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Summary. In this paper we show that the massive parallelism, the synchronous appli-
cation of the rules, and the discrete nature of their computation, among other features,
lead us to consider P systems as natural tools for dealing with fractals. Several examples
of fractals encoded by P systems are presented and we wonder about using P systems as
a new tool for representing and simulating the fractal nature of tumors.

1 Introduction

Philosophy is written in this grand book –I mean universe– which stands

continuously open to our gaze, but it cannot be understood unless one

first learns to comprehend the language in which it is written. It is

written in the language of mathematics, and its characters are trian-

gles, circles and other geometrical figures, without which it is humanly

impossible to understand a single word of it; without these, one is wan-

dering about in a dark labyrinth.

Galileo (1623)

”. . . clouds are not spheres, mountains are not cones, coastlines are not

circles, and bark is not smooth, nor does lightning travel in a straight

line . . . ”

B.B. Mandelbrot [21] (1982)

Along centuries, mathematicians have paid attention to the study of regular-
ities. Definitions and theorems have been claimed as general as possible. Sets or
functions not sufficiently regular have been treated as individual curiosities or
even as mathematical monsters. For example, the Peano curve (a curve which fills
a plane [26]), the middle third Cantor set [6] or the Koch curve1 [16, 17] are some
of these monsters.
1 The middle third Cantor set and the Koch curve will be discussed below.
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The seminal work on fractals was presented by Mandelbrot [21] in 1982 and
put the basis of the theory to deal with these monsters. In a first approach, we
can consider that fractal objects exhibit complexity which holds constant under
different scales. A fractal is a shape made of parts similar to the whole in some
way. This self-similarity occurs over an infinite range of scales in pure mathematical
structures but over a finite range in many natural objects such as clouds, coastlines
or snowflakes.

In the literature, there are many attempts of defining such objects. In [21] Man-
delbrot offers the following tentative definition of fractal: A fractal is by definition
a set for which the Hausdorff dimension strictly exceeds the topological dimension.
Some years later Mandelbrot proposed a new definition [22]: A fractal is a shape
made of parts similar to the whole in some way.

Nowadays there is no a definition of fractals which considers every case. Instead
of a formal definition, a set F is considered a fractal (in informal sense) if it fits
into several properties (see [9] and [32]):

• F has a fine structure, i.e., detail on arbitrary many scales.
• F is too irregular to be described in traditional geometrical language, both

locally and globally.
• Often F has some form of self-similarity.
• Usually, its fractal dimension (defined in some way) is greater than its topo-

logical dimension.
• Fractals are obtained by the application of recursive procedures, usually in a

simple way. These procedures often consist on a few rules.
• The computational generation of a fractal is discrete. Fractals are usually de-

fined as the limit of an iterative process performed step by step.

One of the most interesting aspects of this field is that fractals have not only
a mathematical interest. They allows us an approximation to many phenomena
of nature. As R.F. Voss points out in [32], Euclidean geometry provides concise
accurate descriptions of man-made objects but inappropriate for natural shapes.
Self-similarity seems to be one of the fundamental geometrical construction prin-
ciples in nature.

In many plants and also organs of animals, this has led to fractal branching
structures. For example, in a tree the branching structure allows the capture of
a maximum amount of sun light by the leaves; the blood vessel system in a lung
is similarly branched so that the maximum amount of oxygen can be assimilated
(see [27]). Although the self-similarity in these objects is not strict, we can identify
the building blocks of the structure.

In many cases we can also find fractal structures in the non-alive world. Moun-
tains, rivers, coastlines, and clouds are other examples. One of the consequences of
these fractal features is that it is impossible to assign quantities such as length or
surface area to these natural shapes. There cannot be a simple numerical answer to
questions as Mandelbrot’s famous How long is the coastline of Britain? (see [20]).
The most appropriate question is how irregular or what is its fractal dimension?
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Fig. 1. The membrane structure of a P system

On the other hand, membrane computing is a new non-deterministic model of
computation presented by Gh. Păun in [23] which starts from the assumption that
the processes taking place in the compartmental structure of a living cell can be
interpreted as computations. The devices of this model are called P systems.

Roughly speaking, a P system consists of a cell-like membrane structure (see
Figure 1) in the compartments of which one places multisets of objects which evolve
according to given rules in a synchronous non-deterministic maximally parallel
manner2.

There exists a skin membrane which embraces all the others, separating the sys-
tem from the environment. The membranes which do not contain other membranes
inside are called elementary membranes. The regions delimited by the membranes
(that is, the space bounded by a membrane and the immediately lower membranes,
if there are any) can contain certain objects, that are allowed to be repeated. By
means of the application of fixed evolution rules associated with the membranes
(or regions), these objects can transform themselves into different ones, and can
even go from a region to an adjacent one, crossing the membrane that separates
them. Depending on the model, some membranes can be dissolved, divided or
created.

