
Small Universal Antiport P Systems and
Universal Multiset Grammars

Rudolf Freund, Marion Oswald

Faculty of Informatics
Vienna University of Technology
Favoritenstr. 9–11, A–1040 Vienna, Austria
{rudi,marion}@emcc.at

Summary. Based on the construction of a universal register machine (see [7]) we con-
struct a universal antiport P system working with 31 rules in the maximally parallel mode
in one membrane, and a universal antiport P system with forbidden context working with
16 rules in the sequential derivation mode in one membrane for computing any partial
recursive function on the set of natural numbers. For accepting/generating any arbitrary
recursively enumerable set of natural numbers we need 31/33 and 16/18 rules, respec-
tively. As a consequence of the result for antiport P systems with forbidden context we
immediately infer similar results for forbidden random context multiset grammars with
arbitrary rules.

1 Introduction

The most interesting variant of communication P systems uses symport/antiport
rules (see [10]). The application of an antiport rule x/y assigned to a membrane
exchanges the multiset described by x inside the membrane with the multiset y
outside the membrane. In antiport P systems with forbidden context, the applica-
tion of an antiport rule (x/y, z) with forbidden random context z is only possible,
if z is not a sub-multiset of the multiset of objects inside the membrane. (A gen-
eralized variant of this model was already investigated in [5].)

We consider antiport P systems and antiport P systems with forbidden context
and construct universal systems for these variants of P systems based on the con-
struction of a universal register machine (see [7]); the universal antiport P systems
constructed in this paper work in the maximally parallel mode and need 31/31/33
antiport rules in one membrane for computing any partial recursive function on the
set of natural numbers/accepting/generating any arbitrary recursively enumerable
set of natural numbers, and the universal antiport P systems with forbidden con-
text work in the sequential derivation mode and need only 16/16/18 rules in one
membrane for these purposes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51401058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

52 R. Freund, M. Oswald

As shown in [8], multiset grammars with arbitrary multiset productions cannot
generate all recursively enumerable sets of natural numbers. An antiport rule with
forbidden context (x/y, z) can be interpreted as a multiset production with forbid-
den context (x → y, z) which is only applicable if the forbidden multiset z is not
a sub-multiset of the multiset of objects constituting the current sentential form.
Hence, as a consequence of the results obtained for antiport P systems with forbid-
den context, we immediately obtain similar results for forbidden random context
multiset grammars over a one-letter alphabet, e.g., interpreting the multiset an as
the natural number n we can say that any recursively enumerable set of natural
numbers can be generated by a forbidden context multiset grammar with at most
23 multiset productions with forbidden context.

2 Definitions

For well-known notions and basic results from the theory of formal languages,
the reader is referred to [4] and [13]. We only give some basic notations first: λ
denotes the empty word as well as the empty multiset; by N we denote the set of
non-negative integers (i.e., natural numbers). In the following, two sets of natural
numbers are considered to be equal if they only differ at most by 0. By NRE we
denote the set of all recursively enumerable sets of natural numbers, and by cNRE
we denote the set of all partial recursive functions f : N → N.

2.1 Multiset Grammars

In this paper we consider several types of multiset grammars (various interesting
models of grammars for generating multisets of objects were considered in [8],
and multiset automata were investigated in [3]). In fact, we could also define the
corresponding types of grammars generating strings which then are interpreted as
multisets.

In the following, a multiset of objects will simply be represented by any string
containing exactly the same number of each object as the multiset.

A multiset grammar is a construct

G = (V, T, S, P)

with V being a set of symbols (or objects), T ⊂ V is the set of terminal symbols
(terminal objects), S is the initial multiset over V and P is a (finite) set of multiset
productions of the form u → v with u and v being multisets over V . The application
of the production u → v to a multiset x has the effect of replacing the multiset
u contained in x by the multiset v. We consider all derivations starting from the
multiset S and using productions from P and finally yielding a terminal multiset
(i.e., a multiset only consisting of objects from T); the set of terminal multisets
generated in that way is denoted by L (G).

Small Universal Antiport P Systems and Universal Multiset Grammars 53

A forbidden random context multiset grammar is a construct

G = (V, T, S,R)

with the rules in R being of the form (u → v, z) where u → v is an arbitrary
multiset production of weight max {|u| , |v|} (where |u| denotes the size of the
multiset u, i.e., the total number of objects in u) and z is a (finite) multiset over
V ; the application of the rule (u → v, z) to a multiset x has the effect of replacing
the sub-multiset u from x by the multiset v, but only if z (forbidden context)
does not occur as a sub-multiset in x. Again we consider all terminal derivations
starting from S and using rules from R, and we denote the set of terminal multisets
generated in that way by L (G).

The set of multisets L (G) generated by a (forbidden random context) multiset
grammar over a one-letter alphabet can be seen as the corresponding set of nat-
ural numbers, and we denote the sets of natural numbers generated by multiset
grammars with arbitrary multiset productions and forbidden random context mul-
tiset grammars with arbitrary multiset productions by N(arb) and NfRC (arb),
respectively. It is well known (e.g., see [8]) that N(arb) $ NRE.

