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Alfonso Rodŕıguez-Patón3, Petr Sosik3,5, Sara Woodworth1

1 Department of Computer Science University of California
Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu, swood@cs.ucsb.edu

2 Department of Computer Science, Louisiana Tech University, Ruston
PO Box 10348, Louisiana, LA-71272 USA
apaun@latech.edu

3 Universidad Politécnica de Madrid - UPM, Faculdad de Informática
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Summary. The spiking neural P systems are a class of computing devices recently
introduced as a bridge between spiking neural nets and membrane computing. In this
paper we prove a series of normal forms for spiking neural P systems, concerning the
regular expressions used in the firing rules, the delay between firing and spiking, the
forgetting rules used, and the outdegree of the graph of synapses. In all cases, surprising
simplifications are found, without losing the computational universality – sometimes at
the price of (slightly) increasing other parameters which describe the complexity of these
systems.

1 Introduction

The spiking neural P systems (in short, SN P systems) were recently introduced in
[2], and then investigated in [7] and [8], thus incorporating in membrane computing
[6] ideas from spiking neurons, see, e.g., [1], [3], [4].

In short, an SN P system consists of a set of neurons placed in the nodes of
a graph, representing synapses. The neurons send signals (spikes) along synapses
(edges of the graph). This is done by means of firing rules, which are of the form
E/ac → a; d, where E is a regular expression, c is the number of spikes consumed
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by the rule, and d is the delay from firing the rule and emitting the spike. The
rule can be used only if the number of spikes collected by the neuron is “covered”
by expression E, in the sense that the current number of spikes in the neuron,
n, is such that an ∈ L(E), where L(E) is the language described by expression
E. In the interval between firing a rule and emitting the spike, the neuron is
closed/blocked, it does not receive other spikes and cannot fire again. There also
are rules for forgetting spikes, of the form as → λ (s spikes are just removed from
the neuron). Starting from an initial distribution of spikes in the neurons and using
the rules in a synchronized manner (a global clock is assumed), the system evolves.
A sequence of transitions among configurations of an SN P system, starting in the
initial configuration, is called a computation. One of the neurons is designated as
the output neuron and its spikes can also exit the system. The sequence of steps
when the output neuron sends spikes to the environment is called the spike train
of the computation.

An SN P system can be used as a computing devices in two main ways: as
a number generator and as a generator and transducer of infinite sequences of
bits. In the first case, considered in [2] and [7], one associates a set of numbers
with a spike train in various ways: considering the distance between the first k
spikes of a spike train, or the distances between all consecutive spikes, in both
cases taking into account all intervals or only considering intervals that alternate
(ignoring every second one), accepting only halting or only infinite computations.
In this last case, one can naturally associate an infinite binary sequence with a
spike train by writing 0 for a step when no spike exits the system and 1 for a step
when a spike is emitted by the output neuron.

In the first interpretation of SN P systems, as devices computing sets of natural
numbers, it was proven in [2], [7] that Turing completeness is achieved if no bound
is imposed on the number of spikes present in the neurons, and a characterization
of semilinear sets of numbers is obtained if a bound is imposed on the number of
spikes present in neurons during a computation.

In the proofs of these results, all features of the SN P systems as briefly intro-
duced above were used: regular expressions describing languages different from a∗,
delays d different from 0, forgetting rules, while the synapse graphs of the systems
involved in the proofs have outdegree four. The question of improving these proofs
from these points of view was formulated as a research topic in the papers [2], [7].
We contribute here to this topic with several results, some of them surprising: we
prove universality: (i) with regular expressions of the form E = a+ (hence telling
nothing else about the number of spikes from the neuron other than the fact that
some spikes do exist) or of the form ai for some i ≥ 1, (ii) rules without delay,
i.e., of the form E/ac → a; 0, and (iii) without using forgetting rules (this last re-
sult solves an open problem from [2], asking whether the universality is preserved
even when forgetting rules are not used – the answer proves to be affirmative).
We do not know whether these normal forms can be combined: in the proofs of
(i) and (iii) we use delays, in the proofs of (ii) and (iii) we use non-trivial regular
expressions, while in the proofs of (i) and (ii) we use forgetting rules. What can be
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combined with all these three normal forms is the next condition: each neuron has
only two outgoing synapses (hence the synapse graph has the outdegree two). This
is of a clear interest in our framework, because the spikes in an SN P system can
be increased only by means of multiple outgoing synapses – the result mentioned
above shows that the minimal outdegree suffices.

In the next section we introduce a few technical prerequisites, then (Section
3) we recall from [2], [7] the definition of spiking neural P systems and fix the
notation we use. In Section 4 we give the result about the possibility of working
with no delay, the next section (Section 6) describes the power of systems that are
not allowed to use forgetting rules, then (Section 5) we also bound the outdegree
of SN P systems without losing the universality. Section 7 gives the normal form
about the regular expressions from the firing rules. The paper ends with some open
problems and research topics discussed in Section 8.

2 Prerequisites

We assume the reader to be familiar with basic language and automata theory,
as well as with basic membrane computing, e.g., from [9] and [6], respectively (we
also refer to [10] for the most updated information about membrane computing),
so that we introduce here only some notations and the notion of register machines,
used later in proofs.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ,
the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. When V = {a} is a singleton, then we write simply a∗ and a+

instead of {a}∗, {a}+. The length of a string x ∈ V ∗ is denoted by |x|.
The family of Turing computable sets of natural numbers is denoted by NRE

and the family of semilinear sets of natural numbers is denoted by NREG (they
are the families of length sets of recursively enumerable languages and of regular
languages, respectively, hence the notations).

A register machine is a construct M = (m,H, l0, lh, I), where m is the number
of registers, H is the set of instruction labels, l0 is the start label (labeling an ADD
instruction), lh is the halt label (assigned to instruction HALT), and I is the set of
instructions; each label from H labels only one instruction from I, thus precisely
identifying it. The instructions are of the following forms:

• l1 : (ADD(r), l2, l3) (add 1 to register r and then go to one of the instructions
with labels l2, l3),

• l1 : (SUB(r), l2, l3) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label l2, otherwise go to the instruction with label l3),

• lh : HALT (the halt instruction).

A register machine M computes a number n in the following way: we start
with all registers empty (i.e., storing the number zero), we apply the instruction
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with label l0 and we proceed to apply instructions as indicated by the labels (and
made possible by the contents of registers); if we reach the halt instruction, then
the number n stored at that time in the first register is said to be computed by M .
The set of all numbers computed by M is denoted by N(M). It is known (see, e.g.,
[5]) that register machines (even with a small number of registers, but this detail
is not relevant here) compute all sets of numbers which are Turing computable,
hence they characterize NRE.

Without loss of generality, we may assume that in the halting configuration,
all registers different from the first one are empty, and that the output register
is never decremented during the computation, we only add to its contents. In all
proofs from the next sections we will always assume that the register machines
which we simulate have these properties.

A register machine can also work in the accepting mode: a number n is intro-
duced in the first register (all other registers are empty) and we start computing
with the instruction with label l0; if the computation eventually halts, then the
number n is accepted.