The P systems offer two levels of parallelism: on the one hand, the rules within
a membrane are applied simultaneously; on the other hand, these operations are
performed in parallel in all the membranes of the system.
2 A layman-oriented introduction can be found in [25], a formal description in [24], and

further bibliography at [33].
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Fig. 2. The membrane structure from Figure 1 as a tree

Each region can be seen as a computing unit (a processor), having its own data
(chemical substances) and its local program (given by biochemical reactions). So,
the cell can be seen as an unconventional computing device.

To sum up, P systems have the following properties:

• P systems can be considered as structures of nested processors placed in a tree-
structure (see Figure 2), i.e., we can consider computations on many scales.

• If we consider P systems where membranes can be dissolved, divided or cre-
ated, we usually obtain a geometrical shape too irregular to be described in
traditional geometrical language, both locally and globally.

• Computations in P systems are obtained by the application of a finite set of
rules. The application of these rules allows to obtain a configuration Cn+1 from
another configuration Cn.

• The computation of a P system is discrete, i.e., it is a process performed step
by step.

In this paper we show that the massive parallelism, the synchronous application
of the rules, and the discrete nature of their computation, among other features,
lead us to consider P systems as natural tools for dealing with fractals. Several
examples of fractals represented by P systems are presented and we wonder about
using P systems as a new tool for representing and simulating the fractal nature
of tumors.

The paper is organized as follows. First the concept of fractals and P systems
with membrane creation are remembered in Sections 2 and 3. In Section 4, two ex-
amples of fractals represented by deterministic P systems are presented. In Section
5 we discuss the fractal nature of tumors, how they can be represented by ran-
dom fractals, and how non-deterministic P systems can deal with random fractals.
Finally, some conclusions and lines for future research are given.

2 Fractals

The concept of a fractal set is intrinsically linked to the concept of dimension (see
[9]) and this is not an easy concept to understand. Many greatest mathematicians
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like Poincaré, Lebesgue, Brouwer, Cantor or Hilbert, among others, have been
involved in the concept of dimension.

At the turn of the 20th century it was one of the major problems in mathe-
matics to determine what dimension means and which properties it has. Mathe-
matically, it is possible to define the dimension of a set in many ways3. Most of
these definitions are slight variations of Hausdorff’s fundamental definition from
1919, which motivated Mandelbrot’s work. As we pointed out in the Introduction,
in the seminal paper [21] B.B. Mandelbrot defines a fractal as a set with Hausdorff
dimension strictly greater than its topological dimension.

A detailed study of the Hausdorff or topological dimensions is out of the scope
of this paper. We can start from the usual notion of dimension for which “curves”
have dimension 1, “surfaces” dimension 2, and “solids” have dimension 3. Fractal
dimension can be considered as a natural extension of this definition.

Let us consider a segment of a given length. If we consider segments 1
3 of the

original length, it is natural to think that we will need 3 new segment to cover the
original one. In general, if we consider segments 1

r of the original length, we will
need N = r segments to cover it.

Let us look at what happens with surfaces. We typically expect that the number
of squares needed to cover a surface will increase when smaller boxes are used. For
most planar objects, we expect that if squares with side 1

3 of the original one are
used, then the number N of squares needed to cover it will be 32 times greater
than the number of original squares needed to cover the surface (see Figure 3). If
we take a reduction factor 1

4 , the number of squares will be 42 times the original
one, and in general, if the reduction factor is s then the number of squares needed
to cover the surface will be multiplied by 1

s2 . We recognize the power 2 as the
dimension of the object.

Finally, if we consider a solid covered by a set of cubes, we have an analogous
reasoning. If we consider new cubes with side 1

4 of the original one, we will need
43 times the number of original cubes. The power 3 is the dimension of the object.

For the line, square, and cube there is a nice power law relation between the
number of pieces N and the reduction factor s. This is the law

N =
1

sD
, (1)

where D = 1 for the line, D = 2 for the square, and D = 3 for the cube. In other
words, the exponent in the power law agrees exactly with those numbers which are
familiar as (topological) dimensions of the line, square, and cube. This intuition
for dimension can be extended to non-integer dimension.

Derived from the Latin fractus meaning fragmented (or frangere, which mean
to break), a fractal is a mathematical object with a non-integer4 dimension. In

3 C. Tricot did a study of 12 definitions of dimension in [31].
4 As pointed out in the Introduction, some fractals fall out of this definition, as Peano’s

curve with dimension 2.0 or the so-called devil’s staircase with dimension 1.0 (see, for
example, [27]).
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Fig. 3. Intuition for dimension

B.B. Mandelbrot words: I coined fractal from the Latin adjective fractus. The
corresponding Latin verb frangere means “to break”: to create irregular fragments.
It is therefore sensible – and how appropriate for our needs! – that, in addition to
“fragmented” (as in fraction or refraction), fractus should also mean “irregular”,
both meanings being preserved in fragment. [21].

In Section 4 we will see some examples of fractals and how they can be expressed
in terms of membrane computing, but before we will introduce the P system model
used in the description.

