
Further Remarks on Trace Languages in P
Systems with Symport/Antiport

Guangwu Liu1,2, Mihai Ionescu1

1 Research Group on Mathematical Linguistics
Rovira i Virgili University
Pl. Imperial Tarraco 1, 43005 Tarragona, Spain
guangwu.liu@urv.net, armandmihai.ionescu@urv.net

2 Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan 430074, Hubei, P.R.China

Summary. P systems are parallel molecular computing models which process multisets
of objects in cell-like membrane structures. In this paper we consider the trace languages
of a special symbol, the traveler, in symport/antiport P systems where, instead of mul-
tisets of objects, sets of objects were considered. Two different ways to define the trace
language are proposed. One of the families of languages obtained in this way is proved
to be equal to the family of regular languages and the other one to be strictly smaller.
Some ideas for further research are also considered.

1 Introduction

This paper is a contribution to the study of P systems where the trace of an object
(traveler), as introduced in [7] and further investigated in [6, 5], is considered. The
model belongs to the area of P systems with purely communicative functioning, as
introduced in [8], inspired from the biological processes of symport and antiport –
see [1], [4] for biochemical details about these kinds of trans-membrane transfer of
chemicals (in short, symport is the process in which two molecules pass together,
in the same direction through a membrane, while antiport refers to the process
when two molecules pass simultaneously through a membrane, but in opposite
directions). As explained in [7], we are not interested now in the number of certain
objects present in a certain membrane, or in the environment of the system (as
in the classical definition of P systems), but in the itineraries of a unique object,
the traveler, through the membranes of the system, and in the result (a string
of labels of the visited membranes) produced by these itineraries. In this paper,
we investigate the power of the family of languages generated by such systems
considering sets of objects instead of multisets of objects (as in the classical variants
of P systems).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

162 G. Liu, M. Ionescu

We recall the reader that P systems are distributed parallel computing models
which abstract from the structure and the functioning of the living cells. In short,
we have a membrane structure, consisting of several membranes enclosed within
the skin membrane, and delimiting regions (see Figure 1) where multisets of objects
(which evolve according to given evolution rules) are placed. The rules are applied
nondeterministically, in a maximally parallel manner.

In this way we obtain transitions from a configuration of the system to the
next one. A sequence of transitions constitutes a computation; to each halting
computation we associate a result, the number of objects from a specified output
membrane.

For more details on various variants of P systems we refer to [10] and to the
papers available at the web address http://psystems.disco.unimib.it/.

'

&

$

%

'

&

$

%

Â

Á

¿

À
Â

Á

¿

À

¶

µ

³

´

º

¹

·

¸

#

"

Ã

!

¶

µ

³

´

¶

µ

³

´

À

@
@

@R

¡
¡

¡
¡ª

membrane

AAU

skin elementary membranemembrane

region ©©*
HHHHHHHHj

@
@

@@R

Figure 1: A membrane structure

1 2

3

4
5

6

7

8

9

The P systems models which we consider in this paper are inspired by the
real life phenomenon of trans-membrane transport in pairs of chemicals. When
two chemicals can pass together through a membrane in the same direction, the
process is called symport. When the two chemicals pass only with the help of each
other, but in opposite directions, one says that we have antiport.

Technically, the formalization in P systems of these biological processes is
made through the following rules: (x, in) and (x, out) model the symport, and
(x, out; y, in) models the antiport (x, y are strings of symbols representing multi-
sets of chemicals). Of course, this is a generalization of what happens in biology,
where mainly pairs of chemicals are coupled. Several classes of P systems of this
type were considered. Because such systems work with multisets of objects, it is
natural that the result of a computation is a number (or a vector of numbers), de-

Further Remarks on Trace Languages in P Systems with Symport/Antiport 163

scribing the multiset of objects present at the end of a computation in a specified
output membrane.