Register machines are universal also in the accepting mode; moreover, this
is true even for deterministic machines, having ADD rules of the form l1 :
(ADD(r), l2, l3) with l2 = l3: after adding 1 to register r we pass precisely to one
instruction, without any choice (in such a case, the instruction is written in the
form l1 : (ADD(r), l2)).

Again, without loss of generality, we may assume that in the halting configu-
ration all registers are empty.

We close this section by establishing the following convention: when evaluat-
ing or comparing the power of two number generating/accepting devices, we ignore
the number zero; this corresponds to a frequently made convention in grammars
and automata theory, where the empty string λ is ignored when comparing two
language generating/accepting devices.

3 Spiking Neural P Systems

The neural motivation for introducing spiking neural P systems can be found in
[2], here we pass directly to recalling the definition.

A spiking neural P system (abbreviated as SN P system), of degree m ≥ 1, is
a construct of the form

Π = (O, σ1, . . . , σm, syn, i0),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
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a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that for each rule E/ac →

a; d of type (1) from Ri, we have as /∈ L(E);
3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
4. i0 ∈ {1, 2, . . . , m} indicates the output neuron (i.e., σi0 is the output neuron).

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the
rule E/ac → a; d can be applied. The application of this rule means consuming
(removing) c spikes (thus only k − c remain in σi), the neuron is fired, and it
produces a spike after d time units (as usual in membrane computing, a global
clock is assumed, marking the time for the whole system, hence the functioning
of the system is synchronized). If d = 0, then the spike is emitted immediately, if
d = 1, then the spike is emitted in the next step, etc. If the rule is used in step
t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this
corresponds to the refractory period from neurobiology), so that it cannot receive
new spikes (if a neuron has a synapse to a closed neuron and tries to send a spike
along it, then that particular spike is lost). In the step t + d, the neuron spikes
and becomes again open, so that it can receive spikes (which can be used starting
with the step t + d + 1).

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
following simplified form: ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from
Ri must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule is
applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, but neurons
function in parallel with each other. It is important to notice that the applicability
of a rule is established based on the total number of spikes contained in the neuron.
Thus, e.g., if a neuron σi contains 5 spikes, and Ri contains the rules (aa)∗/a →
a; 0, a3 → a; 0, a2 → λ, then none of these rules can be used: a5 is not in L((aa)∗)
and not equal to a3 or a2. However, if the rule a5/a2 → a; 0 is in Ri, then it can be
used: two spikes are consumed (thus three remain in σi), and one spike is produced
and sent immediately (d = 0) to all neurons linked by a synapse to σi, and the
process continues.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm, of spikes present in each neuron. During a computation, the “state”
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of the system is described by both by the number of spikes present in each neuron,
and by the open/closed condition of each neuron: if a neuron is closed, then we
have to specify when it will become open again.

Using the rules as described above, one can define transitions among configu-
rations. A transition between two configurations C1, C2 is denoted by C1 =⇒ C2.
Any sequence of transitions starting in the initial configuration is called a com-
putation. A computation halts if it reaches a configuration where all neurons are
open and no rule can be used. With any computation (halting or not) we associate
a spike train, the sequence of zeros and ones describing the behavior of the output
neuron: if the output neuron spikes, then we write 1, otherwise we write 0.

In the spirit of spiking neurons, as the result of a computation, in [2] one takes
the number of steps between two spikes sent out by the output neuron, and, for
simplicity, one considers as successful only computations whose spike trains contain
exactly two spikes. This has been generalized in [7], where several ways of defining
a set of numbers associated with a spike train were systematically examined. We
recall from [7] several relevant definitions.

Let Π = (O, σ1, . . . , σm, syn, i0) be an SN P system and let γ be a computation
in Π, γ = C0 =⇒ C1 =⇒ C2 =⇒ . . . (C0 is the initial configuration, and Ci−1 =⇒
Ci is the ith step of γ). In some steps a spike exits the (output neuron of the)
system, in other steps it does not. The spike train of computation γ is the sequence
of steps i when the output neuron σi0 emits a spike. We denote by st(γ) the
sequence of emitting steps, and we write it in the form st(γ) = 〈t1, t2, . . .〉, with
1 ≤ t1 < t2 < . . .. The sequence can be finite (this happens if the computation
halts, or if it sends out only a finite number of spikes) or infinite (then, of course,
the computation does not halt).

One can associate a set of numbers with Π in several ways. We follow here the
idea of [2] (with the extension from [7]), and we consider the intervals between con-
secutive spikes as numbers computed by a computation, with several alternatives
(by COM(Π) we denote the set of all computations in Π):

• Taking into account only the first two spikes:

N2(Π) = {t2 − t1 | st(γ) = 〈t1, t2, . . .〉, γ ∈ COM(Π)}.

• Generalizing to the first k ≥ 2 spikes:

Nk(Π) = {n | n = ti − ti−1, for 2 ≤ i ≤ k, st(γ) = 〈t1, t2, . . .〉,
γ ∈ COM(Π), and st(γ) has at least k spikes}.

• Taking into account all spikes of computations with infinite spike trains:

Nω(Π) = {n | n = ti − ti−1, for i ≥ 2, γ ∈ COM(Π),
st(γ) = 〈t1, t2, . . .〉 infinite}.

• Taking into account all intervals of all computations:
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Nall(Π) =
⋃

k≥2

Nk(Π) ∪Nω(Π).

For Nk(Π) we can consider two cases, the weak one, where, as above, we take into
consideration all computations having at least k spikes, or the strong case, where
we take into consideration only the computations having exactly k spikes. In the
strong case we underline the subscript k, thus writing Nk(Π) for denoting the
respective set of numbers computed by Π.

Two subsets of (some of) these sets are also of interest (the strong halting case
is newly introduced):

• Taking only halting computations; this makes sense only for Nk(Π), k ≥ 2,
and for Nall(Π) – the respective subsets are denoted by Nh

k (Π) and Nh
all(Π),

respectively.
• Considering strong halting computations: halting computations as described

above, with the extra condition that when the system halts, no spike is present
in the whole system. The respective sets of numbers will be denoted by N

h
k (Π)

and N
h
all(Π).

• Considering alternately the intervals:

Na(γ) = {n | n = t2k − t2k−1, for k ≥ 1, γ ∈ COM(Π),
and st(γ) = 〈t1, t2, . . .〉}.

This means that every second interval is “ignored”, we take the first one,
we skip the second interval, we take the third, we skip the fourth interval,
and so on. This strategy can be used for all types of sets, hence we get
Na

k (Π), Na
ω(Π), Na

all(Π), as subsets of Nk(Π), Nω(Π), Nall(Π), respectively.

Finally, we can combine the halting restriction with the alternate selection of
intervals, obtaining the sets Nha

α (Π) and N
ha
α (Π), for all α ∈ {ω, all}∪{k | k ≥ 2},

as well as Nha
k (Π) and N

ha
k (Π), for k ≥ 2.

