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THE ROAD TO MODERN LOGIC—AN INTERPRETATION

JOSÉ FERREIRÓS1

Abstract. This paper aims to outline an analysis and interpretation of the process that
led to First-Order Logic and its consolidation as a core system of modern logic. We begin
with an historical overview of landmarks along the road to modern logic, and proceed to a
philosophical discussion casting doubt on the possibility of a purely rational justification of
the actual delimitation of First-Order Logic. On this basis, we advance the thesis that a certain
historical tradition was essential to the emergence of modern logic; this traditional context is
analyzed as consisting in some guiding principles and, particularly, a set of exemplars (i.e.,
paradigmatic instances). Then, we proceed to interpret the historical course of development
reviewed in section 1, which can broadly be described as a two-phasedmovement of expansion
and then restriction of the scope of logical theory. We shall try to pinpoint ambivalencies
in the process, and the main motives for subsequent changes. Among the latter, one may
emphasize the spirit of modern axiomatics, the situation of foundational insecurity in the
1920s, the resulting desire to find systems well-behaved from a proof-theoretical point of view,
and the metatheoretical results of the 1930s. Not surprisingly, the mathematical and, more
specifically, the foundational context in which First-Order Logic matured will be seen to have
played a primary role in its shaping.

Mathematical logic is what logic, through twenty-five
centuries and a few transformations, has become today.
(Jean van Heijenoort)

While trying to outline and interpret the process leading to modern logic,
we shall focus on First-Order Logic, because its development is indiscernible
from the rise ofmodern logical theory. It will bemy contention that, contrary
to a frequent assumption (at least among philosophers), First-Order Logic
is not a ‘natural unity’, i.e., a system the scope and limits of which could
be justified solely by rational argument. There is reason to think that, like
so many other conceptual systems, First-Order Logic—hereafter FOL—is
the sound and satisfactory outcome of a fascinating combination of rational
argument and historical contingencies. In accordance with that viewpoint,
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we shall analyze the main factors in the genesis of modern logic, that is,
the motives for changes that happened between roughly 1850 and 1950. We
shall begin with a sketch of historical landmarks along that process, and then
proceed to a more careful analysis of the traditional conception of logic and
its modern transformations. It will certainly not come as a surprise that in
my view the mathematical context in which FOL matured played a primary
role in its shaping. By interaction with traditional views regarding logic, this
broad source of motives started a two-phased movement, leading first to a
great expansion in the scope of logic, and subsequently, under increasing
constraints linked with research into the foundations of mathematics, to a
progressive restriction.
Perhaps more surprising will be my use of the Kuhnian notion of an ex-
emplar as an extremely useful tool in understanding the historical evolution
of this branch of modern mathematics.2 I would go as far as saying that
I consider this notion capable of shedding much light on the development
of branches of mathematics in general. Obvious examples could be found
in the case of modern abstract algebra, specifically in the exemplary role
played by group theory. First-Order Logic itself has served as the para-
digm for a modern logical system and its metatheoretical study (it can be
argued that the treatment of other systems, e.g., modal logic, has mimicked
that of first-order logic). In this connection, readers might consider the
present paper as a case-study in the employment of that Kuhnian tool for
the historiographical and philosophical analysis of mathematics.
Of course, many details in the following historical narrative are not new.
This is to be expected, since by now the evolution of FOL has been subjected
to much scrutiny on the side of philosophers and historians. Nevertheless, I
expect my overall argumentation to offer a new perspective on the process,
thus stimulating both historians and philosophers to novel considerations.

§1. Historisches: traces from the past. Historiographically speaking, there
are many possible ways of analyzing the development of any discipline, but
commonly it is unwise to embrace too exclusively one approach. In the early
decades of the 20th century, it was a great improvement that historians (like
Łukasiewicz) began to deploy the new technical tools of modern logic for an
analysis of past approaches. But as any trained historian knows, excessive
passion for the technical details, and concentration upon the emergence
of the main results of a discipline (as judged from our standpoint), may
easily lead to whiggism. In this way, it seems, historians of logic have
tended to forget some of the complexities with which the historical road to
modern logic confronts us. In particular, I aim to emphasize that the very

2Readers should keep in mind that I shall refrain completely from employing the broader
andmuch vaguer notion of a paradigm, in the sense of what Kuhn once termed a ‘disciplinary
matrix’.
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notion of logic has gone through notable historical changes, even among
the partisans of formal logic—the only trend of concern to us here. Parallel
phenomena are familiar to historians of mathematics, physics, etc., but in
the case of logic there is a characteristic tendency to ignore historical shifts
in the delimitation of the subject.
Let me give a simple example. In the early decades of the twentieth
century, the paradoxes of logic and set theory grew to almost legendary
proportions. It was usually emphasized that their discovery had been a
great and consequential event in the development of logic. Meanwhile, the
secondary literature of the second half of that century on the history of
FOL hardly mentions the paradoxes at all. In the midst of a plethora of
technical details concerning language, theory and metatheory, one may not
even find a single mention of set theory. One can explain the discrepancy by
considering that the secondary literature frequently presupposes the present
notion of logic, as if it were ahistorical. While concentrating upon technical
details, historians have tended to forget changes in the overall conception of
the subject.
To counterbalance this tendency, I shall lookat the development ofmodern
logic, so to say, from above (focusing on its relations with set theory and
the foundations of mathematics) and not from below (focusing only on the
elementary levels of logical theory). It will not be my purpose, in the present
section, to offer a more or less complete description of the history of FOL,
since this topic has been very well researched.3 My aim is just to indicate
what I regard to be some key historical traces that shed light on the evolution
of the conception of logic, including the changing conceptions of its scope
and contents.
1.1. Expanding to contradiction. The road to modern logic began, some
time around 1850, with a huge thematic expansion. This expansion is in-
timately linked with the confluence of two traditions: the classical, philo-
sophical tradition of logic, and the tradition of mathematics.4 Philosophical
conceptions of logic have been complex and varied; here we are only inter-
ested in the tradition of ‘formal logic’, and formal logic meant the theory of
the syllogisms—above all the Aristotelian syllogisms but also the so-called
hypothetical and disjunctive syllogisms. In the late 19th century, under pres-
sure from interest in analyzing the logic of mathematics, the scope of logic
broadened immensely, until logical theory embraced the theory of sets and
the theory of relations, together with themore elementary levels of sentential
and predicate logic. Compare Russell’s depiction:

3See, e.g., the writings of Goldfarb [32], Dreben & van Heijenoort [19], and Moore
[45], [47].
4Above all algebra and axiomatics, but also analysis. On this topic, see Grattan-Guinness

[34], Peckhaus [52], Ferreirós [21], [23].
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The subject of symbolic logic is formed by three parts: the cal-
culus of propositions, the calculus of classes, and the calculus of
relations.5

The same point becomes clear if one reads the work of Peano and his school,
of Schröder, or of Frege. It comes out clearly, too, in the very existence of a
logicistic philosophy of mathematics.
AsRussell wrote, also in 1903, it was one of themost important discoveries
of the time that all of mathematics is just symbolic logic.6 Some writers
(particularly Quine) have emphasized that logicism did nothing but reduce
mathematics to elementary logic and set theory. Why was this interpreted
to be an extremely illuminating reduction? Precisely because set theory was
regarded as a mere province of logic. The rationale for that ascription was,
on the one hand, the idea that ‘is’ is a logical particle and, on the other, the
principle of comprehension (see §3.3). The comprehension principle, even if
frequently unstated, was a key ingredient of the logical systems of Peano,
Frege, and Russell.
Needless to say, the formal systems of Frege and Russell, including as they
did not only higher-order logic but also set theory, are very different from
modern First-Order Logic. Incidentally, it is worth reminding the reader
that, while it is true that Frege’s system [24] is quite close to a modern formal
one, some of his notational simplifications give rise to a deceitful appearance
that the system is essentially a modern first-order one. Upon more careful
reading it becomes clear that Frege’s system is higher-order throughout, and
that he actually deployed higher-order logical tools (this is explicit in the
theory of series contained in the last part of Begriffsschrift). Later, in his
magnum opus [25], Frege introduced what he regarded as one of the most
fruitful enrichments of his ideography—notation and an axiom for classes,
embodying the principle of comprehension. The theory of sets or classes,
as based on the principle of comprehension, was proven contradictory by
the so-called logical (presently set-theoretical) contradictions, paradoxes, or
antinomies. Russell’s paradox was particularly striking because of its for-
mulation in terms of the most basic ‘logical’ notions—class or set, negation,
and membership. The contradictions led to a radical revision of the foun-
dations of set theory, its relation to logic, and the relations between logic
and mathematics. In this way, they affected strongly the conception of logic.
This seems to be one of the most important ways in which they constituted
a consequential event for modern logic, though of course they did not lead
to a single new theorem or metatheorem. It is also very important that the
paradoxes (particularly what we call the semantic ones) may have been the
most significant factor promoting a strict formalization of the language of
mathematics, after 1900.

5Russell [60], §13.
6Russell [60], §4.
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1.2. The age of type theory. With the paradoxes, the expansion of logic
was brought to a halt, and a period of progressive restriction started. Among
the systems of logic designed to cope with the paradoxes, themost influential
was Russell’s Theory of Types, incorporated into the monumental Principia
Mathematica, written jointly with Whitehead. The theory of types was de-
signed to rescue logicism from the contradictions, by preserving the principle
of comprehension restricted by the doctrine of types. This logical system,
proposed by Russell in 1908 [61], marked the evolution of logic for the next
quarter century.
Offering a detailed description of type theory is not an easy task, especially
if one aims to present Russell’s original system, in which the doctrine of types
was supplemented by the vicious circle principle (suggested by Poincaré and
forbidding what we call ‘impredicative definitions’). This very complex
original system was labeled ramified type theory, in order to distinguish it
from the system favored by logicians after 1925, the so-called simple type
theory. Using simple type theory was suggested by Chwistek and Ramsey,
the latter on the basis of the now-usual distinction between set-theoretic and
semantic paradoxes.7 Ramsey did not use those names, but called “logical”
the paradoxes of set theory, and described the semantic paradoxes (Tarski’s
name) as linguistic, psychological, or in some sense epistemic. But, at any
rate, at this point we are not interested in a description of simple type theory.
What is of relevance here is that as late as 1930 type theory was still regarded
bymathematical logicians as themost important and natural system of logic.
Interestingmaterial for an evaluation of this issue can be found in the well-
known contributions to a Symposium on the foundations of mathematics
held at Königsberg in 1931 (whereGödel announced his first incompleteness
theorem). In his talk, Carnap outlined simple type theory andwent on to say
that “most proponents of modern logic consider [this system] legitimate and
necessary”.8 This suggests that type theory was acknowledged as the natu-
ral system of symbolic logic, which is actually confirmed by von Neumann’s
address. VonNeumann did not enter into details concerning the axiomatiza-
tion and formalization of classical mathematics because, as he said, Russell
has given a “thorough and exact description of its methods—both the good
and the bad”.9

Indeed, there aremany indications that this was the common opinion. The
first really modern treatise of formal logic is not Principia Mathematica, but
Hilbert & Ackermann’s Grundzüge der theoretischen Logik [37]. The book
is noteworthy because here one can find, for the first time in a treatise on
logic, a study of FOL as a separate system (under the name of “restricted

7Ramsey [59].
8Carnap [7], 46.
9Von Neumann [75], 61; also 64: “Russell and his school have almost completely accom-

plished tasks 1–3”.
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functional calculus”), posing the question of its metatheoretical properties,
e.g., completeness. But FOL appears only as an interesting subsystem,
and the work culminates by presenting the so-called “extended functional
calculus”, a peculiar version of the theory of types. Moreover, the authors
show by examples that higher-order logic is necessary in order to analyze the
notions of mathematics.10 The main reason for focusing on the first-order
subsystem was that, for the purposes of developing Hilbert’s Beweisstheorie,
it was convenient to proceed step by step from the simplest to the most
complex systems. One year later, Carnap’s Abriss der Logistik [6] deals with
simple type theory, the same being also the case in his most important work,
Logische Syntax der Sprache, and later.
Nevertheless, the most interesting examples can be found in two of the
most influential articles of 20th century logic, Gödel’s ‘On Formally Un-
decidable Propositions’ [29] and Tarski’s ‘On the Notion of Truth’ [67].11