The sets of natural numbers accepted/generated by forbidden random context
multiset grammars with at most s symbols, at most n arbitrary multiset produc-
tions of weight at most k and with the size of the forbidden multisets of at most l
are denoted by aNOsfRCl(arbk)n and gNOsfRCl(arbk)n, respectively; the cor-
responding variants of forbidden context multiset grammars computing partial
recursive functions f : N → N are denoted by cNOsfRCl(arbk)n.

2.2 Antiport P Systems

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [2] and [11]; comprehensive information can be found on the P systems
web page http://psystems.disco.unimib.it.

An (extended) antiport P system (of degree m ≥ 1) is a construct

Π = (O, T, µ,w1, . . . , wm, R1, . . . , Rm) ,

where:

• O is the alphabet of objects,
• T is the alphabet of terminal objects,
• µ is the membrane structure (it is assumed that we have m membranes, labeled

with 1, 2, . . . ,m, the skin membrane usually being labeled with 1),
• wi, 1 ≤ i ≤ m, are strings over O representing the initial multiset of objects

present in the membranes of the system,
• Ri, 1 ≤ i ≤ m, are finite sets of antiport rules of the form x/y, for some

x, y ∈ O∗, associated with membrane i.

54 R. Freund, M. Oswald

An antiport rule of the form x/y ∈ Ri means moving the objects specified by
x from membrane i to the surrounding membrane j (to the environment, if i = 1),
at the same time moving the objects specified by y in the opposite direction. (The
rules with one of x, y being empty are, in fact, symport rules, but in the following we
do not explicitly consider this distinction, as it is not relevant for what follows.)
The weight of an antiport rule x/y is defined as max {|x| , |y|} . We assume the
environment to contain all objects in an unbounded number.

The computation starts with the multisets specified by w1, . . . , wm in the m
membranes; in each time unit, the rules assigned to each membrane are used in
a maximally parallel way, i.e., we choose a multiset of rules at each membrane
in such a way that, after identifying objects inside and outside the corresponding
membranes to be affected by the selected multiset of rules, no objects remain to
be subject to any additional rule at any membrane. The computation is successful
if and only if it halts; depending on the function of the system, the input and the
output may be encoded by different terminal symbols in different membranes, the
input then being added in the initial configuration as the corresponding number
of respective symbols in the designated membranes.

The set of all natural numbers accepted/generated in this way by the sys-
tem Π is denoted by aN(Π) and gN(Π), respectively. The families of sets
aN(Π)/gN(Π) of natural numbers computed as above by systems with at most m
membranes, s symbols, and n rules of weight k are denoted by aNOsPm(antik)n

and gNOsPm(antik)n, respectively. The family of functions on the set of natural
numbers computed as above by antiport P systems with at most m membranes, s
symbols, and n rules of weight (at most) k is denoted by cNOsPm(antik)n.

An (extended) antiport P system with forbidden context is a construct

Πf = (O, T, µ,w1, . . . , wm, R′
1, . . . , R

′
m) ,

where O, T, µ,w1, . . . , wm are defined as above and R′
i, 1 ≤ i ≤ m, are finite sets

of antiport rules with forbidden context of the form (x/y, z), for some x, y, z ∈ O∗,
associated with membrane i. In this case, the application of the antiport rule x/y
is only possible, if z is not a sub-multiset of the multiset of objects inside the
membrane. (For a generalized variant of this model see [5].)

A computation of Πf is performed in a similar way as described for antiport
systems, but with the difference that now the rules assigned to the membranes
are used in a sequential way, i.e., in each time unit only one antiport rule with
forbidden context is applied.

We denote the families of sets aN(Π)/gN(Π) of natural numbers ac-
cepted/generated by such systems with at most m membranes, s symbols, n
rules of weight at most k, and the forbidden multisets of size at most l by
aNOsflPm(antik)n and gNOsflPm(antik)n, respectively. The family of functions
on the set of natural numbers computed as above by antiport P systems with for-
bidden context with at most m membranes, s symbols, n rules of weight at most
k, and the forbidden multisets of size at most l is denoted by cNOsflPm(antik)n.

Small Universal Antiport P Systems and Universal Multiset Grammars 55

3 A Universal Register Machine

In [7], several variants of universal register machines were exploited. The main
interesting variant for the results presented in this paper is shown in Figure 1.