In the present paper we use another idea: we take into consideration the string
of labels of membranes visited by a specified object during a computation, this
time not working with multisets of objects but with sets of objects. In this way,
a P system will generate a language. In Section 4 we prove that the family of
languages generated by P systems with traces, with the traveler marking only once
the visited membrane (when entering it) and symport/antiport rules equals REG,
the family of regular languages. The variant of P systems (with symport/antiport
rules) in which the traveler marks twice the visited membrane (once for entering
the membrane and once for getting out of it) generates a family of languages
strictly included in REG.

2 P Systems with Symport/Antiport

The language theory notions we use here are standard, and can be found, for
instance, in [11], [12]. We only mention that we denote by V ∗ the free monoid
generated by an alphabet V ; λ is the empty string, |x| is the length of x ∈ V ∗,
and |x|a is the number of occurrences of the symbol a ∈ V in the string x ∈ V ∗.
For x ∈ V ∗ we denote alph(x) = {a ∈ V | |x|a ≥ 1} (the set of symbols appearing
in x), and for a language L ⊆ V ∗ we write alph(L) =

⋃
x∈L alph(x). By REG we

denote the family of regular languages.
A membrane structure is pictorially represented by an Euler-Venn diagram (like

the one in Figure 1); it can be mathematically represented by a tree or by a string
of matching parentheses associated in a standard manner with a tree. A multiset
over a set X is a mapping M : X −→ N. Here we always use multisets over finite
sets X (that is, X will be an alphabet). A multiset with a finite support can be
represented by a string over X; the number of occurrences of a symbol a ∈ X in
a string x ∈ X∗ represents the multiplicity of a in the multiset represented by x.
Clearly, all permutations of a string represent the same multiset, and the empty
multiset is represented by the empty string, λ.

We first introduce the standard P systems with symport/antiport rules, with
multisets of objects, computing sets of numbers. Such a device is a construct

Π = (V, µ, w1, . . . , wm, E,R1, . . . , Rm, io),

where:

1. V is the alphabet of chemicals (we call them objects);
2. µ is a membrane structure with m membranes (injectively labeled by positive

integers 1, 2, . . . ,m); m ≥ 1 is called the degree of the system;
3. w1, . . . , wm are strings over V representing the multisets of objects initially

present in the regions of the system, and E is the set of objects which are
supposed to be continuously present outside the system, in the environment,
in an arbitrary number of copies;

164 G. Liu, M. Ionescu

4. R1, . . . , Rm are finite sets of rules of the forms (x, in), (x, out), and
(x, out; y, in), for x, y ∈ V ∗;

5. io ∈ {1, . . . , m} is an elementary membrane of µ (the output membrane).

The rules from a set Ri are used with respect to membrane i as suggested
above. In the case of (x, in), the multiset of objects x enters the region defined
by the membrane, from the immediately upper region; this is the environment
when the rule is associated with the skin membrane. In the case of (x, out), the
objects specified by x are sent out of membrane i, into the region immediately
outside; this is the environment in the case of the skin membrane. The use of a
rule (x, out; y, in) means expelling from membrane i the objects specified by x at
the same time with bringing in membrane i the objects specified by y. The objects
from E are supposed to appear in arbitrarily many copies in the environment (be-
cause we only move objects from a membrane to another membrane, hence we do
not create new objects in the system, we need a supply of objects in order to com-
pute with arbitrarily large multisets). The rules are used in the nondeterministic
maximally parallel manner specific to P systems with symbol-objects. In this way,
we obtain transitions between the configurations of the system. A configuration
is described by the m-tuple of the multisets of objects present in the m regions
of the system, as well as the multiset of objects which were sent out of the sys-
tem during the computation, others than the objects appearing in the set E; it is
important to keep track of such objects because they appear in a finite number
of copies in the initial configuration and can enter again the system. We do not
need to take care of the objects from E which leave the system because they ap-
pear in arbitrarily many copies in the environment (the environment is supposed
inexhaustible, irrespective how many copies of an object from E are introduced
into the system, still arbitrarily many remain in the environment). The initial
configuration is (w1, . . . , wm, λ). Therefore, a transition means a redistribution of
objects among regions (and environment), which is maximal for the chosen set of
rules. A sequence of transitions between configurations of the system constitutes a
computation; a computation is successful if it halts, i.e., it reaches a configuration
where no rule can be applied to any of the objects.