3 P Systems with Membrane Creation

Since Gh. Păun presented the cellular computation with membranes, many dif-
ferent variants have been proposed. According to the evolution of the membrane
structure two big groups can be obtained: P systems where the initial structure
does not change along computations and P systems where the tree structure of the
membranes vary (or can do it) along computation. The decrease of the number
of membranes is made by applying the so-called dissolution rules, [a]e → b, in
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which the object a inside a membrane with label e produces the dissolution of the
membrane, a disappears and a new element b and the rest of the multiset in the
membrane go to its father (more precisely, they go to the closest non-dissolved
ancestor in the membrane hierarchy, since several membranes can dissolve in the
same step). Increasing the number of membranes are usually made via division of
existing membranes or creating new ones from objects.

Membranes are created in living cells, for instance, in the process of vesicle
mediated transport and in order to keep molecules close to each other to facilitate
their reactions. Membranes can also be created in a laboratory (see [19]). Here
we abstract the operation of creation of new membranes under the influence of
existing chemical substances to define P systems with membrane creation.

Recall that a P system with membrane creation is a tuple of the form Π =
(O, H, µ, w1, . . . , wm, R) where:

1. m ≥ 1 is the initial degree of the system;
2. O is the alphabet of objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure consisting of m membranes labeled (not necessarily

in a one-to-one manner) with elements of H;
5. w1, . . . , wm are strings over O, describing the multisets of objects placed in the

m regions of µ;
6. R is a finite set of rules5, of the following forms:

a) [a → v]h, where h ∈ H, a ∈ O and v is a string over O describing a multiset
of objects. These are object evolution rules associated with membranes and
depending only on the label of the membrane.

b) a[ ]h → [b]h, where h ∈ H, a, b ∈ O. These are send-in communication
rules. An object is introduced in the membrane, possibly modified.

c) [a]h → [ ]h b, where h ∈ H, a, b ∈ O. These are send-out communication
rules. An object is sent out of the membrane, possibly modified.

d) [a]h → b, where h ∈ H, a, b ∈ O. These are dissolution rules. In reaction
with an object, a membrane is dissolved, while the object specified in the
rule can be modified.

e) [a → [v]h2 ]h1 , where h1, h2 ∈ H, a ∈ O and v is a string over O describing
a multiset of objects. These are creation rules. In reaction with an object,
a, a new membrane is created. This new membrane is placed inside of
the membrane of the object which triggers the rule and has associated an
initial multiset v and a label, h2.

Rules are applied according to the following principles:

• Rules are used as usual in the framework of membrane computing, that is, in
a maximally parallel way. In one step, each object in a membrane can only be

5 In this paper we will use a weak version of this model, since we do not use dissolution
nor communication rules, but we want to present the model of P system with membrane
creation as found in the literature.
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used by one rule (non-deterministically chosen when there are several possibil-
ities), but any object which can evolve by a rule of any form must do it (with
the restrictions indicated below).

• If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external one. The skin membrane is never dis-
solved.

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• The rules associated with the label h are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it was
obtained by creation.

• Several rules can be applied to different objects in the same membrane simul-
taneously. The exception are the rules of type (d) since a membrane can be
dissolved only once.

4 Examples

A fractal set generally contains infinitely many points whose organi-

zation is so complicated that it is not possible to describe the set by

specifying directly where each point in it lies. Instead, the set may be

defined by “the relation between the pieces”. It is rather like describing

the solar system by quoting the law of gravitation and stating the initial

conditions.

M.F. Barnsley [2]

In this section we present a pair of classic fractals and P systems which can
be interpreted as these fractals. They are the middle third Cantor set [6] and
the Koch curve [16, 17]. Following Barnsley, in order to describe the fractal we
need to know the initial conditions (or initial configuration in terms of membrane
computing) and the transformation rules. But we also need other ingredient: as in
every computational process, we store the information in some kind of structure
data and in order to recognize the data as a fractal we need to give an interpretation
to the data.

We will show below how the data of P systems (objects, labels, membrane
structure, etc.) are interpreted, but before we need to fix a technical detail. In the
examples we will use the following order between strings of labels. Let H be a set
(of labels) and < an order on H. Let us consider w1, w2 ∈ H∗ such that w1 is
not a suffix of w2 and viceversa (consequently, w1 6= w2), then we will say that
w1 <S w2 if and only if there exist z1, z2, w ∈ H∗ and x1, x2 ∈ H with w1 = z1x2w,
w2 = z2x2w and x1 < x2.
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Fig. 4. First steps for the middle third Cantor set

4.1 The middle third Cantor set

The middle third Cantor set is one of the best known and easiest constructed
fractals. It is constructed from a unit interval by a sequence of deletion operations.
Let E0 be the interval [0, 1] of real numbers. Let E1 be the set of numbers obtained
by deleting the middle third of E0. In this way the set E1 consists of two intervals
[0, 1

3 ] and [ 23 , 1] both of length 1
3 . Deleting the middle third of these intervals we

obtain E2, i.e., E2 consists on four intervals [0, 1
9 ], [ 29 , 1

3 ], [ 23 , 7
9 ], and [ 89 , 1] of length

1
32 . If we go on with this process, the set Ek consists on 2k intervals of length 1/3k

constructed by deleting the middle third of the intervals from Ek−1 (see Fig. 4).
The middle third Cantor set F consists of the set of elements which belong to

Ek, for all k. Formally,

F =
∞⋂

k=0

Ek.