As Quine remarked, these two papers offer “the now classical thumbnail
formulation” of simple type theory.12 This is actually the system in which
Gödel formalizes Peano arithmetic in order to prove its incompleteness, and
the system for (any fragment of) which Tarski proposes his definition of
truth. As a matter of fact, Tarski even goes on to offer a philosophical
argument attempting to show that type-distinctions are a necessary trait of
any scientific language whose sentences may have a clear intuitive meaning
at all.
1.3. Constructivistic interlude. In his 1931 address, Carnap suggested that
only the “intuitionists” proposed the deviant system FOL as the one to use
in the foundations of mathematics:

The difference between us lies in the fact that we recognize as
valid not only the rules of construction which the intuitionists use
(the rules of the so-called “restricted functional calculus”), but in
addition, permit the use of the expression ‘for all properties’ (the
operations of the so-called “extended functional calculus”).13

Carnap’s reference to the intuitionists is puzzling, since at the time Brouwer’s
school avoided completely reliance on formal systems of logic and mathe-
matics. Still, it is quite true that some authors of a constructivist tendency
had proposed FOL as the adequate system for foundational work.
That was the case with Hermann Weyl in his 1918 book Das Kontinuum
[77], and with Skolem in his illuminating paper on axiomatic set theory of

10Hilbert & Ackermann [37], 82–92. A later and more detailed example of the same is
Church’s famous [11].
11Originally published in 1933, Tarski’s piece was written around the same time as Gödel’s,

independently of his work.
12Quine [58], 11.
13Carnap [7], 52. Carnap follows the terminology of Hilbert &Ackermann [37], see above.
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1923 [64].14 Both of these authors were acting as critics of set theory and
abstract mathematics; it was precisely their reflections on Zermelo’s axiom
system that led them to focus on FOL, and in this regard their viewpoints
were essentially coincident. On the occasion of his Habilitation at Göttin-
gen and slightly later (roughly, 1909–1913), Weyl tried to perfect Zermelo’s
system and came to formulate a set of logical principles that, in essence,
amounts to a form of FOL.15 In the process, he started to doubt that ax-
iomatic set theory could be formulated without having recourse to the idea
of iteration (i.e., to the natural numbers), and this meant that set theory was
not an absolute foundation for mathematics. Therefore he abandoned the
“classical” side and went to the banks of constructivism. His new stand-
point, and a new formulation of the logical principles behind FOL, was
presented in Das Kontinuum.16

Meanwhile, in Skolem’s eyes it was crystal clear that axiomatic set theory
cannot be a satisfactory foundation for mathematics. After discovering, to
his surprise, that many authors thought differently, he presented in 1922 a
series of critical remarks on Zermelo’s system. Zermelo’s axiom of Separa-
tion had to be made precise, and he proposed to do so by using FOL. But
now the earliest metatheoretical result, the Löwenheim–Skolem theorem,
applied to Zermelo’s system with paradoxical results.
Both Weyl and Skolem argued that, when we work on the foundations of
set theory, reliance on the usual systems of higher-order logic would involve
a vicious circle, since those systems presuppose the acceptability of essential
traits of abstract mathematics (we shall review their arguments in §5.1). The
only valid alternative, in their eyes, was to use either predicative higher-order
logic or else FOL.17 The latter system was in better agreement with the aims
of axiomatization (Skolem) and it was much more convenient for actual
mathematical work (Weyl).
Notice that these proposals came, as a result of purely conceptual re-
flections, before any metatheoretical results were known that might speak
in favor of FOL—quite the contrary, given that the Löwenheim–Skolem
theorem shows a definite weakness in FOL and might be taken to argue
against it.
1.4. Restriction to FOL. With simple type theory, the scope of logic had
already been restricted, since set-theoretical notions were strictly regimented,
and especially because the axioms of Infinity andChoice came to be regarded
as properly mathematical ones, foreign to the ‘natural’ logical system, type

14For Skolem’s constructivist tendencies, see especially [66] and his paper on primitive
recursive arithmetic, using bounded first-order quantifiers. Carnap presented a system of
this kind in Logische Syntax der Sprache.
15Weyl [76].
16Weyl [77], 4–10. Weyl’s presentation was intentionally informal.
17Weyl [77], 21–23; Skolem [65], 516–517.
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theory. Thus, unlike 1900, by this time Cantorian set theory was beyond the
reaches of logic.
Yet up to then the restriction had been quite mild—type theory is still a
higher-order system that countenances the notion of class or set as a logical
one.18 Within a few years, a much stricter restriction would be adopted,
in agreement with the admonitions of Weyl and Skolem. During the 1930s
some key figures in the community of logicians came to pin-point FOL as
the basic system for actual research in logic and foundations. The context in
which this decision was taken was that of foundational work, more precisely
work on axiomatic set theory and Hilbertian metamathematics. In this way,
the mathematical context underscored its primacy and effected another turn
of the screw.
The earliest systems formalized in an elementary way, within FOL, were
actually axiom systems for set theory—the Zermelo system with the work
of Skolem [64], and Von Neumann’s system in his own work [73]. During
the 1930s several authors emphasized the fact that an axiomatization of set
theory, and therefore the foundations of abstract mathematics, only required
the FOL system. This was the case with Tarski in the appendix to [67], Quine
in [54], Bernays in [2], Gödel in [30] and [31]. Of course, recent advances in
the metatheory of logic due to Gödel constituted the clinching argument for
a restriction of logic to FOL (we shall review the main motives in §5).
After World War II, the rising community of logicians opted for FOL as
the natural system of logic, formal logic par excellence. Historians of science
are familiar with the fact that such profound changes rarely happen without
some resistance. We have the example of Church, who in his 1956 Intro-
duction to Mathematical Logic [11] followed the lead of Hilbert and kept
speaking for higher-order logic. But introductory courses in mathematical
logic concentrated more and more on FOL, presenting its study as the quin-
tessential example of how modern logic was to be done. Also around this
time we find the earliest philosophical partisans of FOL, as was notably the
case of Quine.19

Presenting in a nutshell the results of our quick historical overview, we can
say that around 1900 logic was conceived as a theory of sentences, sets and
relations; afterWorldWar I and as late as 1930 the exemplar formodern logic
was a higher-order system, simple type theory; and only around 1940–1950
did the community of logicians as a whole come to agree that the paradigm
logical system is FOL.

§2. Philosophisches: Is First-Order Logic a ‘natural unity’? Given those
historical traces, one is naturally led to wonder whether FOL constitutes

18Novel but less influential systems established in the same spirit during the 1930s were
those of Quine, NF and ML. See [22] and the literature cited therein.
19See Quine [56], chapters I and IV; and [57]. Also see [22].
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what might be called a natural unity. Is it a system that sooner or later had
to be adopted, once an interest in logical matters had arisen, or is it perhaps
a compromise between the natural and the contingent? In our discussion
of this question, the names of Frege, Hilbert, von Neumann, Tarski, and
Quine will be mentioned.
2.1. Purported definitions. Throughout history, philosophers have pro-
posed many diverse definitions of logic. Here I shall just examine a couple
proposedby influentialwriters, in order to show the implausibility of a purely
rational justification of the modern delimitation of (elementary) logic.
Let us begin with the young Willard Van Quine of Mathematical Logic
[55]. This work has the peculiarity of offering a beautifully simple argument,
that in its essence goes back to Aristotle, in order to justify Quine’s selection
of logical constants. Consider the many different languages employed in the
sciences—in zoology, geology, physics, mathematics. They are considerably
different since they employ different vocabularies. Yet it is not difficult to
notice that they share a number of elements, like ‘if . . . then’, ‘and’, ‘not’, ‘all’,
‘some’, the copula ‘is’. Logical vocabulary would then be this vocabulary
of universal applicability, while the rest belongs in the different sciences. To
put it more clearly, logical vocabulary is defined as the intersection of the
vocabularies of the special sciences.20

The argument seems promising at first sight, but upon more careful con-
sideration it leads to peculiar results. Let us see an example. All sciences,
even textbook mathematics, employ particles such as ‘but’ and ‘in spite of’,
or like the conditional in its most frequent sense of expressing a content-
relation between the antecedent and the consequent. Such particles are the
subject matter of relevance logic; therefore, some form of relevance logic
should become a key ingredient of logic as defined by Quine. Odd result, for
Quine has been an opponent of non-classical logics.21

But the most interesting example is offered by Quine himself. Given the
universal use of the copula ‘is’, his 1940 book presented set theory (under
the formal version of the system called ML) as an integral part of logic.
Frequently the meaning of ‘is’ in natural language can be rendered in terms
of membership or else inclusion, basic relations of set theory. Therefore,
elementary logic ought to include some form of set theory, as was the case
with Frege, Dedekind, Peano, Schröder, Russell, and Quine. However,
Quine himself rejected this conclusion some years later; in 1970, while still
talking about the universal character of logic, he was referring to FOL
and excluding sets explicitly.22 (The conclusion that the copula is not a

20Quine [55], p. 21 of the Spanish edn.
21At an immediately lower level of universality we would find relations of cause and effect,

so perhaps at the next level of logical or semi-logical theory we ought to rescue Leibniz’s
principle of sufficient reason.
22Quine [57].
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syncategorematic term had been anticipated by DeMorgan as early as 1858:
he regarded ‘is’ as a mere example of an asymmetric and transitive relation,
and concluded that the copula is not a purely logical connective; rather, he
said, it is as material as the relation “grandfather of”.23 Had this viewpoint
won the day, the history of logicwould have been quite different, and logicism
would never have arisen.)
Let us take a second definition formulated by the master himself, Gottlob
Frege, in his late paper ‘Der Gedanke’ [28]. The paper begins with the
following memorable text:

Just as ‘beautiful’ points the way for aesthetics and ‘good’ for
ethics, so does a word like ‘true’ for logic. All sciences have truth
as their goal; but logic is also concerned with it in quite a different
way: logic has much the same relation to truth as physics has to
weight or heat. To discover truths is the task of all sciences; it falls
to logic to discern the laws of being true.24

Frege assigns to logic the task of discerning or even decreeing the laws of
being true. This may seem a puzzling statement, given that logical inference
is indifferent to the truth or falsehood of premises, but take into account
that Frege is talking about the laws of being true, not about criteria for truth
[28, 352]. Be that as it may, we shall just preserve and consider the idea that
the logical laws and the logical constants stand in a peculiarly direct relation
to truth and falsehood.
This approach seems very satisfactory in connection with sentential logic.
Propositions (in Frege’s terminology, thoughts) are precisely that which may
be true or false; the logical connectives express all possible combinations
between sentences with respect to their truth-value; the logical axioms are
true irrespective of the truth-values of their constituents; and the rules of
inference codify principles for the preservation of truth. However, there is
no reason to think that Frege’s definition might lead to a delimitation of
elementary logic in accordance with FOL. It would rather seem that, on
this definition, the scope of elementary logic would not go beyond classi-
cal sentential logic. (The same happens with Wittgenstein’s definition or
elucidation of logic in terms of tautologies.25)
From an intuitive semantic standpoint, it seems clear that there is a huge
disparity between the connectives and the quantifiers. The connectives are
truth-functions, operators connecting sentences with sentences; they form
complex sentences, whose truth-conditions depend univocally on those of
their constituents. On the other hand, the quantifiers are operators that
involve reference to a universe of discourse, an element that is completely

23De Morgan [15], 218.
24Frege [28], 351, with slight modifications in the translation.
25See Tarski [69].
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foreign to the sentential calculus. In a rough first approximation, the quan-
tifiers can be regarded as operators affecting the ambits of discourse—or,
better, specifying whether the whole universe of discourse, or just part of it,
complies with that which the sentence states. (Actually, the quantifiers are
more complex, since when employed in combination theymake it possible to
express complex relations between elements of the universe of discourse; but
I prefer not to enter into technical complexities.) What I wish to emphasize
is that, from an intuitive semantic standpoint, it is quite dubious that the
different logical particles form a ‘natural unity’. This parallels what happens
at the metalogical level, with the sentential calculus being decidable while
the predicate calculus is not.