The result of a successful computation is the number of objects present within
the membrane with the label io in the halting configuration. A computation which
never halts yields no result. The set of all numbers computed by Π is denoted by
N(Π).

The family of all sets N(Π), computed as above by systems Π of degree at
most m ≥ 1, using symport rules (x, in) or (x, out) with |x| ≤ p (we say that |x|
is the weight of the symport rule (x, in), (x, out)), and antiport rules (x, out; y, in)
with |x|, |y| ≤ q (we say that max(|x|, |y|) is the weight of the antiport rule
(x, out; y, in)), is denoted by NOPm(symp, antiq), for m ≥ 1 and p, q ≥ 0. When
the number of membranes is not bounded we replace the subscript m by ∗, and
when the weight of rules is not bounded we replace the subscripts p and q by ∗.

We use NRE to denote the family of recursively enumerable sets of natural
numbers (that is, the family of the length sets of recursively enumerable languages).

Further Remarks on Trace Languages in P Systems with Symport/Antiport 165

The following results are the best known in this moment (see [5], [3]):

NRE = NOP3(sym2) = NOP3(sym1, anti1) = NOP1(anti2).

3 Considering the Trace of Certain Objects

In [7], P systems of the following form were considered:

Π = (V, t, T, h, µ, w1, . . . , wm, E, R1, . . . , Rm),

where all components V, µ, w1, . . . , wm, E, R1, . . . , Rm are as above, t ∈ V (a distin-
guished object, “the traveler”), T is an alphabet, and h : {1, 2, . . . , m} −→ T ∪{λ}
is a weak coding. The traveler is present in exactly one copy in the system, that
is, |w1 . . . wm|t = 1 and t /∈ E.

Let σ = C1C2 . . . Ck, k ≥ 1, be a halting computation with respect to Π, with
C1 = (w1, . . . , wm, λ) the initial configuration, and Ci = (z(i)

1 , . . . , z
(i)
m , z

(i)
e) the

configuration at step i, 1 ≤ i ≤ k. If |z(i)
j |t = 1 for some 1 ≤ j ≤ m, then we

write Ci(t) = j (therefore, Ci(t) is the label of the membrane where t is placed).
If |z(i)

j |t = 0 for all j = 1, 2, . . . ,m, then we put Ci(t) = λ. Then, the trace of t in
the computation σ is

trace(t, σ) = C1(t)C2(t) . . . Ck(t).

The computation σ is said to generate the string h(trace(t, σ)), hence the language
generated by Π is L(Π) = {h(trace(t, σ)) | σ is a halting computation in Π}.

We denote by LTPm(symp, antiq) the family of trace languages L(Π) gener-
ated by P systems with at most m membranes and using symport rules of weight
at most p and antiport rules of weight at most q. When one of the parameters
m, p, q is not bounded, we replace the respective subscript with ∗.

The power of these systems was investigated in [7, 6] and the currently best
result (stated in [5]) is the following:

RE = LTP∗(sym0, anti2).

In [5] the following results are also proved:

lRE = lLTPl+1(sym0, anti2),
lRE = lLTPl+1(sym3, anti0),
lRE = lLTPl+2(sym2, anti0),

where the parameter l in front of language families indicates that only languages
L with card(alph(L)) ≤ l are considered.

166 G. Liu, M. Ionescu

4 Trace Languages in Symport/Antiport P Systems with
Sets of Objects

In this section, we consider P systems whose regions contain finite sets of ob-
jects, not multisets as in the classical variant of P systems (such systems were
investigated in [2] as number generating devices); moreover, we assume that the
environment is empty.