This set has important mathematical properties. F is an infinite (uncountable) set
which consists of the numbers in [0, 1] whose base 3 expansion does not contain
the digit 1, i.e., the number which can be expressed as

∞∑

k=1

ak

3k

with ak ∈ {0, 2} for all k ≥ 1. Obviously, it is impossible to draw the set F itself
with infinitesimal detail, so we only can draw one of the Ek, with a reasonably
value of k.

Note also that F , similar to other fractals, is not a picture. F is defined as a
set of points in the Euclidean space which admits a graphical representation with
a certain degree of precision. In order to handle F with P systems, we do not think
of the graphical representation, but of a computational device which provides the
set Ek encoded in a certain way and computes Ek+1 in the following step.
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Such a P system can be easily constructed. Let us consider6 the P system
Π = (O, H, µ, w0, R) with O = {a, b, c}, H = {0, 1, 2}, µ = [ ]0, w0 = abc, and R
is the set of rules

[ a → [abc]0 ]i, i ∈ {0, 2},
[ b → [abc]1 ]i, i ∈ {0, 2},
[ c → [abc]2 ]i, i ∈ {0, 2}.

In each configuration, we will consider the elementary membranes, their depth,
and for each elementary membrane, the string of labels of the membranes from
the elementary membrane to the skin.

• Each elementary membrane will represent a segment of the unit interval.
• The depth of the unitary membrane in the membrane structure will determine

the length of the segment represented by the membrane. We will consider that
the skin has depth 0 and an elementary membrane at depth k will represent a
segment of length 1/3k.

• The label of the elementary membrane will determine if the segment is or not
considered in the construction of the middle third Cantor set. Segments with
label 0 or 2 will be considered. Segments with label 1 will not be considered
for the middle third Cantor set (they represent the segments removed).

• Finally, we will use the string of labels of the membranes from the elementary
membrane to the skin to order the elementary membranes following the order
<S defined above.

The initial configuration only has the skin and three objects inside [ abc ]0.
We are not interested in the objects placed in the membrane. In fact, along the
computation all membranes will be empty, with the exception of the elementary
ones, which contains the set abc.

With the interpretation detailed above, this initial configuration C0 represents
a unique segment of length 1/30 = 1. Its label is 0 and this means that the set
must be considered. In other words, the initial configuration represents the set E0

in the construction of the middle third Cantor set.
The P system evolves deterministically, and after the first computation step

we obtain the configuration

C1 ≡ [ [abc]0 [abc]1 [abc]2 ]0.

We have three elementary membranes at depth 1 that represents three segments of
length 1/31. The order among the strings of labels is 00 <S 10 <S 20 and following
the interpretation of the labels, the middle third has label 1 and this means that
this segment is not considered. This is the set E1 in the construction of the middle
third Cantor set.

If we give a step more we get the configuration
6 The initial degree of the P system is 1, w0 is the initial multiset of the skin, which has

label 0.
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Fig. 5. The stage K1 in the Koch curve

C2 ≡ [ [ [abc]0 [abc]1 [abc]2 ]0 [abc]1 [ [abc]0 [abc]1 [abc]2 ]2 ]0.

This configuration has seven elementary membranes and the order <S among them
is

000 <S 100 <S 200 <S 10 <S 020 <S 120 <S 220.

The segments represented by the strings 000, 200, 020, and 220 have the length
1/32 and must be considered in the construction of the middle third Cantor set
(as non deleted). The remaining elementary membranes represent segments which
must not be considered (deleted): the strings 100 and 120 denote segments of length
1/32 and the string 10 denotes a segment of length 1/3. With this interpretation,
the configuration C2 can be identified in a natural way with the set E2 in the
construction of the middle third Cantor set.

In each step of computation, the configuration Ck represents the set Ek in the
construction of the middle third Cantor set. If we consider the whole computation,
in the limit we have a membrane structure with infinite branches. Each of these
branches has associated an infinite string of labels composed of 0 and 2. These
strings represent the base 3 expansion of the real numbers from the interval [0, 1]
which belong to the middle third Cantor set.

4.2 The Koch curve

In 1904, the Swedish mathematician Helge von Koch introduced what is now called
the Koch curve [16, 17]. As its name expresses, this fractal is a curve and it is also
one of the most famous fractals in the literature. This curve has very interesting
properties from a mathematical point of view. It has infinite length and it does
not admit a tangent to any of its points. This curve has much of the complexity
which we can see in nature.

The geometric construction of the Koch curve can be easily described. Let us
begin with a straight segment K0 which we will consider of length one. In a similar
way as in the middle third Cantor set, we split K0 into three segments of length
1/3. Then we replace the middle third by an equilateral triangle and take away its
base (see Figure 5).