It seems impossible to construct a satisfactory argument to the effect that
the quantifiers are in a particularly close relation to truth and falsehood. But
assume, for the sake of the argument, that one has one such justification for
treating relations and quantifiers as a part of logic. Would this warrant the
restriction of quantifiers to range only over individuals? It seems not, and
we would be in the same situation as Frege, Russell, Hilbert and Church,
safely placed in the realm of higher-order logic. And, if quantifiers are to
be included within the scope of logic, why not the natural numbers? After
all, number words belong in the common vocabulary of all the sciences (see
Quine’s definition above), and this was actually De Morgan’s proposal with
his numerical quantification. To give an example of my own, the following
inference could be analyzed beyond the sentential level (‘and’, ‘4’, ‘9’ and
‘13’ would belong in its logical form): “I have four apples and nine pears on
my kitchen table; therefore, I have thirteen fruits on my kitchen table”.

We do not need to enter into a discussion of other purported definitions of
logic. I venture to say that all attempts at explaining or justifying the exact
scope and the unity of logic from first principles, at showing that logic is a
single perfectly defined unity, confront similar difficulties. This is not to say
that one cannot find a satisfactory definition of logic, but any such definition
will allow a measure of arbitrariness.

After all, what I am saying seems in agreement with an old warning of
Tarski. While offering his classic analysis of the basic notion of logical
consequence, he emphasized that his elucidation was relative to a particular
selection of logical constants, and that an unavoidable vagueness surrounds
this issue.

Underlying our whole construction is the division of all terms
of the language discussed into logical and extra-logical. This
division is certainly not quite arbitrary. . . . On the other hand, no
objective grounds are known tomewhichpermit us todrawa sharp
boundary between the two groups of terms. It seems to be possible
to include among logical terms some which are usually regarded
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by logicians as extra-logical without running into consequences
which stand in sharp contrast to ordinary usage.26

Tarski probably had in mind, again, the copula as a bone of contention
between those who regarded set theory as a part of logic, and those who
rejected this view. In my opinion, however, a similar issue arises already with
the connectives and the quantifiers. Fixing the logical constants will always
be, to some extent, a matter of convention. (But perhaps I should make
explicit that, in my view, very few decisions can be purely conventional—and
this one concerning logic is certainly not.)
2.2. Is sentential logic all there is? I asked above whether FOL is a system
that sooner or later had to be adopted, once an interest in logical matters had
arisen. It does not seem so, but starting in §3 I shall try to explain why the
system was actually adopted. Still, as far as I can see it seems very plausible
that sentential logic is indeed a system that sooner or later had to be adopted
(modulo an interest in theorizing in the indicative mode). That suggests the
question which opens this subsection.
Indeed, the viewpoint that logic proper is nothing but sentential logic had
some proponents in the history of our subject. Controversy over that thesis
was the great divide separating the Aristotelians from the Stoics, which of
course stand as the greatest partisans of logic-as-connective-theory. But
even in contemporary times, members of the Hilbertian school showed a
tendency to restrict logic proper to the theory of the connectives. Here we
notice the impact of the foundational atmosphere surrounding the emergence
of modern logic.
Hermann Weyl seems to have been the first who, in Das Kontinuum [77],
labeled quantificational deductions as “transfinite inferences” [transfinite
Schlußweisen]. In the context of constructivist criticism of abstract mathe-
matics and set theory, that denomination implies that quantification theory is
open to doubt and in no way can be presented as evident. This contradicted
old convictions regarding what logic ought to be (particularly the second
guideline in §3.1 below). Authors of this period thought that, if anything
deserves the name of logic, it must be acceptable to both constructivists and
classicists, it must be in some sense ‘finite’.
The logicians in Hilbert’s group, too, during the 1920s, consistently called
the basic propositions of quantification theory “transfinite axioms”, a ter-
minology which again implies that they properly pertain to abstract math-
ematics. (This may reflect the influence of Weyl, for it is likely that Hilbert
knew at least parts of his work, begun at Göttingen in the early 1910s,
and it is certain that Hilbert’s collaborator Bernays knew it.) Hilbert him-
self contrasts the propositional layer of “finite logic” with the “transfinite
propositions of our usual mathematics”. He asks where is it that we first go

26Tarski [69], 418–419; see also 420.
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from the finite and intuitive over to the transfinite, and answers: “Obviously
already with the use of the concepts ‘all’ and ‘there is’.”27 It is well-known
that Hilbert devised a way of introducing the quantifiers by means of a new
logical symbol, �, which also yielded a version of the Axiom of Choice—this
quintessential source of conflict with the constructivists. In [36], he called
the axiom for � the transfinite axiom; the symbol was later replaced by ε
(e.g., in the two-volume monograph by Hilbert & Bernays).
In this connection, it is enlightening to consider von Neumann’s crucial
1927 paper ‘Zur Hilbertschen Beweistheorie’ [74]. Von Neumann presents
six groups of axioms formalizing logic and classical mathematics. Group I is
labeled “Logic” and contains only axiom-schemas based on the conditional
and negation; he writes:

These axiom-schemas make possible the establishing of pure for-
mal logic, they are of little profundity and are therefore quite
arbitrary. They are generally evident logical propositions.28

It is worth noting that groups I–III, also including identity and Peano arith-
metic without mathematical induction, come together under the name of
“finite groups”. All of this suggests that “pure logic” comes down to senten-
tial logic and is strictly finite.
Next we find vonNeumann’s “transfinite” groups, beginning with “Group
IV (‘All’ and ‘there is’)”, also called “the �-group” because von Neumann
employs Hilbert’s � as a means for characterizing the quantifiers. I think the
following text deserves to be quoted in full:

The axiom-schemas of group IV contain the typical “transfinite”
or “impredicative” inferences of classical mathematics, but it is
not possible to found it exclusively on their basis. For classi-
cal mathematics embraces yet another non-intuitionistic element,
which goes farther—a certain portion of set theory. It is necessary
to emphasize this expressly: the edifice of classical mathematics
is insecure and exposed to the assaults of skeptics at two points,
namely, the concept “all” and the concept of “set”. One should
neither identify these two fundamentally different things (which
nevertheless happens frequently), nor forget one because of the
other [über das andere]. Criticism of mathematics started with
“set” and only slowly proceeded to “all”, which however is today
the main point of attack for intuitionists. But one should not
forget that, even if their objections to “all” were in a certain sense
refuted, one has not yet done anything for the set-concept. (Cer-
tain analogies speak for an identificationof the transfinite principle

27Hilbert [36], 181; see also 182–183.
28VonNeumann [74], 268. What vonNeumann regards as “arbitrary” is just the particular

selection of axioms, but not in any way the set of consequences.



454 JOSÉ FERREIRÓS

“all” with the transition finite-denumerable, and of the transfinite
principle “set” with the transition denumerable-continuum.)29

This text makes explicit the assumptions underlying the notion that FOL is
“transfinite”. It may also be read as an elucidation of Hilbert’s old idea that
it is unavoidable to build logic and mathematics jointly.
One further statement made in a similar vein can be found in Quine’s
correspondence with Carnap. It is well-known that Carnap regarded the
sentences of logic and mathematics as analytical, and that Tarski and Quine
took issue with him on that point in the course of discussions held atHarvard
in 1940. A couple of years later, Quine mentioned in their correspondence
that the “distinguishing feature” of analyticity for Carnap was “its episte-
mological immediacy in some sense”, and went on to say that he and Tarski
had urged that

the only logic to which we could attach any seeming epistemolog-
ical immediacy would be some sort of finitistic logic.30

Assuming (as Quine did not) the definition of logical sentences as analyti-
cal, this would suggest a stern restriction of logic. However, the adjective
“finitistic” is not completely clear, and it seems unlikely that Quine may have
taken it in von Neumann’s sense. Indeed, Quine might be referring to FOL
as a finitely generated formal system, or perhaps only to a weak version of
first-order logic with bounded quantifiers.
At any rate, even if we grant that sentential logic is a completely natural
ingredient for any seeming logical system, there is no reason to think that
it is all of logic. Reasons of convenience may suggest the adoption of a
broader system, which however (recall von Neumann and Quine) may in the
process have lost the aura of epistemological immediacy. It is time now to
answer the question, what kind of combination between the ‘natural’ and
the historically contingent led to our conception of modern logic.

§3. Determination by tradition: exemplars. There is a tendency to think
that logic is of a peculiarly clear and crystalline nature, but this is more a
deceitful image than an evidence. I expect the foregoing arguments may
have made (at least) plausible the conclusion that FOL is no natural unity,
raising the impression that the notion of logic involves some obscurity or
indeterminacy. But, if so, how and why have we come to modern first-order
logic? Quite obviously, when first principles are insufficient, we must turn to
historical contexts and traditions.

29[74], 271–272. It is worth mentioning that von Neumann’s set-existence principle, here,
was just the principle of comprehension restricted to the numbers of his system. In accordance
with his statements of [75] (see above), the approach he favored in metamathematics was
closer to Russell’s type theory than to axiomatic set theory.
30Creath [13], 295.
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The reader should not, however, take the preceding statement as a denial
that first principles may have played any role along the road to modern
logic. Being contingent is not, by any means, the same as being purely
contingent—a maxim that seems particularly applicable in the case of logic.
In my opinion, the development of modern logic was partially guided by
(relatively clear) guidelines or principles, partially by a peculiar Occidental
tradition, and partially of course by subsequent events. In this section I
shall try to analyze how the tradition of logic was handed down, and what,
concretely, the relevant historical heritage amounted to around 1850. As the
reader will see, a key idea taken from the work of Kuhn will prove useful.
By traditional logic we shall understand the core of logical theory as it
was usually presented from the 17th century until about 1850. Although
the concept of a rather conventional tradition of logic in the Modern period
appears in many authors, there is no established terminology.31 Bochenski
calls it “�classical� logic”, but the word ‘classical’ already possesses at
least two other meanings; Kneale has employed the descriptive name “post-
Renaissance logic”.32 Both authors agree that the Logique published by
Arnauld &Nicole in 1662 [1] can be regarded as a prototypical treatise of the
period, although the terminology of the Port Royal authors was sometimes
not the standard one (e.g., in their use of “ideas” instead of “concepts”).
Thus, what we shall understand by “traditional logic” is formedmainly by
the theory of the syllogisms. Recently, the historian of logic Volker Peckhaus
has underscored that the syllogism was no longer a central topic for logical
research during the 19th century.33 While Boole was launching his pro-
gram for a theory of the resolution of logico-algebraical equations, German
philosophers were busy discussing the so-called “logical question” concern-
ing prospects for formal vs. dialectical logic. Peckhaus is certainly right in his
warning, but still we should not jump to the conclusion that traditional logic
was completely superseded and no longer influential in the 19th century.
For instance, the two research trends analyzed by Peckhaus (formal and
dialectical) were so different that they hardly share common points—except
for their acceptance of the syllogisms of traditional logic as paradigmatic,
simple instances of logical inference. Furthermore, it would be necessary to
distinguish between logic as taught, frequently at the secondary-school level
(where the traditional viewpoints dominated), and logic as a research topic.34

31From now on, we shall write “Modern” with capital letter for the historical period
covering, roughly, the 17th and 18th centuries. But we shall follow the customary way
of speaking of “modern mathematics” and “modern logic,” which of course belong to the
Contemporary period, not to the Modern one.
32See Bocheński [4], part IV, section B; Kneale [39], chap. V, §1, especially towards the

end.
33Peckhaus [51] [53]. For a detailed analysis, see his bookMathesis universalis [52].
34Peckhaus and collaborators have actually started a detailed analysis of the teaching of

logic in 19th-century Germany.
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What is crucial for our purposes here is, simply, that the traditional core
of logical theory was more consequential for the emergence of modern logic
than the “newer” proposals as of 1850, excluding of course Boole and De
Morgan. Therefore in our brief discussion we can ignore the more convo-
luted developments, for which the reader is referred to [51], [52], [53].
3.1. Three guidelines and one set of exemplars. From Antiquity, a few
guidelines, basic ideas, or guiding principles have been frequently stated, that
help define or delimit the realm of logic. Making no attempt to give a com-
plete list of all the relevant principles, I will simply point out some that seem
consequential. Mention of three principles may have brought to some read-
ers’ minds the celebrated classical principles of identity, non-contradiction,
and excluded middle, but this is not what we shall be considering. Our
principles are not valid logical laws (or in some renderings meta-laws), but
guidelines that help define the realm of logic and its scope.
The first principle is that logic deals with the conditions for an argument to
be correct, attempting to establish when something is a valid deduction, and
when not. In short, logic is concerned with an analysis of (valid and invalid )
deduction. This principle was absolutely clear in the mind of Aristotle, and
the same applies to the Stoics.
A second guideline was also clear from the start. Because it deals with the
conditions for arguments to be valid in general, logic should enjoy universal
applicability; therefore logical theory should not depend on reference to any
particular topic or subject. This might be called the principle of universality,
and it was also explicitly stated by Aristotle, who in the Topics said that
logic is useful in finding the first principles of any discipline, and opens
the road to all methods.35 Later it became customary to derive, from this
guideline, a very useful corollary: logic does not depend on how things are,
it is independent of considerations of existence.36