Such a system is a construction

Π = (V, t, µ, w1, . . . , wm, R1, . . . , Rm),

where:

1. V is the alphabet of chemicals (objects);
2. t ∈ V is the traveler. There is exactly one traveler t in the system, that is,
|w1 · · ·wm|t = 1;

3. µ is a membrane structure with m membranes (injectively labeled by positive
integers 1, 2, . . . ,m);

4. wi are strings representing the sets of objects present in the regions of µ, 1 ≤
i ≤ m;

5. Ri is the set of symport and antiport rules associated with the membrane i;
they have the forms (x, in), (x, out) and (x, out; y, in), for x, y ∈ V ∗, 1 ≤ i ≤
m.

The trace of the traveler across membranes is encoded as a string over the
alphabet {a1, a2, . . . , am}, by recording, in order, every membrane visited by t.

We consider two different cases of marking the trace. In the first one, we count
only the event of the traveler entering a membrane, and in this case we denote
by LTP set

m (symp, antiq, in) the family of languages generated by P systems with
traces and symport/antiport rules over finite set of objects, using at most m mem-
branes, symport rules of weight at most p and antiport rules of weight at most q.
In the second case we take into account both the fact that the traveler enters a
membrane and that it exits it (so we collect twice the label of the membrane t vis-
its). We denote by LTP set

m (symp, antiq, in/out) the family of languages generated
in this case, with the usual meaning of the parameters m, p, q.

In what follows we investigate the place of these families with respect to Chom-
sky hierarchy.

Theorem 1. LTP set
∗ (sym∗, anti∗, in) = REG.

Proof. Given a P system Π = (V, t, µ, w1, . . . , wm, R1, . . . , Rm) we can construct
a regular grammar G = (C, T, C0, R), where C is the set of all configurations
which can be reached by Π starting from the initial configuration (this set is
finite, because the system only handles a finite number of objects), C0 is the initial
configuration, and T = {a1, a2, . . . , am}. The rules of the grammar are constructed
as follows.

Further Remarks on Trace Languages in P Systems with Symport/Antiport 167

1. Ci → Cj if Ci → Cj is a transition and the traveler does not enter any
membrane;

2. Ci → akCj if Ci → Cj is a transition and the traveler enters membrane
k (1 ≤ k ≤ m);

3. Ci → λ if Ci is a halting configuration.

It is obvious that trace(Π) = L(G) which implies LTP set
∗ (sym∗, anti∗, in) ⊆

REG.

Conversely, given a regular grammar G = (N, T, S, R) (N is the set of non-
terminals, T = {a1, a2, . . . , am}, S ∈ N , and R is the set of productions of
the form A → aiB, and A → ai, with A,B ∈ N, ai ∈ T), we can con-
struct a P system as follows. The initial configuration (in the bracketed form) is
[cSt[dNN ′]0[f1]1[f2]2 . . . [fm]m]s, {s, 0, 1, 2, . . . , m} is the set of labels for mem-
branes, s is the label of the skin membrane, fi (1 ≤ i ≤ m) is the symbol within
membrane i, dNN ′ is the (strings which describes the) set of objects in membrane
0 (N is the nonterminal alphabet of grammar G, N ′ is the set of primed versions
of elements of N , and d ∈ V), cSt is the set of objects in the skin membrane,
where t is the traveler, S is the initial symbol of grammar G, and c ∈ V .

In order to simulate a rule A → aiB ∈ R we will use the following rules:

step R0 Ri

1 (fi, out; cAt, in)
2 (d, out; fi, in) (At, out)
3 (fiB

′, out; A, in) (c, out; d, in)
4 (d, out; fi, in)
5 (B, out; dB′, in)

where R0 and Ri are the sets of rules associated with membranes labeled 0 and i,
respectively. For the other membranes no rules are specified.

The process of simulating a rule A → aiB is detailed below.
In the first step, the antiport rule (fi, out; cAt, in) makes the traveler t (al-

together with objects c and A) enter membrane labeled i, thus introducing the
symbol ai in the trace. In the same time, symbol fi, initially present in membrane
i, is expelled within the skin membrane.

What is left to simulate is the process of transforming A to B and to bring the
system back to its starting configuration, in order to be ready for a new simulation
of a rule.