Therefore, the next stage on the construction of the Koch curve, K1 consists
of a continuous line composed by four straight segments on length 1/3. We now
repeat the process, taking each of the resulting segments, splitting them into three
equal parts and so on. The k-th stage of the construction of the Kock curve consists
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on a continuous line composed of 4k segments of length 1/3k. In the limit, we have
the Koch curve. If we put together three Koch curves, we have the fractal known
as Koch Snowflake (see Figure 6).

In a similar way as in the previous example, we present a P system which
can be interpreted as the Koch curve. In each step of computation we have an
intermediate step of the construction of the Koch curve. Let us consider7 the P
system Π = (O,H, µ,w4, R) with O = {a, b, c, α, β, γ}, H = {1, 2, 3, 4}, µ = [ ]4,
w0 = {abcγ}, and R the following set of 16 rules

R1 = [α → [ abcα ]4 ]1, Ri
a = [ a → [abcα]1 ]i, i ∈ {1, 2, 3, 4},

R2 = [β → [ abcβ ]4 ]2, Ri
b = [ b → [abcβ]2 ]i, i ∈ {1, 2, 3, 4},

R3 = [α → [ abcα ]4 ]3, Ri
c = [ c → [abcα]3 ]i, i ∈ {1, 2, 3, 4},

R4 = [ γ → [ abcγ ]4 ]4.

In each configuration, we will consider the elementary membranes, their depth,
and for each elementary membrane, the string of labels from the elementary mem-
brane to the skin and the symbol placed in the membrane denoted by a Greek
letter α, β, or γ.

• Each elementary membrane will represent a segment.
• The depth of the unitary membrane in the membrane structure will determine

the length of the segment represented by the membrane. We will consider that
the skin has depth 0 and an elementary membrane at depth k will represent a
segment of length 1/3k.

• As in the previous example, we will use the string of labels of the membranes
from the elementary membrane to the skin to order the elementary membranes
following the order <S defined above.

• Each stage of the construction of the Koch curve consists on a continuous line
built with a certain amount of segments, all of them with the same length. If
we know the number of such segments and their length, in order to determine
exactly an intermediate step of the construction of the Koch curve, the last
data that we need is the angle between a segment and the following one. This

7 In this case, the initial degree of the P system is also 1 and w4 is the initial multiset
of the skin, which has label 4.

Fig. 6. First steps for the Koch Snowflake
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information is given by the symbol α, β, or γ placed inside the elementary
membrane.
– If a membrane representing the segment s1 contains the symbol α, we will

consider that the following segment s2 has a deviation of π/3 radians with
respect to the direction of s1.

– If a membrane representing the segment s1 contains the symbol β, we will
consider that the following segment s2 has a deviation of −2π/3 radians
with respect to the direction of s1.

– Finally, if a membrane representing the segment s1 contains the symbol γ,
we will consider that it is the last segment of the line and no other segment
is after it.

The initial configuration has only the skin and the objects abcγ inside. With
the interpretation specified above, this initial configuration C0 represents a unique
segment of length 1/30 = 1. The Greek symbol inside is γ and, coherently, it means
that no other segment is after it.

By the application of rules R4
a, R4

b ,R
4
c , and R4, we obtain the configuration

C1 = [ [abcα]1 [abcβ]2 [abcα]3 [abcγ]4 ]4.

This configuration has four elementary membranes at depth 1 that represent four
segments of length 1/31. The order among the strings of labels is 14 <S 24 <S

34 <S 44. The first segment (with string 14) contains the symbol α. This means
that the second segment (with string 24) has a deviation of π/3 with respect the
direction of the first one. The second segment contains the symbol β, so we will
consider that the third segment has a deviation of −2π/3 with respect to the
second one. Analogously, the fourth segment has a deviation of π/3 with respect
to the the third one, since in the third membrane we found the symbol α. Finally,
in the last membrane we found the symbol γ to mark the end point.

With this interpretation, the configuration C1 contains all the necessary infor-
mation to construct the stage K1 for building the Koch curve.

The P system is deterministic and if we give a new step, the 16 objects in the
configuration C1 evolve so that in C2 we have 16 elementary membranes that can
be ordered by <S . These membranes represent a continuous line with 16 segments
of length 1/32. If we consider the sequence of Greek symbols induced by the order
<S we have

αβαααβαβαβαααβαγ.

Notice that this is exactly the sequence of angles between consecutive segments in
the stage K2 of the construction of the Koch curve.

After j steps, we reach a configuration with 4j elementary membranes at depth
j with a sequence of angles equal to the stage Kj of the Koch curve.

Thus, the above P system encodes all the information needed to build the Koch
curve with any precision degree.
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4.3 Self-similarity dimension

From the power law (1) in Section 2 we have the relation

D =
log N

log 1
s

, (2)

where N is the number of boxes needed to cover a set and s is the reduction factor.
The value D is called the self-similarity dimension of the set.