The third guideline was emphasized in a particularly sharp way by Kant.37

In dealing with the universal rules of reasoning or arguing, logic studies
only the form of arguments and deductions, never their matter. To put it
differently, in logic one abstracts some general patterns, forms, or structures
of argument; one deals with inferences from a formal standpoint.38 As De
Morgan wrote with characteristic wit:

35Aristotle, Topics, book A, 2, 101a36–101b3.
36This and other principles may be vague; see, e.g., Wittgenstein’s point in Tractatus

logico-philosophicus 5.552.
37Kant is famous for his conservativeness regarding logical theory, but he contributed in

an important way to make precise the traditional conception of logic. In this connection, see
De Morgan [15], 74–76, with explicit reference to Kant.
38Tarski’s thesis [69] that there is not a single natural possibility concerning the selection

of logical vocabulary, implies that logic cannot be purely formal: there is a subject matter,
the constant meaning of logical particles.
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Logic bears on its modern banner, The form of thought, the whole
form, and nothing but the form.39

The basic idea behind this principle, if not the principle itself, was embodied
in the use of variables A,B by Aristotle, and the use of metalinguistic names
for propositions (‘the first’, ‘the second’) by the Stoics. Such names or
variablesmark outwhat is ‘material’ andwhat is regarded as properly logical,
viz. ‘formal’, in a given argument.
Nevertheless, all our considerations in §2 above tended to show that no
clear-cut argument can establish that logical theory must embrace both sen-
tential logic and quantification theory. As a matter of historical fact, both
Aristotle and the Stoics seem to have been joined by the guidelines we have
mentioned, and both developed a ‘classical’ two-valued logic, complying
with the principles of excluded middle and non-contradiction. But, while
Aristotle concentrated on his syllogisms and devoted much less attention to
sentential logic, the Stoics refused to consider Aristotle’s syllogisms as a part
of logic, restricting their definition of the subject to sentential logic.
Once again, we are led to the conclusion that first principles are not enough.
How, then, could the tradition of logic delimit a more or less precise field?
In his famous Structure of Scientific Revolutions, Kuhn expressed concern
with the fact that scientists may share knowledge, without sharing a set
of rules that univocally determine that knowledge. His proposal was that
scientists’ knowledge involves shared paradigms, ormore precisely exemplars
inKuhn’s later terminology. An exemplar is a noteworthy instance of theory-
in-application, such as Newton’s treatment of the solar system, or Lavoisier’s
of combustion and oxygen. I contend that exemplars have also played a key
role in the development of logical and other mathematical theories. (As I
remarked at the beginning, we shall avoid the broader notion of a paradigm
in the sense of ‘disciplinary matrix’.)
The classical period left two main, distinct sets of logical exemplars, em-
bodied in Aristotle’s doctrine of the syllogistic figures, and the Stoic doctrine
of the so-called “unprovables”, basic inference rules from which all rules of
sentential logic were supposed to follow. The reception of Aristotle’s philos-
ophy in the Middle Ages led to a logical tradition in which the Aristotelian
exemplars played a dominating role, while the Stoic ones were largely forgot-
ten. This happened in spite of the fact that the medieval logicians established
independently a theory of sentential logic, the consequentiae—which seems
to speak for the extreme importance of tradition and authority in this par-
ticular development. Thus it seems to have been a crucial historical contin-
gency, decisive for the development of logic, that the same person established
the theory of the syllogism and the doctrines of Physics and Metaphysics,
extremely influential upon the medieval theologians, Muslim, Hebrew and
Catholic.
39De Morgan [15], 78.
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Let us then examine some aspects of Aristotelian logic. Since we are
mainly interested in the ‘traditional’ logic of the Modern period, we shall
not take care to distinguish the Modern presentations from the original one
ofAristotle. Thereforewewill give the customary versions of theAristotelian
propositions and syllogisms.40 As for historical sources, the reader should
take into account that the Aristotelian doctrines were presented in all kinds
of logical works—they constituted a well-established core of knowledge, for
which reason one can produce a schematic portrait. A typically Modern
and widely influential treatise of the 17th century is Arnauld & Nicole’s
Logique [1]; as for the 19th century, one may take as examples of formal
logic the Elements of Logic by Whately [78], or the Neue Darstellung der
Logik by Drobisch [20].41 Treatises on traditional logic typically divide into
three parts devoted respectively to concepts, judgements, and syllogisms
(there may also be a fourth part dealing with methodological matters).
The Aristotelian prototypes for a proposition were:

All A is B . Some A is B . No A is B . Some A is not B .

It was argued that any argument can be reduced to a ‘normal’ form, em-
ploying only those prototypical propositions, structured according to the
syllogistic figures. If I argue, for instance, that no oyster is a man because
no oyster can talk, this can be put into the following normal form:42

All men are speakers. No oyster is a speaker. Therefore, no oyster is a man,

which constitutes an example of syllogism of the second figure (Camestres).
According to Kant’s principle of form & matter, what logic studies is the
form of such an argument; the particular concepts are replaced by variables,
as Aristotle actually did, and we obtain the formal structure:

All C is B . No A is B . Therefore, no A is C .

This means that, according to the traditional image, the matter of the argu-
ment gets concentrated in the concepts represented by A, B , C ; the rest is
purely formal or logical.
To a large extent, logical doctrines have been forged around the mold of
Aristotle’s doctrine of the figures of syllogism, his basic set of exemplars.
Certainly Aristotle did not employ variable-binding quantifiers, but by dub-
bing the particles ‘all’ and ‘some’ as logical ones he prepared the modern
introduction of the quantifiers. His modest logic was hampered by not
making room for relations, but by considering the (variable or abstract)

40But see Łukasiewicz [42], §1.
41See the secondary works Bocheński [4] and Kneale [39]. Concerning 19th century

traditions, it is very instructive to consult Ueberweg [70]; see specially pp. 47–53 on the
German tradition of formal logic started by Kant and Herbart.
42I take this example in order to underscore the unnaturalness of the assumed

regimentation.
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predicates A, B as parts of the logical form of arguments, he prepared the
modern extension of logic to include a theory of relations. Let us take
another exemplar, a Bocardo syllogism:

Some A are not B . All C are B . Therefore, some A are not C .

The particles “all”, “some”, “not”, “is” constitute the core of logical vocab-
ulary. By the use of variables, this Aristotelian exemplar presents us with a
particular selection of logical constants, divergent from the Stoic selection.
(Traditional logic considered also—in a secondary role, and fragmentarily—
hypothetical, disjunctive and conjunctive syllogisms, where the key new par-
ticles were “if . . . then”, “or”, “and”.)
A basic set of exemplars should be expected to provide crucial prototypical
examples to be taken care of by authors working in the field. The syllogistic
exemplars can indeed be seen to play this role in the path-breaking works
of Boole and Frege. The initial chapters in Boole’s Mathematical Analysis
of Logic [5] are devoted to translating Aristotle’s basic propositions into his
calculus, and establishing the Aristotelian doctrines of conversion and of
the syllogistic figures. Frege, though much less concerned with providing
a modern rendering of traditional logic, does not forget to put his formal
system to the test of translating Aristotelian syllogisms in chapter one of
Begriffsschrift [24]. We shall take this matter up in §4.1.
3.2. Grafting new ideas. One can find many other ideas shaping the con-
ception of logic in the Modern period, and of course not all of them seem
sound to us. The aim of this subsection is to acknowledge this fact, offer a
couple of comments on it, and mention two more principles or guidelines.
The last one, which I shall dub the principle of the calculus, has played a
very important role in the emergence of modern logic.
Throughout history, thousand and one myths have surrounded the notion
of logic. One of the capital sins of theModern tradition of logic, as practiced
until around 1850, was to confuse the analysis of deduction (first guideline)
with the analysis of human thought, i.e., of thinking processes. This psy-
chologistic confusion of the theory of deduction with a theory of thought
stimulated interference of epistemological conceptions; thus the long-sought
ideal of an inductive logic came into being. In the 17th century, the goal was
to create a new logic that would turn Aristotle’s theory obsolete—it would
be an instrument of discovery, as exemplified in the inductive methods of
Bacon. A different tradition endowed logic with ametaphysical, ontological,
or perhaps cosmic, meaning. One might enter here into the difficult issue
of the relations between Kant’s formal and transcendental logics; one might
mention Hegel’s ‘logic’, identical with his metaphysics, or the dialectics of
Marx. Even a key author like Frege belongs in this tradition as long as, to
him, logic was something like the Language of the World in its purest form.
Wittgenstein’s Tractatus is a magnificent attempt to take this image to its
ultimate consequences.
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Another reputed principle was the idea that logic enjoys a very peculiar
epistemological status, a special kind of immediacy, being somehow transpar-
ent to us.43 Its propositions or principles, its truths and rules, were supposed
to be a priori, independent of experience—perhaps because they express
necessary rules of reasoning given to us with the Understanding (Kant),
or because they are strictly analytical, conventional, and devoid of meaning
(Carnap).44 This conception was promoted by the psychologistic confusion;
it was quite influential all the way up to Wittgenstein and even later, and it
was consequential for some of the historical events that we shall deal with.
That image explains why the reduction of other fields of knowledge to pure
logic became an extremely attractive goal for many authors. The case of
logicism is perhaps the clearest example of this appeal, and logicism was a
driving force behind the initial phase of development of modern logic—most
of those that we regard as important logicians, as of 1900, were logicists.
The story of those images, how they disappeared and how they turned into
or merged with other images, would also belong in the history of modern
logic. But, to end this section, we shall just mention one further principle,
a novelty of the Modern period that became extremely consequential for
modern logic. This is the Leibnizian ideal of submitting logic to algorithmic
mathematical treatment: it was regarded as possible, and of course desirable,
to express all kinds of so-called ‘logical’ notions and principles by means
of calculuses (similarly to the new arithmetic and algebra), so that ‘logical’
deductions could bemechanically computed. Wemight call this the principle
of the calculus; important authorswhoworked along this line include Leibniz
himself, Lambert and Gergonne. (Leibniz added the more or less mythical
ideal of a characteristica universalis, a kind of basic vocabulary or alphabet
of thought that would turn the logical calculus into a powerful instrument
of discovery. Frege pursued this ideal, too, which in fact was related to his
conception of logic as the cosmic language and his onto-semantics.) The
first clear success in implementing the principle of the calculus came with
Boole’s algebra of logic; Frege made an impressive step forward, and Gödel
established the crucial limitations for its implementation.