In the second step of computation, rules (d, out; fi, in), and (At, out) indicate
that our traveler goes out membrane i (altogether with object A), while fi enters
membrane labeled 0, with the help of object d (its counterpart in the antiport
rule).

In the next step, the position of A and B′ in the system is interchanged, in the
same time with expelling from membrane labeled 0 the symbol fi. The position of
objects c, and d is also modified by the antiport rule that applies for the membrane
labeled i. In this moment, our system has the following configuration:

168 G. Liu, M. Ionescu

[ficB
′t[N{N ′ −B′}]

0
[f1]1[f2]2 . . . [d]

i
. . . [fm]

m
]
s
.

We have now succeeded in rewriting A to B′ (which is a copy of B). The
following thing to accomplish is to make the system gain its initial configuration,
this time with B in the place of A so the derivation could continue.

In step 4, we use rule (d, out; fi, in) to move back fi in its initial place. In the
last step of the computation, rule (B, out; dB′, in) sends d and B′ in membrane
labeled 0 while B is expelled from membrane labeled 0 to the skin membrane, and
the system can now continue to simulate the derivation process.

We can continue the above process to simulate nonterminal rules of G.
A rule D → ai is simulated using the rule

(fi, out; cDt, in) ∈ Ri.

The work of this rule is obvious.
The derivation grammar G ends by using such a rule, hence also our system

will halt.
Clearly, trace(Π) = L(G), hence we also have the inclusion REG ⊆

LTP set
∗ (sym∗, anti∗, in). ut

If we consider the degree of the P system and the weight of the rules, we can
write the previous result in the form

mREG = LTP set
m+2(sym2, anti3, in).

We consider now the in-out case.

Theorem 2. LTP set
∗ (sym∗, anti∗, in/out) (REG.

Proof. We can use the same idea as in the previous theorem to prove the inclusion
LTP set

∗ (sym∗, anti∗, in/out) ⊆ REG. The properness of the inclusion is proved
by the following counterexample.

Consider the language L = {a2a3, a2a2a3} and assume that there is a P system
Π such that trace(Π) = L. Besides the skin membrane, this system must contain
at least two membranes, with labels 2 and 3. These membranes can have one of
the three relationships indicated in the next figure.

'

&

$

%

'

&

$

%

'

&

$

%

¾

½

»

¼

¾

½

»

¼

'

&

$

%

#

"

Ã

!

'

&

$

%

#

"

Ã

!

s

2 3

s

2

3

s

3

2

(a) (b) (c)

Further Remarks on Trace Languages in P Systems with Symport/Antiport 169

In case (a), in order to generate the string a2a2a3 we must have the traveler
outside membrane 2, and then a2a3 cannot be generated.

In case (b), in order to generate the string a2a2a3 we must have the traveler
in the region between membrane 2 and membrane 3, and then again a2a3 cannot
be generated.

Similarly, in case (c), in order to generate the string a2a2a3 we must have the
traveler in the region between membrane 3 and membrane 2, and then a2a3 cannot
be generated.

Thus, the equality trace(Π) = L is not possible, this language is not in
LTP set

∗ (sym∗, anti∗, in/out). ut

5 Decreasing the Number of Membranes

By the definition, in order to obtain a language over an alphabet with m symbols,
we have to use a system with at least m membranes, hence the hierarchy on
the number of membranes is trivially infinite in the case of trace languages. This
direct dependence of the number of membranes on the number of symbols raises
the question whether it is possible to keep bounded the number of membranes even
when generating languages over arbitrary alphabets, or at least to use a number
of membranes smaller than the number of symbols.

We present here three possible ways to address this question.

The first proposal is to consider several travelers. For instance, let us suppose
that we have T = {t1, t2, . . . , tk} a set of k travelers and that the membrane
structure of our P system contains m membranes. In this case, the alphabet of
trace symbols, contains k ·m symbols ai,j , where 1 ≤ i ≤ k, and 1 ≤ j ≤ m.