In this way, for curves, a reduction factor of s = 1
k leads us to consider N = k

boxes, and in this way

D =
log N

log 1
s

=
log k

log k
= 1.

For surfaces, a reduction factor of s = 1
k leads us to consider N = k2 boxes, and

in this way

D =
log N

log 1
s

=
log k2

log k
=

2 log k

log k
= 2.

Analogously, for solids

D =
log N

log 1
s

=
log k3

log k
=

3 log k

log k
= 3.

If we look at the Koch curve, however, the relationship of N = 4 to s = 1
3 ,

N = 16 to s = 1
9 or in general N = 4k to s = 1

3k is not so obvious. From the
self-similarity law we have in this case

D =
k log 4
k log 3

.

Bevcause k > 0, we have that D is a constant

D =
log 4
log 3

≈ 1.2619.

Hence the power law relation between the number of pieces and the reduction
factor gives the same number D, regardless of the scale we use for the evaluation.
This value D = log 4/ log 3 is the self-similarity dimension of the Koch curve. A
non-integer dimension.

A similar reasoning leads to estimate the self-similarity dimension of the middle
third Cantor set, where the stage Ek consists on 2k intervals of length 1/3k. Figure
7 shows the self-similarity dimension of these fractal objects.

5 Applications

As pointed out in the Introduction, one of the most important features of fractals
is that they are far from being merely mathematical curiosities or computational
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object scale pieces dimension
s N Ds

Koch Curve 1/3k 4k log 4/ log 3 ≈ 1.2619

Cantor Set 1/3k 2k log 2/ log 3 ≈ 0.6309

Fig. 7. Self-similarity dimension

art objects. Fractals are one of the most powerful tools for describing many natural
objects both from alive and non-alive world.

Tree branching, blood vessels, clouds, rivers, mountains or coastlines are only
some of the examples. Many of the ways in which matter condenses on the mi-
croscopic scale seem to generate fractals. Fractals also provide the language and
the formalism for studying physical processes (such as diffusion and vibration) on
such structures. Diffusion on complex proteins with fractal structures has impor-
tant biological implications. For physicists, unpredictable changes of any quantity
V varying in time t are known as noise. The traces made by the noise is a fractal
curve and there is a direct relationship between the fractal dimension and the
logarithmic slope of the spectral density8.

5.1 Tumors and P systems

Maybe one of the most promising applications of fractals is in the study of tumors.
An individual tumor cell has the potential, over successive divisions, to develop into
a cluster of tumor cells. Further grow and proliferation leads to the development
of an avascular tumor consisting of approximately 106 cells which feed on oxygen
and other nutrients present in the local environment.

The rapid growth and resilience of tumors make it difficult to believe that they
behave as disorganized and diffuse cell mass and suggests instead that they are
emerging, opportunistic systems. If this hypothesis holds true, the growing tumor
and not only the single cell must be investigated and treated as a self-organizing
complex dynamic system. This cannot be done with currently available in vitro/in
vivo models or common mathematical approaches.

In [12] we proposed a first approach to the simulation and the study of the
growth of a tumor by using P systems. In membrane systems a local, modular
and topological modeling of biological phenomena is easily achieved. All this fea-
tures are not easily reached when using other models, like differential equations or
cellular automata.

Membrane systems own several interesting features which make them suitable
for this study. In particular, P systems treat the discrete nature of actual cells in
a realistic manner. Each cell can be seen as an independent computing unit with
its own behavior. In this way, a local modeling of the process can be simulated
8 For more applications of fractals, see, for example, [8, 5, 32, 27].
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and then, the evolution of the whole tumor can be studied as the sum of all local
performances together with the network of interactions among the cells.

The model followed in [12] for the study of the growth of tumors was the
spheroid model. The vast majority of classic models apply specifically to multicell
spheroids which have a characteristic structure of a proliferating rim and a necrotic
core, separated by a band of quiescent cells.

Over the years, researchers have devised several methods for producing tumor
cells aggregated or spheroids9 that can be used to study tumor invasion in a 3D
model system.

Following this model, in the earliest stages of development tumor growth seems
to be regulated by direct diffusion of nutrients and wastes from and to surrounding
tissue. When a tumor is very small, every cell receives nourishment by simple
diffusion and the growth rate is exponential in time. However, this stage cannot
be sustained because as a nutrient is consumed its concentration must decrease
towards the center of the tumor. The concentration of a vital nutrient at the center
will fall below a critical level.

Unfortunately, this is not the end of the process. Indeed, a majority of tu-
mors exhibit the phenomenon of angiogenesis marking the transition from the
relatively harmless and localized avascular state described above to the more dan-
gerous vascular state wherein the tumor develops the ability to proliferate, invade
surrounding tissue, and metastasize to distant parts of the body.

After the early stages of growth, the avascular spheroids consist structurally of
an inner zone of necrotic cells (dead due to lack of nutrients) and an outer zone of
living cells. This outer zone can be further divided into a layer largely composed
of quiescent cells and a layer largely composed of proliferating cells, although dead
cells are also found adjacent to both quiescent and proliferating cells [30]. At
this stage the spheroids tend to reach a finite size of at most a few millimeters
in diameter [11]. In this state of dynamic equilibrium there is a balance between
mitosis and the death and disintegration of tumor cells into waste products, mainly
water.