§4. From quantification to type theory. Starting from the traditional ideas
just discussed, we shall try to make sense of the changes in the conception
and scope of logic observed in §1. In the present section we shall review
the developments delineated in the first three subsections of §1, leaving the
fourth to §5. Even under the constraint of those traditional principles and

43For a 20th century emergence of this idea, see the Quine–Carnap correspondence in [13],
294–295.
44Naturally, there were opposite pseudo-principles, such as the strictly empiricist image

advanced by Mill, which enjoyed little popularity in continental Europe, or at least in
Germany.
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exemplars, there was room for ambiguity in the historical heritage, room
for divergent interpretations, and thus for biffurcations and detours in the
history of logic. As is usually emphasized, the mathematical context played
a primary role in the shaping of modern logic, both during the phase of
expansion and later, during the restrictive phase. In the former period, the
rise of abstract mathematics and the process of rigorization were crucial for
the maturation of modern logic, while in the latter period the context of
debates concerning the foundations of mathematics became central.
4.1. Quantification theory as the logic of analysis. In the latter part of the
19th century, it became clear that sentential logic was an essential basic frame
for logical inference. We shall not deal with this development here in order
to keep our discussion within limits. Leaving that aside, the most important
novelties during the expansive phase were the theories of sets, relations, and
the quantifiers. I shall begin with the latter.
We have already mentioned that Aristotle’s “all” and “some” are still far
from modern quantifiers, while at the same time they prepared the modern
development by providing justification for the idea that the quantifiers are
logical particles. How did this modern development come about? Every-
thing suggests that quantification was strictly necessary for an analysis of
mathematical inference as practiced in the 19th century. Indeed, it would
seem that the modern use of quantifiers emerged within informal but techni-
cal mathematical language. One can find examples of this in many branches
of mathematics, e.g., in number theory, when one defines: a is called a ‘di-
visor’ of b in case there is a number c such that a · c = b. This existential
quantifier cannot be analyzed by means of the Aristotelian propositions in
such a way as to explain its inferential use in mathematics.
More interesting examples are easily found within the realm of analysis.
Since re-elaboration of the subject from the starting point of limits (Cauchy,
Bolzano), there was steady progress towards an abstract formulation of key
analytical notions by means of nested quantifiers. Bolzano’s definition of
a continuous function f(x) is based on the requirement that “the difference
f(x + h)− f(x) can be made smaller than any given quantity if h is taken
sufficiently small”.45 In spite of the great progress that this represented,
the formulation is not yet completely abstract (like Cauchy’s formulation,
it might seem to appeal to some kind of process in time). The work of
Weierstrass, widely acclaimed as the champion of rigor in analysis, can
actually be seen as introducing a purely logical formulation of the elements
of mathematical analysis.
Weierstrass made it clear that one must first define continuity of f(x) at
a point, and then continuity in an interval—an example of logical analysis
(decomposition). Let us see the definitions given in 1872 by his friend and

45Bolzano (1817) in [3], 15.
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colleague Heinrich Heine, who explicitly claimed to be publishing Weier-
strassian ideas:

A function f(x) is called continuous at an individual value x = �
when, given any quantity ε no matter how small, there is another
positive number �0 with the property thatf(�±�)−f(�) cannot
exceed ε for any positive � smaller than �0.
A function f(x) is called continuous from x = a to x = b when
it is continuous for each individual value x = � between a and b,
including a and b.46

The quantificational structure of these sentences is quite explicit, thanks to
the expressions “given any”, “there is”, “for any”, “for each”. No wonder
that Felix Klein, himself not very sympathetic to the exertions of rigor,
called the leader of the Berlin school a “logician”.47 The Weierstrassian use
of universal and existential quantifiers can be called modern, and yet several
years would elapse before Frege published his Begriffsschrift. It is actually
an almost mechanical task to translate Weierstrass’s definitions into Frege’s
conceptual language.48

Meanwhile, in 1873, Frege was just presenting his doctoral thesis on a
geometrical representation of the complex numbers. Although he studied
in Jena and Göttingen, not Berlin, the lectures of Weierstrass were by then
famous throughout Germany (and Europe), and student lecture notes went
from hand to hand. It is therefore a natural conjecture that he may have
studied some version of Weierstrass’s introductory lectures; actually, Frege
cites (unspecified) handwritten Collegienhefte of lectures by Weierstrass in
volume 2 of the Grundgesetze [26], and one would expect these redactions
to stem from the 1870s. Be that as it may have been, it is clear that Frege
constructed his conceptual language by analyzing key notions of the math-
ematics of his time. Evidence for this statement can be found not only in
Begriffschrift, but also in other documents, particularly his paper of the same
year on applications of the ideography [27]. Here Frege shows by geomet-
rical and arithmetic examples the ability of his formal language to express
mathematical relations. The examples are:
1) Point D lies in the straight line joining B and C (expressed by means
of the congruence relation).

2) a is a prime number (expressed by means of the so-called ancestral
relation).

46Heine (1872) in [3], 25. Heine proceeds to define uniform continuity in an interval, the
difference being essentially a matter of the scope of the quantifiers (symbolically, the use of
parentheses).
47Klein [38], vol. 1, 152 and 246.
48Further examples might be easily found in many other works: similar to the one of

Weierstrass, e.g., in Dedekind’s paper on continuity and irrational numbers; close to Frege’s,
particularly in Peano’s Formulario mathematico.
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3) Every natural number can be represented as the sum of four squares.

The third example, in particular, is rendered as follows: For every n, if n
is a natural number, then there exist natural numbers a, b, e, g such that
n = a2 + b2 + e2 + g2 [27, 93].
One should emphasize that the combined use of two or more quantifiers
within a sentence, that we have found (informally) in Weierstrass, consti-
tutes already a very important expansion of the logical language and its
capabilities. This novelty was connected with the distinction between vari-
ables and (non-logical) constants, which made it possible to introduce the
variable-binding quantifiers and to distinguish a proposition like ‘Socrates
is mortal’ from ‘All men are mortal’. All of this, in turn, is related with
the novel Fregean analysis of the sentence, based on the notions of func-
tion and argument. With this analysis, the understanding of the Aris-
totelian prototypes changed substantially. From ‘All A is B ’ we pass to
‘∀x(A(x)→ B(x)),’ which means that, although we are still referring to the
same prototype sentences, strictly speaking we are dealing with new exem-
plars. (The reader should recall that an exemplar is an archetypal instance
of theory-in-application; the substantial change at the level of theoretical
analysis involves, strictly speaking, a change of exemplars.49) Needless to
say, this latter move was also inspired by mathematical ideas.
There is one further important point concerning the quantifiers. While the
Aristotelian set of exemplars justified the idea that they are logical constants,
we have not yet founda single reason to restrict logic to the elementary level of
quantification over first-order variables. On the contrary, even the syllogistic
exemplars might be used to express arguments involving quantification over
predicates. For instance, this might be regarded as a perfectly natural (and
true) Aristotelian syllogism:

All properties of animals are properties of men.
Free mobility is a property of animals.

Therefore,
free mobility is a property of men.

Actually, it is not easy (and tricky because of the characteristics of natural
language) to find second-order arguments in the writings of traditional logi-
cians.50 It was only in sophisticated contexts that the need for such sentences
emerged; the first such context was the foundations of mathematics, a clear

49In a more careful analysis, it would be crucial to reflect on changes in what plays the role
of an exemplar, with the emergence of modern logic. We would then find a change of level,
but this topic goes beyond the scope of the present paper.
50In the Port-Royal Logique [1, 272], we read: “Every friendship is pleasing; there are

dangerous friendships, therefore, some dangerous things are agreeable” (is ‘friendship’ a
relation or an object?). We also find (p. 268) something close to the following: “All virtues
are praiseworthy; being patient is a virtue; therefore, being patient is praiseworthy”.
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example being the principle of induction as formulated by Dedekind, Frege
and Peano around 1880. Peano’s version might be rendered:
Every property of numbers that applies to 0 and that, in case it applies to n,

also applies to n + 1,
is a property of all numbers.51

Thus, the traditional delimitation of logic makes room for higher-order
logics, which is exactly what we find in Frege, Peano, Russell and Hilbert.
As we saw, themere idea of focusing on first-order logic, even as a subsystem,
did not arise until 1915 (Löwenheim) or 1917 (Hilbert).52 It seems that the
very question, higher order or first order?, does not even arise until one
begins to work on metatheoretical issues.
4.2. Set theory as logic 53. The 19th-century expansion of logic led to the
inclusion of new mathematical theories, the theory of classes and the theory
of relations, in its domain. The fact that the copula “is” becomes a logical
constant in Aristotle’s basic set of exemplars was the main reason why set
theory came to be regarded as elementary logic.
This strong tendency to regard classes or sets as a part of logic, from about
1850, can be explained briefly as follows. The copula has three different
meanings, carefully analyzed by Peano and Frege.54 As Peano said, we have
the meaning of identity, the meaning of membership, and the meaning of
inclusion, and one should very carefully differentiate them (otherwise one
gets into contradictions). The first meaning justifies considering the theory
of identity as a part of elementary logic; even today we frequently employ
FOL with identity as a logical framework. On the other hand, membership
and inclusion are basic relations of set theory; quite naturally, then, set theory
belongs in logic. This standpoint was still defended or at least represented
by Quine and Tarski as late as 1940 (see §1.1).
A more complex analysis may take us to the same conclusion. The logical
particles, as combined in the Aristotelian propositions, establish different
kinds of relationships between concepts. The Aristotelian exemplars take
these relationships to be purely logical, therefore it is the business of logic
to study them. How can we do it? An interestingly simple way emerged
from the analysis of concepts that was characteristic of traditional logic.
From Porphyry through the medieval authors to the Port-Royal logicians,
a distinction between the intension and the extension of a concept consoli-
dated. Given a concept, we can distinguish two basic aspects: the intension
or comprehension of the concept, its meaning (man as rational animal), and
the extension of the concept, the class of beings to which it applies (men as a
group or class). Several authors (e.g., Arnauld &Nicole [1]) used the notion

51Of course, this is not a syllogism, but a single sentence with three universal quantifiers.
52See Moore [46] [47].
53For more on this topic, see [21], and also [23].
54See Frege [24] and [25], Peano [50]; see also Russell [60].
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of concept-extension or class to provide an analysis of the Aristotelian rela-
tions between concepts. This suggested that the theory of classes is essential
to a study of the relationships among concepts that constitute the business
of logic.
In fact, some logicians employed the notion of class to create a calculus
of logic in accordance with Leibniz’s principle (§3.2). It suffices to recall
Euler’s diagrams in the 18th century, the doctrines of Gergonne in the early
19th, and Boole’s mathematical logic. Under this rendering, the Aristotelian
propositions (see §3.1) turn out to establish relations of inclusion, member-
ship, intersection, or disjointness, and we conclude as above. At this point,
it is worth mentioning a sentence of Boole that I am fond of:

That which renders logic possible, is the existence in our minds
of general notions, —our ability to conceive of a class, and to
designate its individual members by a common name.55

In Boole’s mind, class theory is not just one part of logic, as it would be with
Russell sixty years later—the notion of class is at the very roots of logic.
Yet herewe findone of those instanceswhichmadewide room for divergent
interpretations of the scope of logic. There were authors, especially from
the late 19th century onwards (notably Cantor in the 1890s), who rejected
the idea that set theory is a part of logic. The same may have been the
case with Riemann earlier on,56 and we have already seen that De Morgan
regarded ‘is’ as a material instance of an asymmetric and transitive relation.
Other authors came to see the copula ‘is’ as a sign of predication, making it
disappear from the symbolical notation—‘A is B ’ becomes B(A).
4.3. Relations. Another important novelty, during the expansive phase
in the 19th century, was the theory of relations. Although we have not
mentioned this is §2, one of the obscure points regarding delimitation of the
scope of logic is the question, why do abstract relations like P(x), R(x, y)
belong to logic? The reason seems to be, once again, because the traditional
set of exemplars was the Aristotelian one. It was De Morgan who began to
explore the theory of relations in the fourth issue of a series of papers entitled,
not by chance, ‘On the syllogism’. To him, the theory of relations was a
natural and necessary outgrowth of the extremely simple Aristotelian form
‘A is B’—it was the syllogism considered under the aspect of combination of
relations. ‘A is B’ comes to be understood asARB,whereR is an asymmetric
and transitive relation. And the link with mathematics was also explicit, for,
as De Morgan said,

the algebraist was living in the higher atmosphere of syllogism,
the unceasing composition of relations, before it was admitted
that such an atmosphere existed.57