We do not illustrate here these definitions with examples of SN P systems, but
several explicit constructions will be found in the subsequent sections – the reader
can find many examples in [2], [7], and [8].

As in these papers, we denote by Spikβ
αPm(rulek, consp, forgq) the family of

sets Nβ
α (Π), for all systems Π with at most m neurons, each neuron having at most

k rules, each of the spiking rules consuming at most p spikes, and each forgetting
rule removing at most q spikes; then, α ∈ {all, ω} ∪ {k, k | k ≥ 2}, and β is either
omitted or it belongs to the set {h, a, ha, h, ha}. As usual, a parameter m, k, p, q
is replaced with ∗ if it is not bounded.

In the above notation, we add to the list of features mentioned between paren-
theses the following two: dleyr, meaning that we use SN P systems whose rules
E/ac → a; d have d ≤ r (the delay is at most r), and outds, meaning that the
outdegree of the synapse graph has the outdegree at most s. We also write rule∗k
if the firing rules are of the form a+/ac → a; d or of the form ac → a; d.

With these notations, the universality result from [2] can be written as:
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Theorem 1. Spikβ
2 P∗(rule2, cons3, forg3, dley1, outd4) = NRE, where either

β = h or β is omitted.

Similar results were proven in [7] for all families Spikβ
αP∗(rulek, consp, forgq,

dley1, outd4), with various parameters k, p, q, but always with the delay 0 or 1,
and the outdegree four. In the next sections we improve the result in Theorem 1
from the point of view of forg, dley, and outd, then, in Section 7 we also simplify
the regular expressions used in the universality proof.

4 Removing the Delay

We imitate here the proof of Theorem 1 from [2], with an additional care paid to
the delay from firing to spiking. Because all rules we use have the delay 0, we write
them in the simpler form E/ac → a, hence omitting the indication of the delay.
The price of the elimination of the delay will be the slight increase in the number of
neurons and of other parameters (the number of rules from each neuron, of spikes
consumed for firing, and of spikes forgotten by each rule). Then, we also bound
the outdegree of the system, to two. Although this can be done at the same time
with the removing of the delay, we do not pay attention here to the outdegree,
because we want to make explicit the (simple) technique used in that case, adding
in this way new items to the “tool-kit” used in previous papers, especially in [8],
for handling SN P systems and their spike trains.

In the proof below we present the SN P system used (actually, its modules)
in a way already proposed in [2]: neuron-membranes placed in the nodes of a
graph, with the edges representing the synapses, and with an arrow pointing from
the output neuron to the environment; inside neurons, we give the rules and the
initial number of spikes.

Theorem 2. Spikβ
2 P∗(rule3, cons4, forgq, dley0, outd∗) = NRE, where β ∈

{h, h} or β is omitted, and q = 5 for β = h, otherwise q = 4.

Proof. In view of the Turing-Church thesis (the inclusion in NRE can
also be proved directly), we only have to prove the inclusion NRE ⊆
Spikβ

2 P∗(rule3, cons4, forgq, dley0, outg∗).
Let M = (m,H, l0, lh, I) be a register machine generating a set N(M), having

the properties specified in Section 2: the result of a computation is the number
from register 1, this register is never decremented during the computation, and
the machine halts with all registers 2, 3, . . . , m empty.

We construct a spiking neural P system Π as in [2], simulating the register
machine M and spiking only twice, at an interval of time which corresponds to
a number computed by M . The system Π will be presented graphically, through
modules which simulate the ADD and SUB instructions of M ; there also is a FIN
module, which takes care of the spiking of the system Π.

These three (types of) modules are given in Figures 1, 2, 3, respectively. The
neurons appearing in these figures have labels l1, l2, l3, . . ., as in the instructions
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from I, labels 1, 2, . . . , m associated with the m registers of M , as well as a series
of labels which we do not specify here, but we only mention that they are supposed
to be distinct to each other, so that no “illegal” interference of modules is possible;
the output neuron is labeled with out in the module FIN.
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a → a

a → a a → a

ci1 ci2

ci3

a2/a → a

a → a

a2 → a

ci4 ci5

a → a a → a

a → a a → a

ci6 ci7

r

ci8

a3 → a

a4 → λ

ci9

a4 → a

a3 → λ

lj

a → a

lk
a → a

Fig. 1. Module ADD (simulating li : (ADD(r), lj , lk))

In the initial configuration, there is only one spike in the system, in the neuron
with label l0, the initial label of M . During the computation, the contents of
register r, 1 ≤ r ≤ m, will be encoded by the number of spikes from neuron r in
the following way: if register r holds the number n, then neuron r will contain 2n
spikes.

Simulating an ADD instruction li : (ADD(r), lj , lk) – module ADD (Figure
1).

The initial instruction of M , the one with label l0, is an ADD instruc-
tion. Assume that we are in a step when we have to simulate an instruction
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li : (ADD(r), lj , lk), with one spike present in neuron li (like in the initial con-
figuration) and no spike in any other neuron, except those neurons associated
with the registers. Neuron li fires and sends its spike to neurons ci1 and ci2. These
neurons fire, and from them both the neuron r (the one associated with the reg-
ister involved in the instruction we simulate) and the “non-deterministic” neuron
ci3 receive two spikes, while the synchronizing neurons ci4, ci5 receive one spike
each. Thus, neuron r has increased its contents as needed. In Figure 1, this neuron
contains no rules, but, as we will see immediately, the neurons associated with
registers have two rules each, used when simulating the SUB instructions, but
both these rules need an odd number of spikes to be applied (this is true also for
the module FIN, which only deals with the neuron associated with register 1).
Therefore, during the simulation of an ADD instruction, neuron r just increases
by 2 its contents, and never fires.

We have now to pass non-deterministically to one of the instructions with labels
lj and lk, and this is done with the help of neuron ci3, which contains two rules
which can be applied to the two spikes it contains. If the rule a2 → a is used, then
both its spikes (that the neuron has at the moment) are consumed, and then the
neurons ci8, ci9 will have one spike each; this spike has to wait unchanged until the
spikes from intermediate neurons ci6, ci7 arrive. These neurons send two spikes to
neurons ci8, ci9, hence we have here 3 spikes. With three spikes inside, only neuron
ci8 fires, while ci9 forgets the spikes. In this way, neuron lj receives a spike, and it
is “activated”.

If instead of rule a2 → a, neuron ci3 uses the rule a2/a → a, then only one spike
is consumed, one spike reaches immediately each neuron ci8, ci9 and a second one
arrives in ci8, ci9 one step later (when the rule a → a of neuron ci3 is used), hence,
together with the spikes of neurons ci6, ci7 (which arrive at the same time as the
last spike from ci3) we have now four spikes in each neuron ci8, ci9. This makes
possible the firing of neuron ci9 only, which implies the “activation” of neuron lk,
which receives a spike.

The simulation of the ADD instruction is correct: we have increased the number
of spikes in neuron r by two and we have passed to one of the neurons lj , lk non-
deterministically.