The spheroid model has very nice mathematical properties, but recent studies
(see [13, 1, 3, 7, 18, 15, 29, 28] among many others) in the growth of tumors
show that the surface of the tumor is far from being an smooth surface. Even
more, it seems to be a relation between the fractal dimension of the surface of the
tumor and the stages of the disease. In [15], Kikuchi et al. point that the surface
of solid components in cystic epithelial ovarian cancers has a fractal structure and
the mean fractal dimension may differ according to the stages of the disease and
histologic types. Fractal geometry (. . . ) can be used for describing the pathological
architecture of ovarian tumors and for yielding insights into the mechanisms of
tumor growth.

These studies show the necessity of going deeper in the relation between fractals
and tumors. This study will need new tools for handle information and comput-
ing/simulating/predicting results. As pointed by Baish and Jain in [1]: If carefully

9 The classical schematic representation of the spheroid can be seen in [4] or [14].
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Fig. 8. Two orientations

applied, fractal methods may someday have a significant impact in our understand-
ing of challenges in treatment delivery and diagnosis of cancer.

6 Random Fractals

Self-similar fractals as Koch curve differs from natural fractals in one significant
aspect. They are exactly self similar, and they cannot be considered as realistic
models of fractals in nature. The concept of fractal dimension however, can also
be applied to such statistically self-similar objects. For example, each small section
of the coastline looks like (but not exactly like) a larger portion. The property that
objects can look statistically similar while at the same time different in detail at
different length scales, is the central feature of fractals in nature. The coastline is
random in the sense that (unlike the Koch curve) a large scale view is insufficient to
predict the exact details of a magnified view. Yet, the way in which the detail varies
as one changes length scale is once again characterized by a fractal dimension.

The Koch snowflake are not perceived as a realistic model of a coastline even
if we compare it with a real coastline with the same dimension. The reason lies in
the lack of randomness. Randomizing a deterministic classical fractal is the first
approach generating a realistic natural shape.

For example, the method for including randomness in the Koch snowflake con-
struction requires only a very small modification of the classical construction. A
straight line segment will be replaced as before by a broken line of four segments,
each one one-third as long as the original segment. However, there are two possible
orientations in the replacement step: the small angle may go either to the left or
to the right (see Figure 8).

If one of these orientations is chosen in each replacement step, we obtain a
random Koch curve. Figure 9 shows a random Koch snowflake. Note that this
fractal represents a realistic shape of a fractal from nature.

In this process some mathematical characteristics of the Koch snowflake will
be retained, for example the fractal dimension of the curve will be the same, the
area surrounded is finite but the length of the curve is infinite, etc., but the visual
appearance is drastically different: it looks much more like the outline of the island
or a tumor than the original Koch curve.
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6.1 Random fractals and P systems

In Section 4 we present two P systems which encode the Koch curve and the
middle third Cantor set with an appropriate interpretation of the objects. Both
are deterministic, and in both the configuration Cn can be identified with the n-th
stage in the construction of the fractal.

The construction of random fractals with P systems can be performed in a very
natural way by using the non-determinism of P systems. For example, in the first
step of the construction of the Koch curve we start with a straight line and there
are two possible new reachable stages (see Figure 8). Analogously, we can modify
the P system presented in Section 4 and obtain a non-deterministic P system such
that two possible configurations are reachable from the initial configuration. Each
of these configurations can be interpreted as one of the reachable stages in the
construction of the Koch curve.

Let us consider the following P system with initial degree 1,

Π = (O, H, µ, w4, R),

with O = {s, ar, br, cr, al, bl, cl, αr, βr, αl, βl, γ}, H = {1, 2, 3, 4}, µ = [ ]4, w4 =
{sγ}, and R the following sets of rules

Fig. 9. Random Koch Snowflake
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[ s → arbrcr ]i
[ s → alblcl ]i

}
i ∈ {1, 2, 3, 4}

[ αj → α′j ]1
[ βj → β′j ]2
[ αj → α′j ]3



 j ∈ {l, r}

[γ → γ′]4

[ aj → [ sαj ]1]i
[ bj → [ sβj ]2]i
[ cj → [ sαj ]3]i





i ∈ {1, 2, 3, 4}
j ∈ {l, r}

[ α′j → [ sαj ]4 ]1
[ β′j → [ sβj ]4 ]2
[ α′j → [ sαj ]4 ]3



 j ∈ {l, r}

[ γ′ → [ sγ ]4 ]4

In this case, the interpretation of the P system as a fractal is a little more
complicated. In the same way as in the deterministic Koch curve, we will consider
the elementary membranes, their depth, and for each elementary membrane, the
string of labels of the membranes from the elementary membrane to the skin and
the special symbol placed in the membrane, taken from the set {αr, βr, αl, βl, γ}.