55Boole [5], 4.
56See [23], 51, 241; regarding Cantor, see pp. 266, 292–293.
57De Morgan [16], 241.
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It was in algebra, he stated, that the general idea of relation emerged, and
it was there that “the notions of relation and relation of relation” were first
symbolized. Even within number theory we deal with relations of inequality,
divisibility, congruence, etc., and we keep finding more and more complex
examples in geometry and analysis.
There are two ways of considering the introduction of relations: from the
standpoint of sets, or from the standpoint of the logical analysis of sen-
tences. De Morgan realized how unnatural the traditional ‘normalization’
of propositions was (see §3.1) and how it impeded the analysis of inferences,
to the extent that it became impossible to understand the logic of mathemat-
ics. We have, for instance, Leibniz’s example of a “syllogism” that cannot be
understood within traditional logic: ‘Christ is God; therefore, the mother
of Christ is the mother of God’;58 it is very easy to find number-theoretical
equivalents. A satisfactory logical analysis of sentences necessitated the in-
troduction of a theory of relations, which became particularly clear when
the aim of logically analyzing mathematical propositions became promi-
nent. Frege took care of this need by proposing his already mentioned and
well-known distinction between function and argument within a sentence.
In connection with set theory, it was the more restricted notion of map-
ping (functional relation) that became important. This notion was studied
mathematically in 1888 by Dedekind [18], and assimilated into the logical
theory of relations by Frege in 1893 and Schröder in 1895, with explicit
reference to the former in both cases.59 Dedekind’s argument for regarding
mappings [Abbildungen] as a logical device was simply the following. Logic
was conventionally defined, in the 19th century, as the science of the laws of
thought (see §3.2). But each and every instance of thinking puts into play
the ability of the mind to relate things to things, to make one thing corre-
spond to another, to represent [abbilden] one thing by another. Without this
ability of mapping or relating, no thinking is at all possible, therefore the
notion belongs to logic (as one can see, the argument immediately extends
to relations). Although Dedekind gave no examples, we may think of many
instances where his “ability of mapping” comes into play: the very action
of labeling an object with a name (‘the Moon’) or with a common noun
(‘that is an apple’); the uses of the copula ‘is’ as expressing subsumption of
an object under a concept (set-theoretically, membership), or subordination
of a concept to another (inclusion, ‘all men are rational’). As for other au-
thors, the fact that relations were necessary for the analysis of propositions,
and that maps could be subsumed within an extensional theory of relations,
facilitated the assimilation of set-theoretical mappings into logic. And that

58Symbolically, and simplifying, ‘a = b; therefore,M (ac)→ M (bc)’, an inference based
on Leibniz’s principle of substitutability salva veritatis, his definition of identity.
59See [21], 44–48, 57–60; or [23], 249–253.
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must have been reinforced by the fact that set or class was regarded as a
logical notion.
4.4. The contradictions; type theory as away out. With the extremely broad
conception of logic that we have seen emerging, it was only natural that a
logicistic view of mathematics arose. But the contradictions or paradoxes
gave a death-blow to the idea that set theory belongs in logic, and therefore to
logicism. Of course, set theory is a central province of the modern discipline
of mathematical logic, but here we are talking about conceptual issues, not
about disciplinary boundaries, which are usually quite conventional. In this
respect, the “logical” contradictions, as they were called by then, meant a
very important crisis in the evolution of the notion of logic and the first great
motivation for putting bounds to the previous conceptual expansion.
It is only natural that there were authors who resisted the conclusion that
logicism was dead, and who tried to minimize the necessary restrictions
of logical theory. Russell was foremost among them. His theory of types
was an attempt to rescue as much as possible of Frege’s viewpoints, while
remaining safe from contradictions. The outcome of his enterprise, the
monumental Principia Mathematica (Whitehead & Russell [79]), has been
hailed as a landmark in the history of modern logic. Up to 1928 it was
the most important reference work for any student of logic, and as late as
1931 type theory was regarded by most experts as the natural logical system
(§1.2).
Strangely enough, however, many seem to forget that type theory is a
formal system for set theory—taking this expression in the wide sense of
the informal theories established by Cantor et al. before 1900—and that
Principia Mathematica is a handbook on the set-theoretical foundations of
mathematics. This forgetfulness may well reflect the fact that Russell’s work
was more consequential for the history of elementary logic, than for set
theory or even mathematics as a whole.
Whitehead and Russell presented a modern and flexible calculus of logic,
incorporating Frege’s analysis of the connectives and sentences (function-
argument, quantifiers). They impressed their readers by showing how it
was possible to formulate and derive within that calculus the elements of
mathematics. But Russell’s original theory of types was rather complex.
As is well known, it builds on two principles, the principle of the types of
arguments and the vicious circle principle. The principle of types is Russell’s
amendment to the principle of comprehension: he still postulated that any
property (propositional function) ϕ(x) defines a class {x : ϕ(x)}, but now
its elements are restricted to a well-defined type. The class thus formed is of
the next higher type than its elements, with the lowest level in the hierarchy
of types occupied by individuals. (Corresponding restrictions applied to the
formation of relations, not yet defined as a certain kind of sets.)
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The vicious circle principle incorporated Poincaré’s proscription of im-
predicative definitions, which constitute a characteristic trait of abstract
mathematics. It led to the introduction of a new hierarchy superimposed to
that of types, the hierarchy of orders, and for this reason the resulting system
is called ramified type theory. Russell considered the vicious circle principle
as indispensable, in order to take care of many (semantic) paradoxes, but it
created insurmountable difficulties for the project of reconstructing abstract
mathematics. Still, from part II on one may read Principia Mathematica
with just simple type theory in mind, skipping the notion of a ramification
into orders. This simplifies the task greatly and makes clear that, for math-
ematics proper, the hierarchy of types is the key ingredient that makes it
possible to preserve a weak version of Frege’s logic, free from antinomies
but still including a form of set theory.
On that basis, and over more than 2,000 pages, Whitehead and Russell
gave a full treatment of logical theory in the whole extension of the word
as of 1910. Part I presented the elements of mathematical logic, from the
connectives and quantifiers (including higher-order) to the theory of classes
and relations. Parts II and III developed the arithmetic of finite and infinite
cardinals, supplemented in part V by the theory of ordinals. (Part IV
presents a generalization dealing with so-called relation numbers.) Finally,
part VI defined and studied the integer, rational, and real numbers, laying
also the ‘logical’ basis for a theory of measurement.
In order to derive mathematics from logic, Whitehead and Russell needed
three axioms of a strong existential character—the controversial Axiom of
Reducibility, the Axiom of Infinity, and the Axiom of Choice. The vicious
circle principle made impossible a development of the classical theory of
the real numbers and analysis, creating great difficulties for logicism. These
difficulties were solved, one may say, by force brute, with the introduction
the (in)famous axiom of Reducibility, which Russell himself regarded as an
ad hoc device. Ramified type theory plus Reducibility amounts to just simple
type theory; as the Polish logician Chwistek wrote:

For the elimination of this antinomy there suffices the simple the-
ory of types, depending on distinction of individuals, functions of
individuals, functions of these functions, and so forth. Distinc-
tion of orders of functions of a given argument, and introduction
thereby of predicative functions, and in further consequence ap-
pealing to the principle of reducibility is from this point of view
a superfluous complication of the system. It should be noted
that removal of the above elements from the theory of types of
Whitehead & Russell would render this theory extraordinarily
simple and perspicuous. If therefore Whitehead & Russell could
not make up their minds to the simplification, then they undoubt-
edly did that as a result of the conviction that a system of logic
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admitting the antinomy of Richard cannot be regarded as a final
expression of that which it is possible to attain in the given sphere.
Leaving this matter aside, we restrict ourselves to the assertion
that the [ramified] theory of types together with the principle of
reducibility cannot be maintained, because either it is false or else
it represents in intricate form thatwhich fundamentally is simple.60

Similarly, Ramsey in 1926 came to the conclusion that a formal system of
logic based on simple type theory was more convenient as a foundation for
mathematics. His famous distinction between logical and other paradoxes,
plus the fact that the latter cannot be formulated within a formal system,
justified elimination of the vicious circle principle.
4.5. Type theory formalized. Simple type theory only became a rigorous
logical systemunder the influence ofHilbert’smetamathematics, in the hands
of Gödel and Tarski. Whitehead and Russell did not yet formulate a truly
formal system, completely specified in full precision; they were still working
with an interpreted system, like Frege. This is particularly clearwhenwe look
at the principle of comprehension. When saying that for each propositional
function ϕ(x) there is a corresponding class, Russell means that we can
substitute any predicate or attribute for ϕ(x). He is not thinking of open
sentences, i.e., well-formed expressions with a single free variable, but (as
Quine [55] argued) onemust assume that a Platonistic realm of antecedently-
given attributes is being postulated. The transition from a Platonistic system
(Frege, Russell) to a pure formalism was crucial in the history of logic, and
it came only in the 1920s. Since the question is so important, we may pause
a little bit here.
The formalistic approach, according to which even the logical systems can
be freely interpreted, was adopted by authors influenced by the axiomatic
tradition, along the lines of Hilbert’s Grundlagen der Geometrie and the
American postulate theorists.61 Thus, Lewis [41, 355] presents the “hetero-
dox” idea that one should avoid considerations of meaning such as found in
Principia Mathematica, developing a purely formal investigation of logical
systems. This idea was taken over by Post in his study of the metatheory of
sentential logic, and it can also be found in Bernays andHilbert. As a matter
of fact, the Hilbertian trend, with its emphasis on studying the properties
of formal derivation and proof, was the most influential in promoting the
formalistic approach.
Simple type theory was given its “classical thumbnail formulation” by
Gödel and Tarski around 1931 (§1.2).62 Both authors presented it as a typi-
cally modern logical system. The symbols employed were carefully specified,
and so was the class of elementary formulas and (by recursive clauses) the

60Chwistek (1921), as translated by Church in [8], 169.
61See Dreben & van Heijenoort [19], Scanlan [62].
62The quotation is from Quine [58].
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well-formed formulas. They formulated axioms of the usual kind for the
connectives and quantifiers, while of course admitting quantification over
higher-order variables. Gödel and Tarski introduced indexes for making
explicit the type of each variable, and then established two characteristic
axioms—Comprehension (restricted according to the principle of types) and
Extensionality. The system is compact and clear, and it becomes obvious
that type theory is a formal replacement for naive set theory. In order to lay
the foundations of mathematics, Tarski remarked, one could add the axioms
of Infinity and Choice. But by this time it was generally agreed among pro-
fessional logicians (though not so among philosophers) that these are not
logical principles, but specifically mathematical ones.
As I have already mentioned, the loci where Gödel and Tarski formalized
simple type theory were their most famous works, Gödel’s paper on formally
undecidable sentences and Tarski’s on the concept of truth. The system was
also presented in other works, like Carnap [6] and even the second 1938
edition of Hilbert & Ackermann’s Grundzüge (the first edition still presents
ramified type theory). Moreover, type theorywas employed as a basis for set-
theoretical mathematics not only by logicians, e.g., Tarski in his elementary
work Introduction to Logic and the Methodology of Deductive Sciences [68],
but even by mathematicians like van der Waerden in his celebratedModerne
Algebra [71].