Simulating a SUB instruction li : (SUB(r), lj , lk) – module SUB (Figure 2).
Let us examine now Figure 2. We start with a spike in neuron li and no spike

in other neurons, except neuron r, which holds an even number of spikes (half of
this number is the value of the corresponding register r). The spike of neuron li
goes immediately to three neurons, ci1, ci2, and r. Neurons ci1, ci2 will send in the
next step a spike to neurons ci3 and ci4, while neuron r will send a spike to neuron
ci3 only if it contains more than one spike.

Indeed, neuron r contains now an odd number of spikes. If the only spike
it holds is the one sent by li, then this spike will be forgotten and no spike is
produced. This means that the register r was empty. The neurons ci3, ci4 receive
one spike each (from ci1 and ci2, respectively). While neuron ci4 fires, and sends
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a → λ
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a → λ
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Fig. 2. Module SUB (simulating li : (SUB(r), lj , lk))

a spike to neuron ci5, neuron ci3 forgets the spike. Now, neuron ci5 fires and its
spike is sent to neuron lk, which is thus “activated”.

If neuron r contains at least three spikes, hence the register r is not empty,
then we have to use the rule (aa)+a/a3 → a, which decreases the number of spikes
from neuron r to an even value while removing three spikes (which corresponds to
decrementing the register r and removing the spike received from li). The spike
of neuron r arrives in neuron ci3 at the same time with the spike of neuron ci1

(while, at the same time, the spike of neuron ci2 arrives in neuron ci4). With two
spikes inside, neuron ci3 fires. Its spike reaches both neurons lj – which is thus
“activated”, and neuron ci5. Neuron ci5 contains now two spikes, because it has
also received one from ci4; it forgets them by using the rule a2 → λ, hence no spike
is emitted here (lk remains empty).

The simulation of the SUB instruction is correct, we started from li and we
ended in lj if the register was non-empty and decreased by one, and in lk if the
register was empty.

Note that there is no interference between the neurons used in the ADD and
the SUB instructions, other than correctly firing the neurons lj , lk which may
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label instructions of the other kind (the ADD instructions do not use any rule
for handling the spikes of neurons 1, 2, . . . , m associated with the registers of M).
However, there is an interference between SUB modules, because each neuron r
associated with a register which is subject of a SUB instruction sends a spike to
all neurons with label ci3 in a module SUB as that from Figure 2; however, all
these neurons will immediately forget this spike with one exception, of the neuron
ci3 from the module of the SUB instruction whose simulation proceeds correctly,
and which also receives one spike from the corresponding neuron ci1. It is also
worth noting here that register 1 is never decremented, hence for it there is no
SUB module as above.

Ending a computation – module FIN (Figure 3).
Assume now that the computation in M halts, which means that the halting

instruction is reached. For Π this means that the neuron lh receives a spike. At
that moment, neuron 1 contains 2n spikes, for n being the contents of register 1 of
M (and all other neurons 2, 3, . . . ,m are empty). The spike of neuron lh is sent to
four neurons, 1, ci1, ci3, and ci4 from Figure 3. In this way, neuron 1 accumulates
an odd number of spikes, and it can fire. It is important to remember that this
neuron was never involved in a SUB instruction, hence it does not contain any
rules as described in Figure 2. Thus, the only rules available in neuron 1 are the
ones defined at this step.

Let 1 be the moment when neuron lh fires. The spike sent to neuron d1 passes
to neuron d2 and then to the output neuron, which thus spikes at step 4.

Let us now follow the other spikes emitted by neuron lh. Neurons d3, d4 form
a pair of self-sustaining neurons, spiking to each other in each step; at the same
time, each of them sends one spike to neuron d5. If this neuron also receives a
spike from neuron 1, then it has to forget the three spikes. In turn, at each step
when spiking, neuron 1 consumes two spikes, which corresponds to decreasing by
one the value of register 1.

These operations continue until exhausting the spikes from neuron 1; in the
last step when neuron 1 fires, we have to use the rule a3 → a, and this means that
neuron 1 can fire n times, for n being the number stored by register 1 of M in
the end of the computation. Therefore, the last time when neuron 1 fires is in step
n + 1 (one step was necessary initially, for firing neuron lh).

In step n + 2, the first step when neuron 1 does not fire, neurons d3, d4 fire
again, their spikes arrive in neuron d5, and, with only two spikes inside, this neuron
fires (step n + 3). Its spike goes at the same time to neuron d6 and to the output
neuron, and both these neurons fire. This is step n+4, hence the distance between
the two spikes of neuron out is n, the contents of register 1 of M .

In step n+3, neurons d3, d4 fire again, hence two spikes reach neuron d5, which
spikes again (step n+4). Its spike reaches the output neuron at the same time with
the spike of neuron d6, hence, with two spikes inside, neuron out can never spike
again. The spike of neuron d6 also reaches neuron d4, which holds now two spikes
(it has one from the partner neuron d3), hence also this neuron will never spike
again. Neuron d3 spikes once more, and this is the last step of the computation:
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Fig. 3. Module FIN (ending the computation)

neuron d5 cannot fire with only one spike inside, while neuron d4 contains already
three spikes.

It is now clear that the previous system halts and this is done using forgetting
rules of size 4 (in module ADD).

We can modify the previous construction to reach also a strong halting state.
First, let us note that the ADD and SUB modules do not leave any spikes in
their neurons. Because the register machine is assumed to stop with all registers
empty, except register 1, when reaching the FIN module, we will have only spikes
stored in the output register 1 and one spike in the neuron lh. Starting from this
configuration, the system halts at step n+7 (counting as step 1 the moment when
neuron lh fires). At that time, out contains five spikes (three from d6 and two from
d5), d4 has also five spikes (three from d6 and two from d3), and d5 has one spike
(from d3). We add the rule a5 → λ to neurons out and d4, and the rule a → λ
to neuron d5. Thus, at the step n + 7 there will be no spike in the whole system.
Consequently, N2(Π) = Nh

2 (Π) = N
h
2 (Π) = N(M) and this completes the proof

(the outdegree of the system is not bounded: a neuron r corresponding to a register
has a synapse (r, ci3) for each instruction li : (SUB(r), lj , lk)).



118 O.H. Ibarra et al.

Besides the fact that in the ADD module we have used firing rules which
consume four spikes, and that we also have forgetting rules which remove four
spikes, the above construction is also more complex than the one from [2] in what
concerns the number of neurons: the ADD module in [2] contained 8 neurons,
here we use 13, while in the SUB case we use 9 neurons instead of 6; the FIN
module uses the same number of neurons in [2] and in the proof above, 9, but the
construction from Figure 3 has a more transparent functioning than that from [2].

In what concerns the number of neurons which behave non-deterministically,
it is also possible to have lost here the nice result from [2], that one neuron with
a non-deterministic behavior in the whole system is sufficient: for the moment, we
do not see a way to use only one such neuron (like c3 in Figure 1) for all ADD
modules.

However, the previous construction holds for the case when we want to define
as the result of a computation the number of spikes collected by the output neuron
in the end of halting computations (when dealing with such a number, we need to
consider halting computations, otherwise we do not know when the computation
of a number is completed). The changes in the module FIN are the same as in [2].