The interpretation of these special symbols is quite natural. In the deterministic
case, if a membrane representing the segment s1 contains the symbol α, we will
consider that the next segment s2 has a deviation of π/3 radians with respect
to the direction of s1. In this case, αr represents a deviation of π/3 and αl a
deviation of −π/3. Analogously, in the deterministic Koch curve, if a membrane
representing the segment s1 contains the symbol β, we will consider that the next
segment s2 has a deviation of −2π/3 radians with respect to the direction of s1. In
this case, βr represents a deviation of −2π/3 and βl a deviation of 2π/3. Finally, if
a membrane representing the segment s1 contains the symbol γ, we will consider
that it is the last segment of the line and no other segment is after it.

The main difference consists on that in this P system only configurations in
an even step will be considered as intermediate stages of the construction of the
fractal. Odd steps will be considered as intermediate steps.

The remaining information is stored in a similar way as in the deterministic
case:

• Each elementary membrane will be considered a segment.
• The depth of the unitary membrane in the membrane structure will determine

the length of the segment represented by the membrane. We will consider that
the skin has depth 0 and an elementary membrane at depth k will represent a
segment of length 1/3k.

• As in the previous example, we will use the string of labels of the membranes
from the elementary membrane to the skin to order the elementary membranes
following the order <S defined above.

The initial configuration only has the skin and the objects sγ inside. With
the interpretation detailed above, this initial configuration C0 represents a unique
segment of length 1/30 = 1. The Greek symbol inside is γ and, coherently, it means
that no other segment is after it. This is the stage K0 in the construction of the
Koch curve.
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The symbol s can trigger two different rules. One of these rules is cho-
sen in a non-deterministic way. This choice determines the orientation of the
next stage in the construction of the Koch curve. Let us suppose that the rule
[ s → arbrcr ]4 is chosen and the configuration C1 = [ arbrcrγ

′ ]4 is reached (γ
also evolves to γ′). The following step is deterministic and the configuration
C2 = [ [sαr]1[sβr]2[sαr]3[sγ]4 ]4 is obtained.

We have four elementary membranes at depth 1 that represents four segments
of length 1/31. The order among the strings of labels is 14 <S 24 <S 34 <S 44.
The first segment (with string 14) contains the symbol αr. This means that the
second segment (with string 24) has a deviation of π/3 with respect the direction
of the first one. The second segment contains the symbol βr, so we will consider
that the third segment has a deviation of −2π/3 with respect to the second one.
Analogously, the fourth segment has a deviation of π/3 with respect to the third
one, since in the third membrane we found the symbol αr. Finally, in the last
membrane we found the symbol γ to mark the end point.

This configuration C2 represents one of the possible stages K1 in the construc-
tion of the random Koch curve.

The next steps in the construction are obtained in a similar way. Every occur-
rence of the symbol s evolves in a non-deterministic way in the even steps and we
obtain a random Koch curve.

7 Conclusions and Future Work

Fractals are nowadays one of the most powerful tools for describe nature in a
realistic manner. As Galileo said, we cannot understand nature unless one first
learns to comprehend the language in which it is written, but also as Voss pointed
out [32], Galileo was wrong in terms of nature’s preferred dialect.

In nature, we do not find circles or triangles. We can use circles or triangles in
order to approximate in a reasonably way many objects in nature, but if we need
a more detailed approximation, we must leave Plato’s world.

This is the big contribution (or one of them) by B.B. Mandelbrot. The scientific,
philosophical, and artistic consequences of this work are today a vivid discussion
field.

Nature is written in fractal language and we need tools for dealing easily with
this language. In this paper we present a first work checking whether P systems
provide an appropriate tool for handling fractals. On the one hand, the massive
parallelism, the synchronous application of the rules, and the discrete nature of
their computation, among other features, lead us to consider P systems as natural
tools for dealing with fractals. On the other hand, the main drawback is that
P systems work with data structures which do not have a geometrical intuition,
in the sense that concepts as length or angle are not in membrane computing
terminology. This leads us to the necessity of giving a geometrical interpretation
to the data of the P systems in order to consider it as a fractal.



Fractals and P Systems 85

But being not so close to geometry in the data structure can also be an ad-
vantage, since we are not tied to intuition in order to study and discover new
properties of fractals.

The main research lines open in this work are, on the one hand, that P systems
seem to be a good tool for dealing with fractals and, in the other hand, that
medicine, and in particular the tumor growth study needs new tools for dealing
with the fractal nature of tumors.
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3. A. Brú, J.M. Pastor, I. Fernaud, I. Brú, S. Melle, C. Berenguer: Super-rough dynam-

ics on tumor growth. Physiscal Review Letters, 81, 18 (1998), 4008–4011.
4. H.M. Byrne: Modelling avascular tumour growth. In Cancer Modelling and Simula-

tion (L. Preziosi, ed.), CRC Press LLC, 2003.
5. A. Bunde, S. Havlin, eds.: Fractals in Science. Springer-Verlag, 1995.
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