§5. Foundational research and the final restriction. Wehave not yet arrived
at First-Order Logic, which is now starting to seem anything but ‘classical,’
historically speaking.63 As is well known, the most convincing reasons
for a restriction of modern logic to FOL emerged in 1930 and 1931, with
Gödel’s metalogical results. Such reasons can only be compelling if one
focuses on formalized systems for classical mathematics and on Hilbert-
style metamathematics; they were of no weight in the eyes of Brouwer and
other heterodox authors. But the intriguing historical fact is that years
before 1930 a few authors started to advance the thesis that FOL is the
natural system to use in the foundations of mathematics. They did so on
the grounds of conceptual reasons of principle, not on the basis of technical
results; indeed, Carnap [7] identified them as constructivists. Although this
is the typical example of a development that would not be taken notice of
in a technically-oriented history of logic, it seems perfectly possible to make
sense of it. This section will review both kinds of motives for the (in our
narrative) ‘final’ restriction of modern logic.
5.1. Foundational insecurity and the spirit of axiomatics. As we have seen
(§1.3), Weyl and Skolem were the first to defend the viewpoint that in foun-
dational work one ought to restrict quantification to the first order, i.e.,

63It is, of course, “classical” in the customary sense of being a two-valued logic, and it now
seems classical for the role it plays.
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quantify only over individual variables. What they had in common, and
separated them from partisans of type theory, was a critical attitude towards
abstract mathematics, a reluctance to accept that set theory may constitute
an ultimate foundation for mathematical work.
This forces us to consider that, if the mathematical context guided the
shaping of modern logic, after 1900 the natural context for logic was partic-
ularly strict—the foundations of mathematics as understood in the wake of
the ‘foundational crisis’. The whole foundational debate of the early 20th
century had its origins in controversy about abstract mathematics, contro-
versy about purely existential results like the Bolzano–Weierstrass theorem,
Cantor’s theorem, Hilbert’s basis theorem, or Zermelo’s well-ordering the-
orem.64 All of this motivated attempts to find an axiom system sufficient
for establishing abstract mathematics on a sound basis. The emergence
of formal logic and, above all, the set-theoretical and semantic paradoxes,
stimulated or even forced attention to completely formalized axiom systems.
The first example generally regarded as satisfactory was Principia Mathe-
matica (even though crucial improvements were made in the 1920s, as we
have seen). Strict formalization would solve the problem of the paradoxes
and permit a formal analysis of deductive relations, thus perfecting modern
axiomatics. Given the fact that doubts concerning abstract mathematics,
and concerning the possibility of consistent formal systems, were the norm
in the Inter-War period, it seems justified to speak of an atmosphere of
foundational insecurity.
Brouwer and his followers opposed the formal trend, but the same does
not apply to constructivists such as Skolem. Like Weyl (§1.3), Skolem
presented his views on logic while reflecting on Zermelo’s axiom system for
set theory. As is well-known, Zermelo’s axiom of Separation (Aussonderung)
had been left in the form of a vague statement: given a setM and a “definite
property” E(x), there is a setME comprising all elements ofM that satisfy
the property. An open sentence (property) was said to be “definite” when
it is possible to determine whether it is true or false of a given object, on
the sole basis of the laws of logic, the relation ∈, and Zermelo’s remaining
axioms [80]. This formulation is not so vague as sometimes depicted, but
no doubt it could never be satisfactory for the purpose of establishing a
formalized axiom system for set theory. In order to make the system fully
precise, Skolem proposed to identify Zermelo’s vague “laws of logic” with
those of the first-order logical calculus. A “definite property” was thus
to be defined as an open sentence in the formal language of first-order set
theory, i.e., in FOL augmented by the binary relation ∈ [64]. But now the
earliest metatheoretical result, the Löwenheim–Skolem theorem, applied to
Zermelo’s system with paradoxical results—non-categoricity and above all

64See Moore [44], Corry [12], Ferreirós [23].
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the Skolem paradox, establishing the (model-)relative nature of cardinality
results.
Skolem’s conference, obscurely published as a paper in 1923, was a mas-
terpiece of clarity and rigorous argument. The only point that is not clearly
argued is, unfortunately, why (as he asserts) axiomatization requires a re-
striction of the quantifiers to the first-order level. Many commentators have
assumed that Skolem was just redefining logic to mean first-order logic, but
this interpretation is given the lie by his later explicit comments.65 Skolem’s
point was not a general statement about logical theory, but rather the condi-
tional thesis that, if we are interested in producing an axiomatic system, we
can only use first-order logic. I interpret this to mean that, in his view, the
spirit of axiomatics—in the tradition of Pasch, Dedekind, Peano, Hilbert—
can only be consistent with the use of FOL as an underlying logic. Let us
see how this interpretation can be justified.
The main novelty in the modern axiomatic method, as practiced around
1900, was the striving to attain full deductive rigor, which implied the need
to detect all of the axioms or principles relevant for rigorous derivation of
a given body of theory. On the one hand, this called for closer attention to
logical inferences, acting as a motive power behind the emergence of modern
logic. On the other, the requirement was recognized as equivalent with a
principle of independence from meaning, and ultimately with the principle
of free realizability of the axiom systems—the freedom, that is, to regard
completely different object-domains as models of the system. As Pasch said,

Indeed, if geometry is to be really deductive, the deduction must
everywhere be independent of the meaning of geometrical con-
cepts, just as it must be independent of the diagrams. Only the re-
lations among those geometrical concepts, specified in the propo-
sitions and definitions employed, may legitimately be taken into
account. During the deduction it is legitimate and useful to think
of the meaning of the terms, but not at all necessary; in fact,
if it is necessary to do so, the inadequacy of the proof is made
manifest. If, however, a theorem is rigorously derived from a set
of propositions—the basic set—the deduction has a value which
goes beyond its original purpose. For if, on replacing the geomet-
ric terms in the basic set of propositions by certain other terms,
true propositions are obtained, then corresponding replacements
can be made in the theorem; in this way we obtain new theorems
as consequences of the altered basic propositions without having
to repeat the proof.66

Instead of the “geometrical concepts”, it must be possible to consider any
other concepts belonging to an arbitrary sphere; instead of geometrical

65See [65], where Skolem has no difficulty to admit predicative higher-order logic.
66Pasch [49], 91; as translated by Nagel in [48], 237–238.
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objects such as points, lines and planes, it must be possible to consider any
other sets of objects that satisfy the relevant relations (e.g., chairs, tables
and beermugs, in Hilbert’s famous statement). Dedekind expressed the
same principle, in an 1876 letter to Lipschitz, saying that one should use the
“infallible method” of replacing “all technical expressions by newly-invented
words (up to then without a meaning); the building, if well constructed,
should not collapse”.67

Having the Pasch–Dedekind–Hilbert principle in mind, let us consider
whether it makes sense to employ higher-order quantification in an axiom
system. The simplest case is that of second-order quantifiers, which, taken at
face value, refer to “all properties” or “an arbitrary property” of the objects
in the domain or model of the system. But, if we are to allow models of
completely diverse nature, both of these notions appear to be abstractions
without any clear scope. It seems that there can be no well-defined realm of
properties, unless a certain object-domain is univocally specified, and even
then it is unclear whether the totality of properties may be well-defined. For,
as Weyl argued [76], [77], in mathematics one usually works with just a few
given properties (in the case of geometry, incidence, etc.), and in the relevant
body of theory one defines more involved properties by logical means; no
totality is presupposed.
A possible way out is suggested by the traditional conception of the ex-
tension of a concept: we might take properties in extension, that is, classes
or sets, to play the role of ‘properties’ and thus to be the referents of the
second-order quantifiers. From this standpoint, given any object-domainD1
one would automatically have a unique, well-defined domain D2 embracing
all subclasses of the object-domain. This way out seemed quite natural so
long as set theory was regarded as a part of logic, but it became obviously
untenable when the need for proper axiomatization of set theory as a math-
ematical theory arose. Its naiveté has become more and more obvious with
the development of metatheoretical work on axiomatic set theory, for the
assumption of a single, univocally specified domain D2 is equivalent to the
claim that there is a unique answer to Cantor’s Continuum Problem.
To put it differently, reading the second-order quantifiers as referring to
“any (all) class(es)” of objects in the domain, canwe assume arbitrary classes,
arbitrary subsets of the domain, or not? The former would be consistent
with abstract mathematics but, by taking arbitrary subsets to be validated
by logic, we would be moving in circles—preempting the desired result of
securing with absolute certainty the foundations of abstract mathematics.
Was it not established by the paradoxes that we lack a clear notion of arbi-
trary set? Since authors of a constructivist tendency proposed to extirpate

67Letter of 27.07.1876 in Dedekind’s Gesammelte Werke, vol. 3; see his ‘karam tipo tatura’
in §6 of the letter to Keferstein [72] and also his work on models of the Peano axioms in §10
of [18].
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arbitrary classes from the edifice of mathematics, it is natural that they were
particularly aware of this problem. Set theory aims to clarify the notion of
set by making explicit all of the relevant axiomatic principles. In the context
of an axiom system for set theory, it is particularly clear that one cannot use
second-order quantification, since this amounts to relinquishing one’s initial
aim, relegating an important part of the notion of set to the underlying logic.
One might still think of a different way out. We might attempt a precise
delimitation of the realm of properties, once again by means of axiomatiza-
tion. (An independent reason for taking this route is that one can formulate
antinomies for naive ‘property theory’ like the Russell paradox or the hetero-
logical paradox. A need to axiomatize properties arises in parallel with the
need to axiomatize sets.) Skolem considered this possibility of axiomatizing
‘property theory’ in [65], but only to reject it as a foundational resource. The
outcome would be an axiom system similar to axiomatic set theory, whose
foundations would be at least as dubious as those of Zermelo’s system. (The
outcome would actually be rather obscure. Quine has repeatedly argued
that properties are much more unclear than sets, since properties that apply
to exactly the same objects need not be identical; as he says, we lack clear
principles of identification for properties.) It would be absurd to assume
such an axiom system in order to establish the foundations of axiomatic set
theory.
Therefore, and once again, if we are interested in axiomatizing, we cannot
use higher-order logic but only a more restricted system. It might seem
that, at this point, the only possibility open to us is FOL, but there still is
an alternative choice. Although regular, impredicative higher-order logic is
forbidden, we could resort to predicative higher-order logic, which avoids the
objectionable move of introducing at the logical level the contentious notion
of arbitrary set (or arbitrary property). This was actually Weyl’s argument
[77], and Skolem, too, accepted this diagnosis [65]. Thus, both authors
presented the dilemma: either predicative higher-order logic, or first-order
logic. And both of them found it more convenient for actual mathematical
work to use the simpler first-order system.
Under these conditions, all of the objects that appear in an axiomatization
come to play the role of individuals. Even if we were to introduce symbols
that, intuitively, we understand as referring to predicates, when it comes
to offering a model of the system they would become individuals. In the
spirit of axiomatics, seeming higher order quantification becomes in prac-
tice elementary quantification. (It seems plausible that this was also von
Neumann’s opinion in the 1920s, but there are no unequivocal statements
on the topic in his work.)
5.2. Proof-theoretic motives behind FOL. As we saw above, one of the
basic guiding principles of the logical tradition was that of formality. In
the traditional understanding, this meant that logical theory is aimed at
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analyzing the form of arguments, disregarding their matter. A different,
modern conception of formality emerged with the notions of formal proof
and formal system, first presented by Frege [24]. Modern reliance on formal
systems can be regarded as an improvement on two traditions: first, it con-
stitutes a perfected version of the older idea of subjecting logical inference to
calculation (Leibniz’s principle); second, it represents a natural refinement
of modern axiomatics. The latter was the motive that Frege himself empha-
sized when saying that the aim of his conceptual language was to provide
total control of the premises and possible implicit assumptions in deduction.
The conception of logic as a calculus, merged with the idea that logical
theory should be embodied in formal systems, proved to be a key principle,
indeed the crucial one behind restriction of the logical language to the first
order. Now, the analysis of formal proof within formal systems is called
proof theory, and what I have just said is that the main motives behind that
final restriction were proof-theoretical. But one should keep in mind that
formal proof andproof theory are quite natural, albeit profound, refinements
of the 19th-century axiomatic tradition. As regards formal proof, Hilbert
acknowledged this when he said in 1917 [35] that the axiomatization of logic
itself constituted the “crowning achievement” of the axiomatic movement.
This makes clear the existence of a natural link between themotives reviewed
in §5.1 and the ones we shall consider here.
It seems likely that all mathematicians who employed calculuses, from
Viète to Frege and Hilbert, assumed that those calculuses would prove to be
‘complete’ in the informal sense of admitting the derivation of any desired
result, in the language of the calculus, by means of its formal operations.
However, in the absence of a completely formalized system this notion of
‘completeness’ lacks a well-defined sense; one may well be able to realize
it in practice, as long as one feels free to introduce novel symbols for new
operations and functions. The question changed completely when the idea
of calculus merged with that of formal system. The traditional assumption,
now turned into the requirement of syntactic or semantic completeness,
proved to be out of reach for most interesting mathematical systems. Any-
bodywho has studiedmathematical logic knows this, since it is the content of
Gödel’s first incompleteness theorem. Gödel [29] established that the system
of simple type theory is incomplete, and made it clear that the same applies
to many other “related systems”—like second-order logic and the system
of first-order Peano arithmetic. In fact, as established by later work, any
formal system that is consistent and contains primitive recursive arithmetic
is incomplete.
Gödel himself established in his dissertation, and published in 1930, the
result that FOL is complete, thus solving a problem posed by Hilbert &
Ackermann [37]. What these results, taken together, mean is that the conse-
quence relation of FOL can be captured by means of formal proof, while the
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consequence relation of second-order logic cannot. If one requires logical
systems to be completely formal, those results imply that the only quantifi-
cational system that merits the name of logic is FOL.68 That requirement
was actually implicit in foundational work as done in the Inter-War period,
as a result of foundational insecurity reinforced by the aims ofBeweistheorie,
but as we shall see it was far from being consciously clear. In the long run,
however, FOL emerged as the only logical system available for foundational
or metamathematical studies, modulo the aim of establishing with absolute
certainty the security of the foundations.69