Moreover, the previous normal form also holds in the case of accepting SN P
systems.

Like in [2], we consider the following way of introducing into a system the
number to be accepted, again in the spirit of spiking neurons, with the time as the
main data support: the special neuron i0 is used now as an input neuron, which can
receive spikes from the environment of the system (in the graphical representation
an incoming arrow will indicate the input neuron); we assume that exactly two
spikes are entering the system; the number n of steps elapsed between the two
spikes is the one analyzed; if, after receiving the two spikes, the system halts (not
necessarily in the moment of receiving the second spike), then the number n is
accepted.

In the accepting mode we can impose the restriction that in each neuron, in
each time unit at most one rule can be applied, hence that the system behaves
deterministically. A counterpart of Theorem 2 is then true (the notation of the
respective families are obvious):

Theorem 3. DSpikβ
2accP∗(rule2, cons3, forg2, dley0, outd∗) = NRE, where β ∈

{h, h} or β is omitted.

Proof. The theorem is a consequence of the proof of Theorem 2. This time we
start from a deterministic register machine M and we construct the SN P system
Π as in the proof of Theorem 2, with no module FIN (the neuron lh has no rule
inside), with the same module SUB, with a simpler module ADD (see Figure 5),
as well as with a further module, called INPUT, which takes care of initializing
the work of Π. This time Π has initially no object inside, and the same is true
with the new module.

The module INPUT is given in Figure 4 and it is a simplification of the similar
module from [2], due to the fact that now we have only one spike in neurons
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Fig. 4. Module INPUT (initializing the computation)

with labels l ∈ H. The functioning of this module is obvious: the first input spike
triggers the self-sustaining neurons c2, c3, which will send pairs of spikes to neuron
1 until having the second spike entering the system; at that time, neurons c2, c3

stop, because they cannot handle two spikes at the same time. In turn, neuron
l0 gets a spike only after introducing in the system two spikes (the first one just
waits in neuron c1).

Now, we start using modules ADD and SUB associated with the regis-
ter machine M , with modules ADD constructed for instructions of the form
li : (ADD(r), lj). This means that the module ADD is now much simpler than
in Figure 1, namely, it looks like in Figure 5.

The functioning of this modified ADD module is obvious, hence we omit the
details.

The modules SUB remain unchanged, while the module FIN is simply removed,
with the neuron lh remaining in the system, with no rule inside. Thus, the com-
putation will stop if and only if the computation in M stops.

This time, there are SUB instructions acting on register 1, but, because we
no longer have the module FIN, neuron 1 contains only the rules defined in its
corresponding modules SUB, hence no “illegal” operation is performed.

For obtaining the strong halting, we need to remove all the spikes from the
system in a halting configuration. To this aim we add the rule a2 → λ to the
neurons c2 and c3 from module INPUT, and a → λ to the neuron lh. In this way,
if the deterministic register machine halts with all its registers empty, then also
our system will halt with no spike inside.

The observation that the only forgetting rule as → λ with s = 3 was present
in module FIN, which is no longer used, completes the proof.
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We end this section with the remark that all proofs from Section 6 of [7], where
one extends the proof of Theorem 1 from the case of spike trains with only two
spikes to all cases considered in Section 3 above, use only firing rules with delay
0, hence all these extensions are valid also starting from the proof of Theorem 2.
Therefore, a result as that in Theorem 2, stating that the delay can be 0, holds
true for all sets Nβ

α (Π) – with various values for other parameters, depending on
the constructions from [7].

5 Diminishing the Outdegree

As we have mentioned in the Introduction, the number of spikes from an SN
P system can be increased only by replicating them by means of neurons with
multiple outgoing synapses. Therefore, systems with the maximal outdegree one
can only have inside at most the number of spikes from the initial configuration,
hence a bounded number. Such SN P systems can only compute semilinear sets of
numbers (see [2] and [7]), hence the outdegree cannot be decreased to one without
losing the universality. As we have mentioned in the end of the proof of Theorem
2, the outdegree of that system Π can be rather large. Can we decrease it to two?

The answer is affirmative, and it can be obtained in a rather easy way, by
using the idea suggested in Figure 6: by introducing intermediate neurons f1, f2,
which take the spike they receive and split it in several spikes, and repeating this
operation as many times as necessary, we can replace all neurons with more than
two synapses going to other neurons with neurons from which only two synapses
go out (or only one when the outdegree of d0 is 3; of course, if the outdegree of d0

is not an even number, then one of neurons f1, f2 have one synapse less than the
other). If we start from a neuron with the outdegree 3, this procedure introduces
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a delay in the computation proportional with log2 k, which can make problems
in the case of synchronized subcomputations, or when we have a back synapse
(e.g., from one of neurons di, 1 ≤ i ≤ 2s, to neuron d0 in Figure 6). Fortunately,
this is not the case in the modules ADD, SUB, FIN from the proof of Theorem
2 (intermediate neurons can be introduced just passsing the spike to the next
neuron always when synchronizing delays should be provided), hence we can state
the following strengthening of it:

Theorem 4. Spikβ
2 P∗(rule3, cons4, forg4, dley0, outd2) = NRE where either β =

h or β is omitted.

The extension of this result to the proofs from [7] is no longer immediate,
because two of the proofs in [7] (Theorem 6.3 and Lemma 6.1) contain neurons
with the outdegree greater than 2 and involved in processes which would be de-
synchronized by adding intermediate neurons like in Figure 6.

The dual problem, of bounding also the indegree of the synapse graph remains
as a research topic. In the proof of Theorem 1 from [2], as well as in the proof of
Theorem 2 above, there appear neurons with an arbitrarily large indegree, depend-
ing on the instructions of the register machine. This is the case for the neurons
representing the registers, where there are incoming synapses in all modules which
operate on those registers.
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6 Removing the Forgetting Rules

We consider in this section spiking neural P systems that do not make use of
forgetting rules. Surprisingly enough, universality still holds for these restricted
systems.
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Fig. 7. Module ADD (simulating li : (ADD(r), lj , lk))

Theorem 5. Spikβ
2 P∗(rule2, cons3, forg0, dley1, outd2) = NRE, where β = h or

β is omitted.

Proof. The inclusion Spikβ
2 P∗(rule∗, cons∗, forg∗, dley∗, outd∗) ⊆ NRE is

straightforward and therefore omitted. To complete the proof we must show
NRE ⊆ Spikβ

2 P∗(rule2, cons3, forg0, dley1, outd2). We will do this by construct-
ing a spiking neural P system Π with the requested parameters which simulates
a register machine M = (m,H, l0, lh, I) with the properties specified in Section 2.
Like in the proof of Theorem 2, we construct modules ADD and SUB to simulate
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the instructions of M , as well as an output module FIN. Each register r of M will
have a neuron r in Π, and if the register contains the number n, then the neuron
will contain 2n spikes.