Let σ = C1C2 . . . Ck, k ≥ 1, be a halting computation and let Ci(T) = {aij | ti
is in membrane j}. We consider trace(T, σ) = {w1w2 . . . wk | wi ∈ V ∗, ΨV (wi) =
ΨV (Ci(T))}, i.e., we concatenate permutations of strings representing each Ci(T).
Then, the trace language defined by a P system with several travelers is LT (Π) =
{h(trace(T, σ)) | σ is a halting computation in Π}. Thus, LT (Π) is a language
over an alphabet with k ·m symbols, although we only use m membranes.

Let us consider an example – returning again to the case of P systems with
multisets of objects. We take the P system

Π = (V, T, µ, w1, w2, w3, {d}, R1, R2, R3),

with:

1. V = {d, t1, t2} the set of all objects in the system; object d is present in
arbitrarily many copies in the environment;

2. T = {t1, t2} is the set of travelers;
3. µ = [[]2[]3]1 is a membrane structure with 3 membranes;
4. w1 = t1t2, w2 = w3 = ∅ are the sets of objects in the initial configuration;
5. Ri is the set of symport rules associated with the membrane i, as follows:

170 G. Liu, M. Ionescu

• R1 = {(t1, out), (t1d, in), (t2, out), (t2d, in)},
• R2 = {(t1d, in), (t1, out), (t2, in)},
• R3 = {(t2d, in), (t2, out), (t1, in)}.
The computation begins with travelers t1 and t2 in membrane labeled 1, and

with the inner membranes (labeled 2, and 3) without any object. The initial con-
figuration of the system is: [t1t2[]

2
[]

3
]
1
. According to the rules mentioned above,

we can distinguish many cases in the evolution of the system. We discuss here only
four:

• t1 enters membrane labeled 3 and in the same time t2 enters membrane labeled
2. In this case the computation halts, because membranes 3 and 2 act as trap
membranes for travelers t1 and t2, respectively. The result is:

trace1({t1, t2}, σ) = {a1,3a2,2, a2,2a1,3}.

• t2 enters membrane 2 and is trapped, while traveler t1 makes several (let us say
n) journeys to the environment, and then to membrane 2 (bringing in objects
d) until it enters membrane labeled 3, and the computation halts. We remind
that we work with multisets of objects. For that, it is obvious that the number
of trips traveler t1 is paying to the environment and back to membrane 1 is
as least as high as the number of trips it is paying to membrane 2. Now, we
obtain:

trace2({t1, t2}, σ) = a2,2a
n
1,1a

m
1,2a1,3, for some m ≥ n.

• t1 enters membrane 3 and is trapped while traveler t2 behaves as traveler t1 in
the case above. The result of the computation is:

trace3({t1, t2}, σ) = a1,3a
s
2,3a

t
2,1a2,2, for some t ≤ s.

• Both t1 and t2 make different trips to membranes 2 and 3, respectively, provided
that they have copies of d to do so. An easy-to-follow trace of the travelers,
when both of them are moving, is the case when they get out membrane 1
and enter back (with a d), in an arbitrary number of steps, and then they go
directly to their trap membranes. Thus,

trace4({t1, t2}, σ) = ap
1,1a

p
2,1a1,3a2,2.

The other cases (when, for example both t1 and t2 go out and back membrane
1 for an arbitrary number of steps and then, at a point traveler t1 enters and
exits membrane 2 for an arbitrary number of steps, and then decides to go
again out of membrane 1, and so on) are already very difficult to follow, and
no precise relationship between the trips of the two travelers can be given.

The second idea we propose in order to diminish the number of membranes is to
consider an inverse morphism (for a morphism h : V ∗ → U∗, the inverse morphism
h−1 : U∗ → 2V ∗ is defined by h−1(y) = {x ∈ V ∗ | h(x) = y}, y ∈ U∗). The idea is
explained on the following example: take two alphabets, V = {a1, a2, . . . , am} and

Further Remarks on Trace Languages in P Systems with Symport/Antiport 171

U = {0, 1} and the morphism h defined by h(ai) = 0i1, 1 ≤ i ≤ m. It is obvious
that this mapping is injective, hence card(h−1(y)) = 1 for each y ∈ h(V ∗). Thus,
for any language L ⊆ V ∗ we have L = h−1(h(L)). It it obvious (from the way we
defined h) that choosing L from a family mFL we have h(L) ∈ 2FL.

