turtle interpretation of L-systems.
Let us suppose that the alphabet O of objects contains the objects F, +, and −
and let us fix the length l and the angle δ.

The simpler model to graphically represent a membrane structure is to make a
depth-first search of it, drawing a segment of length l for each membrane containing
an object F . This segment is drawn rotated an angle of n× δ with respect to the
segment corresponding to the parent membrane, where n is the multiplicity of
objects + minus the multiplicity of objects − in the membrane. That is, each
object + means that the rotation angle is increased by δ whereas each object −
means that it is decreased by δ.

For a better understanding, let us consider an example, the restricted P system
Π1 with membrane creation such that:

• The alphabet of objects is O = {F, +,−, BL, BR, BS1 , BS2}.
• The initial membrane structure together with the initial multiset of objects is

[FBLBS1 ].
• The rules are:

BS1 → [FBS2BR], BL → [+FBLBS1 ],
BS2 → [FBLBS1 ], BR → [−FBLBS1 ].

In this system, the objects BS1 and BS2 represent straight branches to be
created, whereas the objects BL and BR represent branches to be created rotated
to the left and to the right, respectively. This way, a thorough analysis of the initial
membrane structure and of the rules shows that Π1 models a branching structure
consisting of a main trunk from which branches to the left and to the right come
out alternatively. These new branches behave in the same way as the main trunk.
We can see in Figure 4 the evolution of the system along three computation steps,
and in Figure 5 the corresponding graphical representation of each configuration,
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where we fix a bottom-up orientation, a length l of 1cm, and an angle δ of 22.5
degrees.

Note how the graphical representation of the configurations shows that the
growth of the branching structure being modeled is not made by replacing the
segments by complex and repetitive modules, but by expanding the figure from
specific points with new segments (in a way similar to the way branches of higher
plants spring from buds).

Fig. 4. First four configurations of the first example

Fig. 5. Representation of the configurations of the first example
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In the representation model introduced above, we use the multiplicity of the
objects + and − to specify the angles by which the drawn segments are rotated. On
the other hand, the multiplicity of the object F in the membranes does not affect
the final result; a segment of length l is always drawn. The basic graphical model
can therefore be extended in a natural way by making the length of the segments
to be drawn depend on the number of objects F present in the corresponding
membrane. Namely, this length would be n× l, where n is the multiplicity of F .

As an example, let Π2 be the restricted P system with membrane creation such
that:

• The alphabet of objects is O = {L,F, +,−, BL, BR, BS1 , BS2}.
• The initial membrane structure together with the initial multiset of objects is

[LFBLBS1 ].
• The rules are:

BS1 → [LFBS2BR], BL → [+LFBLBS1 ],
BS2 → [LFBLBS1 ], BR → [−LFBLBS1 ],

L → LF.

As we can see in Figures 6 and 7, this P system models the same tree as Π1,
with the only difference being that the branches, besides ramifying, also lengthen
themselves in each computation step. This is a step closer to reality, since the
growth of the branching structure involves not only its morphology evolution but
also the growth of its existing branches.

Fig. 6. First four configurations of the second example
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Fig. 7. Representation of the configurations of the second example

The second extension we will make to the representation model comes from the
consideration that, in the real world, the branches of a plant not only lengthen but
also widen themselves. Thus, we fix the width w and use a new symbol W whose
multiplicity will specify the width of the segments to be drawn like follows: if the
number of objects W present in a membrane is n, then the segment corresponding
to this membrane must be drawn with width n× w.

The restricted P system with membrane creation Π3 with the following prop-
erties extends Π2 to the new representation model:

• The alphabet of objects is O = {L,E,W,F, +,−, BL, BR, BS1 , BS2}.
• The initial membrane structure together with the initial multiset of objects is

[LEWFBLBS1 ].
• The rules are:

BS1 → [LEWFBS2BR], BL → [+LEWFBLBS1 ],
BS2 → [LEWFBLBS1 ], BR → [−LEWFBLBS1 ],

L → LF, E → EW.

Figure 8 shows again the first four configurations of Π3, and Figure 9 shows
their graphical representation, where we can see that there exist a lengthening and
widening of the existing branches in each computation step.

6 Final Remarks

In this paper we have shown the suitability of P systems for modeling the growth
of branching structures. It is our opinion that using membrane computing for
this task could be an improvement with respect to L-systems, the model most
widely studied nowadays, for several reasons: the process of growing is closer to
reality, since for example a plant does not grow by “rewriting” its branches, but by
lengthening, widening, and ramifying them; the membrane structure of P systems
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Fig. 8. First four configurations of the third example

Fig. 9. Representation of the configurations of the third example

supports better and clearer the differentiation of the system into small units, easier
to understand and possibly with different behaviors; the computational power of
membrane systems can provide tools to simulate more complex models of growing,
for example, taking into account the flow of nutrients or hormones.

The computation model considered here, restricted P system with membrane
computing, is a very simple one (at least, in terms of membrane computing). We
finish the paper by proposing extensions to this model in several ways that we
think are interesting enough to be considered and studied:

• A labeling of the membranes could be useful to distinguish between different
parts of the plant being modeled.
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• The use of communication rules, allowing objects to cross the membranes of
the system, are basic for modeling the flow of nutrients and hormones.

• Rules of the form o → µ, where o is an object and µ is a membrane structure,
could lead to a clearer, faster, and more compact representation of a plant.

• Stochastic P systems, where a probability is associated with each rule, are a
natural way to introduce randomness into the model.
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