The ADD module (Figure 7) used to simulate an addition instruction li :
(ADD(r), lj , lk) is initiated when a spike enters the neuron with the label li. This
causes neuron li to spike sending a spike to both neuron li1 and li2. In the next
step, both of these two neurons spike, sending two spikes to neuron r, and this
represents the increment of register r by one. In this step, neuron li2 also sends a
spike to neurons li3, li4, and li5. The spikes in these three neurons are used to non-
deterministically initiate one of the instructions lj or lk. After the computation of
the entire module, two spikes are left in either neuron li6 or li7, but these spikes
do not disrupt future computations if the instruction is executed again.
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Fig. 8. Module SUB (simulating li : (SUB(r), lj , lk))

The SUB module (Figure 8) used to simulate a subtraction instruction li :
(SUB(r), lj , lk) is initiated (just like the ADD module) when a spike enters the
neuron representing the instruction label li. The initiating spike causes the neuron
li to immediately fire sending a spike to neurons li1 and r. Neuron li1 immediately
sends a spike to neurons li2, li3, and li4.
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At the same time, if neuron r is not empty, the rule a(aa)+/a3 → a; 0 will be
applied and a spike is sent to neurons li4 and li5 with no delay. (In this process,
neuron li5 has 1 spike added during one step and does not spike.) Now neuron li4
will contain two spikes causing it to fire sending a spike to neurons li5, li6, and li8.
During the same time step, both neurons li2 and li3 will fire and each send a spike
to neuron li5. (At this point, neuron li5 has gained three additional spikes meaning
the total number of contained spikes is of the form (a4)∗.) Now neuron li8 will fire
initiating the clean-up processes described later while neuron li6 fires initiating the
instruction lj (after a delay of 1 time step to finish the clean-up process).

If neuron r was initially empty (corresponding to register r containing a zero
count), then the rule a → a; 2 is applied and a spike is sent to neuron li4 and neuron
li5 with a delay of two time steps. At the same time, neuron li1 fires sending a
spike to neurons li2, li3, and li4. (In this process, neuron li4 has one spike added
during one step and does not spike.) Neurons li2 and li3 fire during the next step
sending two spikes to neuron li5. Neuron li5 fires sending a spike to neurons li4, li7,
li8, ci4, ci5, and ci5 during the next time step and the delayed spikes from neuron
r are received. (At this point, neuron li4 has gained two additional spikes meaning
the total number of contained spikes is of the form (a3)∗. Also, the contents of the
neuron li5 is of the form a(a4)∗ due to the received spike from neuron r.) During
the next step, the neurons li7, li8, ci4, ci5, and ci6 all fire. This initiates the clean-
up process and the instruction lk. It also sends three spikes to neuron li5 leaving
it with (a4)∗ spikes.

A clean-up process is needed because neuron r is a shared neuron between
modules. For any ADD module that uses the neuron r, no interference problems
occur. However, multiple SUB modules mean that when r spikes, all neurons li′4
and li′5 where li′ : (SUB(r), lj′ , lk′) will receive a single spike during the computation
of instruction li. To guarantee that these additional spikes do not create problems
when instruction li′ is executed, we need to make sure that each neuron li′4 is
left with (a3)∗ spikes and each neuron li′5 is left with (a4)∗ spikes. Each of these
neurons originally has the correct form and during the computation of instruction
li they both gain a single spike (which will not cause any neuron to fire). Therefore,
at the end of computation, we must add two spikes to each li′4 and three spikes
to each li′5 during a single step. This is done using the neurons ci1, ci2, and ci3

which send the appropriate number of spikes to each neuron li′4 and li′5.
After the computation of the entire module is complete, all neurons except r,

li4, and li5 are left with zero spikes. Cell r is left with an even number of spikes.
Cell li4 is left with a contents of the form (a3)∗ and neuron li5 is left with a contents
of the form (a4)∗. For each instruction li′ : (SUB(r), lj′ , lk′), neuron li′4 is left with
a contents of the form (a3)∗ and neuron li′5 is left with a contents of the form
(a4)∗. This allows the module to be run repeatedly without adverse effects.

The ADD and SUB modules simulate the computation of M , but we still must
output the number generated by the computation. This is handled with the FIN
module (Figure 9), which is triggered when M reaches the lh : HALT instruction.
At this point a single spike is sent to neuron 1, which thus contains an odd number
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Fig. 9. The FIN module

of spikes. This causes the neuron to spike once every time unit deleting 2 spikes
each time. The spikes of neuron 1 are sent to neurons h1 and out. Neuron out will
initially spike one step after neuron 1 first spikes and it will spike a second time
one step after neuron 1 spikes for the last time. (These are the two times when
neuron out contains an odd number of spikes.)

The equality N(M) = N2(Π) is clear. Let us now note that the maximal delay
used in Π is 1 and that the outdegree can be reduced to 2 in the way indicated in
the previous section. These observations conclude the proof.

The previous construction makes an essential use of the possibility of leaving
spikes in the system after halting, hence it cannot be extended to the case of the
strong halting.

7 Simplifying the Regular Expressions

Let us now pass to the problem of simplifying the regular expressions used in the
firing rules. Already in the proofs from [2], [7], as well as in Theorems 2 and 5,
one always uses rather simple expressions, in most cases checking the parity of the
number of spikes from neurons. Rather surprisingly, still simpler expressions can
be used – actually, the simplest over alphabet {a}: ai, i ≥ 1, and a+.

In fact, the proof construction shows that even stronger restriction can be
imposed. Every neuron contains at most one rule a+/ar → a; t or ar → a; t,
and at most one rule as → λ, with s < t ≤ 2, with the only exception being
neuron c4 in Figure 11, which must be non-deterministic in order to simulate non-
deterministic register machine. This result can have a biological interpretation
(hence motivation): each neuron fires whenever its inner potential (measured in
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number of spikes) reaches or exceeds the threshold r. If the threshold is not reached
within a time unit, then the inner potential can spontaneously decay using the
forgetting rule.

We give this result in the stronger form, already for the case of the outdegree
bounded by two. Simultaneously we also improve the numerical parameters cons
and forg in [2, 7], necessary for reaching the computational universality. We remind
that the class of number sets generated by spiking neural P systems with simple
regular expression is denoted by Spikβ

αP∗(rule∗k, consp, forgq, dleyr, outds). The
notation rule∗ indicates the fact that regular expression are restricted to the forms
ai, i ≥ 1, or a+, while the other parameters are as in Section 3.

Theorem 6. Spikβ
2 P∗(rule∗2, cons2, forg1, dley2, outd2) = NRE, where either

β = h or β is omitted.

Proof. The proof generally follows the same principles applied already in Section
4. We start again from a register machine M = (m, H, l0, lh, I), and construct a
spiking neural P system Π simulating M and spiking only twice, at an interval
of time which corresponds to a number computed by M . The crucial part of
the construction is the implementation of registers with dynamical circulation of
spikes. The construction is described in Figure 10. The numbers attached to edges
denote moments of emitting spikes.