Therefore, from the relation mREG = LTP set
m+2(sym2, anti3, in) mentioned in

the previous section we obtain the following result – note that the use of an inverse
morphism does not depend on the type of systems we deal with (with sets or with
multisets of objects).

Proposition 1. Every L ∈ mREG can be written in the form L = h−1(L′), for
L′ ∈ 2LTP set

4 (sym2, anti3, in).

The last proposal for obtaining more symbols in the trace languages than
the number of membranes is to consider the possibility of changing the labels of
membranes, as used in the area of P systems with active membranes. Changing the
labels is not considered in standard symport/antiport rules, but we can introduce
this feature in a simple way: symport rules of the form (x, in), (x, out) can be
written as x[]

i
→ [x]

i
, and [x]

i
→ []

i
x, respectively, while an antiport rule

(x, out; y, in) can be written as y[x]
i
→ [y]

i
x. Generalizing, we can consider that

whenever an object enters or gets out of a membrane it can change its label. Thus,
our rules will become: x[] i → [x] j , [xri → [] jx, and y[x] i → [y] jx, respectively.

In this way, we can have as many different labels as we want – with an important
aspect to take care: not to have conflicts among the used rules, i.e., not to apply
at the same time two rules which intend to change the label of the membrane in
different ways. There are several possibilities for avoiding such conflicts: using the
rules sequentially (only one in each membrane), using in parallel only a set of rules
which change the label in the same way, allowing to only certain rules to change
the labels and to use rules from this set in a restrictive way (e.g., sequentially),
etc.

Although this last idea seems to be the most promising, we leave its examina-
tion to the reader.

6 Conclusions

We considered P systems with traces and sets of objects (instead of multisets)
and we showed that the computational power of these systems with respect to
Chomsky hierarchy does not go beyond the family of regular languages.

We also proposed three ideas to brake the infinite hierarchy provoked by the
direct relationship between the number of membranes and the cardinality of the
alphabet of languages.

Acknowledgments

The work of the first author was supported by National Natural Science Founda-
tion of China (Grant No. 60373089).

172 G. Liu, M. Ionescu

The work of the second author was made possible thanks to the fellowship
“Programa Nacional para la Formación del Profesorado Universitario” from the
Spanish Ministry of Education, Culture and Sport.

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology
of the Cell. 4th ed. Garland Science, New York, 2002.

2. A. Alhazov: P systems without multiplicities of symbol-objects. Information Process-
ing Letters, accepted 2005.

3. A. Alhazov, R. Freund, Y. Rogozhin: Computational power of symport/antiport:
history, advances and open problems. Proceedings of Workshop on Membrane Com-
puting, WMC6, Vienna, Austria, July 2005, 44–78.

4. I.I. Ardelean: The relevance of cell membranes for P systems. General aspects. Fun-
damenta Informaticae, 49, 1-3 (2002), 35–43.

5. P. Frisco, H.J. Hoogeboom: Simulating counter automata by P systems with sym-
port/antiport. In Membrane Computing, LNCS 2597, Springer, 2003, 288–301.

6. M. Ionescu, C. Mart́ın-Vide, A. Păun, Gh. Păun: Unexpected universality results
for three classes of P systems with symport/antiport. Natural Computing, 2 (2003),
337–348.

7. M. Ionescu, C. Mart́ın-Vide, Gh. Păun: P systems with symport/antiport rules: The
traces of objects. Grammars, 5, 2 (2002), 65–79.

8. A. Păun, Gh. Păun: The power of communication. P systems with symport/antiport.
New Generation Computers, 20, 3 (2002), 295–306.

9. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No
208, 1998 (www.tucs.fi).

10. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
11. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes. Springer-

Verlag, Berlin, 1997.
12. A. Salomaa: Formal Languages. Academic Press, New York, 1973.