While Gödel was establishing his results, extensive experience with axiom
systemsmade it clear thatFOLsuffices for the development of any givenbody
of mathematical theory. This was acknowledged by Hilbert and Ackermann
in an interesting statement:

The restricted functional calculuswas sufficient, as long as one had
no other aim than the formalization of logical inference, as long as
it was only a matter of developing isolated theories of themselves,
in a purely formal way, from their principles. But as soon as one
makes the foundations of the theories, particularly mathematical
theories, the subject of investigation, as soon as one wishes to test
in which connection they stand to logic, and to what extent they
can be won from purely logical operations and concepts, then the
expanded functional calculus is indispensable.70

The second half of this quote seems to be a reflection on logicism, which
appears to have tempted Hilbert in the 1910s (see Hilbert [35]). But now we
are interested in the first sentence. Work with axioms for the number system,
geometry, and set theory had established that it is perfectly possible to derive
all the required theorems from first-order axioms (see §1.4). The fact that
axiomatic set theory can be satisfactorily formalized within FOL would be
emphasized by Skolem in the 1920s [64], [65], Tarski in 1935 [67], Quine
in 1936 [54], Bernays in 1937 while giving his version of the von Neumann
system [2], and Gödel in 1939 and 1940 [30], [31]. In a word, FOL turned
out to be sufficient for codifying mathematical proofs.
The results that Gödel published in 1930 and 1931 suggested that, in
principle, FOL is an ideal system of logic, being the only quantificational
system that is proof-theoretically well-behaved and sound. At the same
time, its sufficiency for the codification of mathematical proofs established
that FOL is satisfactory in practice. The elements for decision making were

68To be careful, one might also consider a system like FOL augmented with the quantifier
“for uncountably many,” but no one has proposed to take this as a basic logic.
69The proviso is essential: many other, more powerful systems have been used in the second

half of the 20th century. But it is clear that, in the meantime, the aims and requirements of
metamathematics changed.
70Hilbert & Ackermann [37], 86.
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at hand, but the interplay between technical results and conceptual issues
is always complex (below we shall consider Zermelo as an example of this
maxim). Even logicians who openly acceptedGödel’s incompleteness results
failed to establish the requirement that logical systemsmust be strictly formal
and take the corresponding consequences. This is exemplified by Quine’s
Mathematical Logic [55].
Faced with Gödel’s incompleteness theorems, most connoisseurs con-
cluded that it is impossible to reduce mathematics to a formal system, a
syntactic game within a rigid calculus. But nothing hindered them from
drawing a similar conclusion regarding logic. After an interesting presenta-
tion of Gödel’s results in the last chapter of his book, Quine concluded:

Logical truth . . . is syntactically undefinable. Logical truth can be
said . . . to be informal.71

This is understandable, since Quine’s logical system was a substitute for type
theory, and therefore a formal system for the theory of classes. However,
this standpoint conflicted with the principle of the calculus, as I have called
it, in its modern post-Fregean understanding.
During the Inter-War period there was a clear preference for formal sys-
tems, and it was assumed that the role of logical theory was to be a tool in
their formulation. In spite of Russell, Carnap, and the Vienna Circle, logi-
cism had been abandoned by most active logicians.72 It was more coherent
with these tendencies to take the route opposite to Quine’s, define logic to
be a completely formal science, and leave mathematics ‘transformal,’ so to
say. This was also more convenient for practical purposes, and desirable in
view of further reasons to be considered shortly. Quine himself opted for
this viewpoint, in a radical way, from about 1950.
Finally, one may speak of an argument of simplicity speaking for FOL,
judged from a foundational standpoint. In the 1930s, it was generally agreed
that set-theoretical ideas afforded a natural and satisfactory foundation for
all of abstract mathematics. The two main alternatives for a rigorous es-
tablishment of such a foundation were either a type-theoretical system with
axioms of Infinity and Choice, or else a first-order systemwith the Zermelo–
Fraenkel axioms. Earlier, around 1920, those had seemed to be completely
different systems, but later events led to their rapprochement.73 When rami-
fied type theory was abandoned, Russell’s systemwas turned into an impred-
icative one, close to classical mathematics. With Skolem, Fraenkel and von
Neumann, the system of Zermelo was formalized, coming to be a ‘logistic’
system in the spirit of Frege and Russell. And when Zermelo adopted the
axiom of Foundation, axiomatic set theory turned out to describe a universe
of sets that intuitively was very similar to that of type theory. Authors like

71Quine [55], §60, p. 318.
72See [22].
73This topic is discussed in detail in Ferreirós [23], ch. X and XI.
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Church acknowledged in the 1930s that the Zermelo system and type theory
were, in their current form, “essentially similar”.74

At this point, the main differences between the two systems were the fol-
lowing. The full Zermelo–Fraenkel system ismore powerful than type theory
with Infinity and Choice, and it was preferred by working mathematicians.
Secondly, and of particular interest here, to the extent that both systems de-
scribed the same universe, axiomatic set theory did so in a simpler way—type
theory is higher-order, while set theory, as we saw above, can be formulated
within FOL. The “essential similarity” between both systems, together with
the greater simplicity of axiomatic set theory, spoke for choosing the latter,
based on FOL, as a foundational system. Tarski gave expression to this
viewpoint in his 1935 Nachwort to the famous paper on the notion of truth:

From the languages just considered it is but a step to languages of
another kind [which constitute a much more convenient and actu-
ally much more frequently applied apparatus for the development
of logic and mathematics]. In these new languages all the vari-
ables are of indefinite order. From the formal point of view these
are languages of a very simple structure; . . . all their variables
belong to one and the same semantical category. Nevertheless, as
is shown by the investigations of E. Zermelo and his successors
(cf. Skolem, Th. [66], pp. 1–12), with a suitable choice of axioms it
is possible to construct the theory of sets and the whole of classical
mathematics on the basis provided by this language.75

Tarski had previously regarded as inescapable the adoption of a certain
“theory of semantical categories” which, as a consequence, brought the
necessity of type restrictions [67, 215]. Now he was no longer in a position
to defend that viewpoint, and came to accept fully the validity of a first-order
approach.

§6. Schließendes. The implications ofGödel’s results were extremely com-
pelling because foundational work focused on proof theory and hinged on
the question of consistency for formal systems. They would not have been
compelling, had most logicians been interested above all in Modelltheorie,
not in Beweistheorie. (As we have seen, however, this counterfactual as-
sumption is unlikely given the important role played by the “principle of
the calculus” in the emergence of modern logic, and given the foundational
situation during the 1920s—paradoxes, constructivistic criticism, naturally
leading to the problem of consistency.) Witness of that alternative is the
peculiar case of Zermelo, who around 1930 reacted to the results of Löwen-
heim, Skolem, and Gödel by abandoning the requirement of working within

74Church [9], 69–70.
75Tarski [67], 271, footnote 1. The words in brackets are not found in the 1935 German

version (compare Tarski, Collected papers, vol. 2, 190 footnote).
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formal systems. Actually, he attacked this idea directly and despised it,
calling it “Skolemism”.76 Later, when metamathematical work began to
pursue aims different from that of consistency, it became more and more
customary to have recourse to the whole freedom of regular mathematics at
the meta-level. Simultaneously the use at the system-level of infinitary logic,
higher-order logic, and the like resurfaced. But one must be conscious that
this implied a crucial change of route, relinquishing the notion of formal
system in the strict sense (infinitary logic, e.g., can only be made sense of as
a set-theoretical construct).
As we have seen, the interplay between technical results and conceptual
issues is always complex. The 19th-century convergence of traditional logic
with mathematical traditions determined the routes taken by logical theory
along the complex road leading from the Aristotelian exemplars to this
paradigm of the 20th century, the first-order system. The first moves actually
widened immensely the scope of logic, blurring the boundary line between
logic and mathematics (logicism), but the paradoxes of set theory gave a
fatal blow to that tendency. The theory of sets was eventually trimmed
from logic, and a clear preference for well-behaved, strictly formal systems
emerged. The needs of axiomatics, the context of Beweistheorie, and the
crucial metatheoretical results obtained about 1930 did the rest. The process
was still complex and convoluted—including the emergence of type theory,
initially as an attempt to preserve logicism—but the main motives seem clear
now.
First-order logic emerged as an analysis of the most fundamental basis
for the notion of mathematical proof. To put it otherwise, it emerged as
the logic that is necessary and sufficient for codifying mathematical proofs,
axiomatizing mathematical theories, and studying their metatheory. First-
order logic began to be widely proclaimed as the core of modern logic in
the 1930s, reaching its zenith around 1950. It is a clear symptom of the
hyperactivity that characterized mathematical logic in the 20th century, that
we now view such a recent product as a classical theory.
After a historico-philosophical analysis like the preceding, one is easily
tempted to speculate about counterfactual history. I have defended that
the history of logic would have looked quite different had the Stoic set of
exemplars taken the role of the Aristotelian ones. We would have a much
more trivial story, to be sure, leading rather directly to sentential logic,
and later to complementary or alternative systems (modal logic, intuition-
istic propositional logic). Logicism would never have been formulated, and
quantification theory would perhaps have been regarded as an extremely
basic mathematical system, of which the great philosopher Aristotle got a
glimpse.

76Zermelo [81]. See Grattan-Guinness [33], Moore [43], Dawson [14].
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Considering Zermelo and his reaction to “Skolemism”—or, as one might
say, FOL-mania—one can think of other deviant historical scenarios. Imag-
ine aworld inwhich the 20th centurybeginswith someauthorwhooffers such
a convincing solution to the paradoxes, that everybody agrees. (This might
have been a clear presentation of the iterative conception of sets, which was
somehow present in the practice of 19th-century mathematicians.) Imagine,
further, that this solution makes set theory appear as a consistent mathe-
matical theory that does not belong to logic. Within such a context, the
strong interest in formal systems and proof theory, that was so characteristic
of the 1920s and 1930s, might not have emerged. But, without this, the
key reasons for focusing on FOL would have disappeared from the scene.
The main foundational theme of the era might have been, not consistency,
but a semantic question—the codification of crucial mathematical notions
such as that of natural number and real number, meaning the categorical
characterization of such notions. Had this been the case, the recommenda-
tions of Hilbert and Church would have been heard and second-order logic
would probably have taken the paradigmatic role that was played, in fact, by
FOL.77

Mathematical logic is what logic, through twenty-five centuries and a few
transformations, has become today. As we have seen, these transformations
were not merely questions of detail—they involved fundamental changes in
conception of the subject and delimitation of its scope.
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ics, Birkhäuser, Basel, 1999.
[24]Gottlob Frege, Begriffsschrift, Nebert, Halle, 1879, reprint as Begriffsschrift und

andere Aufsätze (I. Angelelli, editor) in Olms, Hildesheim, 1964.
[25] , Grundgesetze der Arithmetik, vol. 1, Pohl, Jena, 1893, reprint Olms,

Hildesheim, 1966.
[26] , Grundgesetze der Arithmetik, vol. 2, Pohl, Jena, 1903, reprint Olms,

Hildesheim, 1966.
[27] , Anwendungen der Begriffsschrift, Jenaischer Zeitschrift für Naturwiss, 1879.

References to the reprint in Begriffsschrift und andere Aufsätze (I. Angelelli, editor), Olms,
Hildesheim, 1964.
[28] , Der Gedanke. Eine logische Untersuchung, Beiträge zur Philosophie des
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[66] , Über einige Grundlagenfragen der Mathematik, Videnskaps-selskapets

Skrifter, (1929), no. 4, pp. 1–49, references to the reprint in Selected Works in Logic, Uni-
versitetsforlaget, Oslo, 1970.
[67] Alfred Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Studia philo-

sophica, vol. 1 (1935), (Polish original, without postscript, in 1933). References to the English
translation in Logic, Semantics, Metamathematics, Oxford University Press, 1956.
[68] , Introduction to logic and the methodology of deductive sciences, Harvard

University Press, 1941.
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