Step 1 2 3 4 5 6 7 (=1) . . .
Neuron

r a+/a → a; 2 — ! — — — . . .
al1 — R — R — — — au

s — — — a → a; 1 ! — . . .
— — — ar — R — —

t — — — a → a; 1 ! — . . .
— — — ar — R — —

u — — — — — a2 → a! . . .
— — — — — asat —

Table 1. The functioning of the dynamical register storing the value 1

The number of spikes in the closed cycle r−s, t−u corresponds to the number
n stored in the register, if we count the pair of spikes simultaneously received and
later emitted by neurons s and t as one spike. This is an important difference
from the previous universality proofs, where the number n was represented by 2n
spikes.

Assume first that there is a spike sent to neuron r at step 1 (this represents
the operation of increment). The behavior of the register storing the value 1 is
described in Table 1. The rules in the table denote firing of neurons, while the
marks ! denote moments of emitting spikes; R in the table means that the neuron is
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Fig. 10. A register with a dynamical circulation of spikes, storing a value n ≥ 1

in its “refractory” state in that clock cycle. One can observe that the computation
is cyclic, repeated every six steps. Notice that until neuron v receives a spike from
outside (which represents the operation of decrement), neurons v, x, and y cannot
fire and hence cannot influence the behavior of the register.

Now, let us assume that the register stores a value n > 1. The corresponding
computation is described in Table 2. One can notice that in this case the six steps
cycle actually consists of two identical halves as steps 1, 2, and 3 are identical with
4, 5, and 6, respectively.
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S. 1 2 3 4 (=1) 5 (=2) 6 (=3) 7 (=1)
N.

r ! a+/a → a; 2 — ! a+/a → a; 2 — !
auan−2 an−2 R an−2 R auan−2 an−2 R an−2 R auan−2

s — a → a; 1 ! — a → a; 1 ! —
ar — R — ar — R — ar

t — a → a; 1 ! — a → a; 1 ! —
ar — R — ar — R — ar

u a2 → a! — — a2 → a! — — a2 → a!
— — asat — — asat —

Table 2. The functioning of the dynamical register storing a value n > 1

S. 6 1 2 3 4 5 6
N.

r — ! a+/a → a; 2 — ! a+/a → a; 2 —
an−2 R auan−2 an−2 R an−2 R an−2 an−3 R an−3 R

s ! — a → a; 1 ! — a → a; 1 !
— ar — R — ar — R —

t ! a → a; 1 ! — — a → a; 1 !
ax — R — — ar — R —

u — a2 → a! — a → λ a → λ — —
asat — at as — — asat

Table 3. Operation SUB removing one spike from the register storing a value n > 2

Finally, the operation of decrement can be implemented by de-synchronizing
the spikes received by neuron u. Assume that the register stores a value n > 2. Let
a spike be emitted to neuron v at step 3. Consequently v spikes at step 4 and x at
step 6. Then the neuron t fires at step 1 and spikes at step 2 of the next cycle and
the spike sent at the same time from r to t at step 1 is lost since t is closed during
that clock cycle (refractory period). Therefore neuron t spikes at step 2 while s
spikes at step 3. Consequently, both these spikes emitted to u are forgotten by
the rule a → λ. Table 3 summarizes the described behavior. When comparing the
situation at step 6 of the first and the second cycle, one can observe that indeed
one spike was removed from the register. Notice that in this case neuron y does
not spike at all. The reason is that w receives a spike from s at step 3 and hence
spikes at step 5. The spike emitted from v to w at step 4 is lost as w is in the
refractory period that step. Both spikes emitted from w and x to y at steps 5 and
6, respectively, are forgotten.

The case n = 2 is analogous, the only difference is that neuron r does not
fire at step 5 and keeps n − 2 (i.e., zero spikes) during steps 5 and 6. The next 6
steps are thus different as at step 1 we will not have r spiking, thus s and t will
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Fig. 11. Module ADD (simulating li : (ADD(r), lj , lk))

not receive any spike and they will remain inactive up until step 4 when r will
spike next. The case n = 1 differs mainly by the fact that neuron y spikes at step
3. Consequently, at step 4 neuron t is blocked when r spikes, and the last spike
circulating in the register is lost. Details are left to the reader.

Simulating an ADD instruction li : (ADD(r), lj , lk) – module ADD (Figure
11).

The function of the module ADD is similar to that described in the proof
of Theorem 2, Figure 1. At step 1 neuron li emits a spike to r which, by the
above description of a register, causes its increment. Simultaneously the spike is
passed to neuron ci1 and then to ci2, ci3, ci4, and ci5. Neuron ci4 chooses non-
deterministically whether it emits a spike at step 4 or 5. In the former case neuron
ci7 fires at step 5 and the computation continues by instruction lk. In the later
case neuron ci6 fires at step 6 and the computation continues by instruction lj .
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Note that the whole simulation is artificially prolonged to 12 steps; the reason
for which we need to use 12 steps will be explained below. Also, in Figure 11 we
did not specify the register r because the output register 1 (which can be only
incremented but never decremented) has a different structure than an “ordinary”
register as described in Figure 10.

Simulating a SUB instruction li : (SUB(r), lj , lk) – module SUB (Figure
12).

Let us assume that at step 3 a spike is emitted from neuron li to v. This
spike starts the de-synchronization of the register described in Table 3. Hence,
if the register stores a value n > 0, then it is correctly decremented by one.
Simultaneously, in this case neuron t emits a spike at step 6, consequently ci4

spikes at step 7 and the computation continues by instruction lj . At the same
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time, the spike emitted by ci4 prevents ci7 from firing at step 11 by the same
de-synchronizing method as explained above (by putting ci5 in refractory state for
step 8, thus the spike from ci2 to ci5 is lost). Then ci7 receives one spike at step 9
and one in step 10, both of which are forgotten.

If the register stores zero, then neuron ci4 does not spike at step 7. Conse-
quently, ci7 receives two spikes at step 10, fires, and the computation continues by
instruction lk.

On the other branch, ci4 receives only one spike at step 6, which is “forgotten”
at step 7, thus no spike arrives in lj . It is easy to note that if the neuron t spikes
at time 6 only (as it does for n = 1) or spikes at step 3 and 6 (this happens for
n > 2) or at times 6 and 5 (for simulating SUB for n = 2) etc., all these times the
spike(s) is/are forgotten at the next step unless we have a second spike from ci1

to ci6.

Ending a computation – module FIN (Figure 13).
Assume now that the computation in M halts. For Π this means that the

neuron lh receives a spike. At that moment, the cycle consisting of neurons 1 and
c1 contains n spikes, for n being the contents of register 1 of M . Recall that register
1 is never decremented. Also, since we do not care about the computed value 0,
we can assume that n ≥ 1. Thus, at least one instruction li : (ADD(1), lj , lk) had
to be performed during the computation of M. By the above description, every
instruction ADD or SUB is simulated in exactly 12 steps of Π. Furthermore, a
register is incremented such that it receives a spike at step 1 of this 12 steps cycle.
Thus, neuron 1 fires every even step if n = 1, and every step if n > 1.

Let us pay now attention to neurons c4, c5, and c6. Observe that c4 contains
already one spike at the beginning of the computation of Π. There are two possible
patterns of behavior.

(i) If n = 1, then c5 emits spikes every odd step. Hence, measured from the
beginning of the instruction li : (ADD(1), lj , lk), neuron c4 spikes at steps 4k,
k ≥ 1, and neuron c6 spikes at steps 4k + 2, k ≥ 1.

(ii) If n > 1, then c5 emits spikes every step. Hence, similarly, neuron c4 spikes at
steps 2k + 2, k ≥ 1, and neuron c6 spikes at steps 2k + 3, k ≥ 1.

The above periodicity is the reason for fixing the length of ADD and SUB
instructions to 12 steps. As “ordinary” registers work in 6 or 3 steps cycle, and
register 1 works in 4 or 2 steps cycle, the least common multiple is 12.

Let us return now to the simulation of the instruction HALT. After its activa-
tion, the neuron lh emits a spike to c1 and c2 at step 2. Neuron c1 gets simultane-
ously another spike from neuron 1 and it is blocked – cannot fire any more. Hence
neuron 1 decreases step by step the number of spikes it contains, and it fires the
last time at step n+1. The reader can verify that if n = 1, then neuron c4 fires the
last time at step 4, and neuron c6 does not fire any more. If n > 1, the situation
is more complicated:

(a) if n is odd, then c4 fires the last time at step n + 3 and c6 at step n + 2;
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Fig. 13. Module FIN (ending the computation)

(b) if n is even, then c4 fires the last time at step n + 2 and c6 at step n + 3.
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The above observations can be generalized as follows: for an arbitrary n ≥ 1,
the last spike any of the neurons c4, c6 emits is sent at step n + 3.

Let us focus now on the rest of the module FIN. After its activation, the neuron
c2 fires at step 3. Consequently one spike starts to circulate between neurons c7

and d7 such that c7 fires at steps 4+2k, k ≥ 0, and d7 fires at steps 5+2k, k ≥ 0.
Spikes from c7 and d7 are further emitted to c8 and d8, respectively.

We can now observe that the groups of neurons c8 − c11 and d8 − d11 are de-
synchronizing circuits exactly as those used for implementing the instruction SUB.
Whenever neurons c4 and c6 fire, these circuits stay de-synchronized and neither
of the neurons c11, d11 can emit a spike. Only after c4 and c6 emit their last spike
at step n + 3, the pairs c9 and c10 (or d9 and d10) can fire simultaneously at step
n + 6 and, consequently, exactly one of c11 and d11 fires at step n + 8. From that
step on, c11 fires at every even step and d11 fires at every odd step.

Finally, the neuron c3 spikes at step 8 and hence neuron out spikes first time
at step 9. Later, due to the above explanation, it receives another spike from c11

or d11 at step n+8 and spikes a second time at step n+9. Simultaneously at step
n + 9 the neuron out receives two spikes (one from c12 and one from either c11 or
d11) and cannot spike any more. Hence the system Π correctly simulates M and
outputs exactly the value n calculated by M.

Final proof remarks
The whole program I of M can be represented by a spiking neural P system

Π consisting of modules ADD, SUB, and FIN presented above. These modules
correspond to instructions ADD, SUB, and HALT and correctly simulate their
execution, as shown above. Notice that at the beginning of computation, there are
two spikes in Π, one in the neuron l0 corresponding to the initial instruction of P,
and another one in the neuron c4 of the module FIN. (Because I contains a single
instruction HALT, it follows that Π contains a single module FIN.)

To conclude the proof, a few more technical observations need to be made.
First, we used in the above described modules a few neurons with the spike delay
more than two (namely c3 from FIN, c6 from SUB, and c6, c7 from ADD) to
simplify the construction. However, each of them can be trivially replaced by a
sequence of “delaying” neurons with delays ≤ 2. Hence the parameter dley in the
theorem statement is reduced to two.

Second, the modules ADD, SUB, and FIN use only neurons with outdegree
≤ 2. However, one should notice that if there existed k > 1 instructions SUB
decrementing the same register r, then we would need multiple connections from
neuron t described in Figure 12 to neurons c4 corresponding to these instructions.
In this case the outdegree of neuron t can be reduced to two by the construction
proposed in Figure 6. However, this construction would introduce a certain delay
in the simulation of the instruction SUB proportional to log2 k. As each instruction
must be simulated in a multiple of 12 steps, we would have to increase the delay to
the closest higher multiple of 12 and increase accordingly also the delay of neuron
ci1 from Figure 12. The delay in ci1 can be performed using the suggestion from
the previous paragraph, thus the overall delay will still be kept at 2.
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Third, the described P system Π does not necessarily halt after generating the
output – emitting two spikes from the neuron out. There still can be circulation
of spikes in the modules corresponding to registers with nonzero values, and also
between neurons c7 and d7 of the module FIN. If we wanted the system Π to halt,
we should modify our construction as follows.

We add a connection from neuron c12 to c7 in the module FIN described in
Figure 13. From step n + 9 on, the neuron c12 fires at every step. Hence in one
of the steps n + 9 and n + 10 neuron c7 receives simultaneously two spikes (one
from c12 and one from d7) and cannot fire any more. After emitting the last spike
from neuron d7 and passing it through the cascade of neurons d8 − d11 and c12,
the system halts. (Remember that we assume the register machine M to halt with
all registers empty, excepting register 1.)

Based on the above construction, we have shown that NRE ⊆ Spikβ
2 P∗(rule∗2,

cons2, forg1, dley2, outd2), where β = h or β is omitted. The reverse inclusion
follows by the Church-Turing thesis, and this concludes the proof.

We note that Theorem 6 remains valid when the number of spikes accumu-
lated in the output neuron is considered as the output of the system. In this case
the whole module FIN will be reduced to a single (output) neuron 1 which will
accumulate spikes during the computation of Π.

It remains an open problem whether the above described normal form also
holds in the case of (deterministic) accepting SN P systems.

8 Final Remarks

We have shown in this paper that the Turing completeness of spiking neural P
systems is preserved even if we only work with systems with delay 0 in the firing
rules, and/or with the maximal outdegree of the synapse graph being two, or with
the regular expressions from the firing rules of the simplest form, ai, i ≥ 1, or a+.
Also, universality was obtained when no forgetting rules have been used. These
results have been achieved at the price of slightly increasing other parameters, in
particular, the number of spikes consumed in the firing rules. In general, finding
the optimal number of spikes which are consumed remains as an open problem.

We have also shown that the limitation of the maximal outdegree to two can
be combined with delay 0 in the firing rules, or with the simplest form of regu-
lar expressions without losing the computational universality. It remains an open
problem whether the simultaneous limitation to delay 0 and to the simplest form
of regular expressions would still be computationally universal.

Similarly, as already pointed out in the end of Section 5, it is an open problem
whether we can also bound the indegree of the synapse graph without losing the
universality.

Another interesting research problem is to extend the results from this paper
to SN P systems with a bounded number of spikes in their neurons, hence to
prove again the characterization of NREG from [2], [7] for SN P systems without
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delay, with outdegree 2, or with regular expressions as in Theorem 6. Also the
extension to processing infinite sequences of bits, as investigated in [8], should be
investigated.
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