Register machines usually consist of several registers where natural numbers
can be stored and a finite control for storing the (deterministic) program and the
current state. The instructions (used in discrete time steps) are simple operations
on the registers changing their contents and also the state. The simplest operations
on the registers are increment and decrement as well as zero-test. In the diagram of
the universal register machine URM32 in Figure 1, only these operations are used:
the zero-test on register i is indicated by a rhomboid inclosing the encryption Ri,
and in the case that the contents of register i is zero, the next operation is the one
to be reached with the arc labeled by z; the decrement operation is depicted by
a rectangle with the encryption RiP, and the decrement operation by a rectangle
with the encryption RiM (as the decrement operation RiM is always preceded by
the corresponding zero-test, it can always be carried out). The states are depicted
directly at the corresponding operations; q1 is the initial state, and the state where
the URM32 stops is indicated by STOP in Figure 1.

The universal register machine URM32 uses a very sophisticated number-
theoretic encoding of the enumeration of a specific variant of register machines.
The code of the register machine to be simulated is put into register 1, the input
number into register 2 (where also the output will be computed). The instructions
are decoded in the Instruction reader part and the Decoder part (which essen-
tially performs a division by three), and these instructions work on the registers
0, 2, and 3 (as we know, e.g., see [9], three registers are sufficient to simulate any
other register machine). Thus, URM32 can compute any partial recursive function
f : N → N (with input and output number in register 2) in the same way as the
register machine encoded by the number in register 1 computes f. For the following
construction of antiport P systems it is important to note that URM32 only stops
when having finished the simulation of the register machine encoded in register 1
with the input in register 2, but enters an infinite computation otherwise.

4 A Universal Antiport P System Working in the
Maximally Parallel Derivation Mode

Based on the universal register machine URM32 described in the previous section,
we now construct universal antiport P systems computing any partial recursive
function f : N → N as well as universal antiport P systems accepting/generating
arbitrary recursively enumerable sets of natural numbers.

Theorem 1. cNO34P1(anti6)31 = cNRE.

56 R. Freund, M. Oswald

Start -

Simulation block

R3P

q31

R3M

q28

R0M

q26

R2M

q24

R2P

q30

R0P

q29

��@@
@@��R3

z

q27

��@@
@@��R0

z

q25

��@@
@@��R2

z

q23

6

�

� �

?

� �

�

� �

?

��@@
@@��R4 z

q32

Stop-

6

Decoder
��@@
@@��R5z

q20

R5M

q19

��@@
@@��R5z

q18

R5M

q17

��@@
@@��R5z

q16

R4P

q22

R5M

q21

� -
?

6

?

�
?

?

� �

Instruction reader

R4M

q15

R7P

q3

R1M

q2

��@@
@@��R1 z

q1

R6P

q6

R5M

q5

��@@
@@��R5

zq4

��@@
@@��R4

z

q14

��@@
@@��R6z

q13

R5P

q9

R6M

q8

��@@
@@��R6

z

q7

��@@
@@��R7

z

q10

R7M

q11

R1P

q12

� �

?

�

?

� -

6

-

�

6

? ? ?

6

? ?

?
�

?

�

Fig. 1. The universal register machine URM32

Small Universal Antiport P Systems and Universal Multiset Grammars 57

Proof. We simulate the computation of the partial recursive function f : N → N
computed by the register machine with code m on the natural number n by the
antiport P system

Π = (O, {R2} , [1]1, q1XC1R
m
1 Rn

2 , R)

in the following way: The initial multiset q1XC1R
m
1 Rn

2 represents the code m by
the corresponding number of symbols R1 and the input number by the correspond-
ing number of symbols R2; in general, the contents of register i is represented by
the corresponding number of symbols Ri. In a halting computation, the result of
the computation is represented by the number of terminal symbols R2. In sum,
we use the objects in

O = {X, X ′} ∪ {Ci, C
′
i | 0 ≤ i ≤ 7} ∪ {Ri | 0 ≤ i ≤ 7}

∪ {qj | j ∈ {1, 4, 7, 10, 14, 18, 23, 25, 27, 32}}

and the following antiport rules in R:

1. X/X ′

2. C0R0/C ′
0

3. C1R1/C ′
1

4. C2R2/C ′
2

5. C3R3/C ′
3

6. C4R4/C ′
4

7. C5R5/C ′
5

8. C6R6/C ′
6

9. C7R7/C ′
7

10. q1X
′C1/q4R6C5X

11. q1X
′C1/q1R7X

12. q4X
′C ′

5/q4R6C5X
13. q4X

′C5/q7XC6

14. q7X
′C ′

6/q10R5C7C6

15. q7X
′C6/q4XC5

16. q10X
′C ′

7C
′
6/q10XR1R3C7C6

17. q10X
′C ′

7C
′
6/q4XR1C5

18. q10X
′C7C6/q1XC1

19. q10X
′C7C

′
6/q14XC4C5

20. q14X
′C ′

4C
′
5/q1XR5C1

21. q14X
′C4C

′
5/q18XC5

3

22. q18X
′C ′

5
3/q18XR4C5

3

23. q18X
′C ′

5
2
C5/q23XR4C2

24. q18X
′C ′

5C5
2/q32XR2R3C4

25. q18X
′C5

3/q27XC3

26. q23X
′C ′

2/q32XC4

27. q23X
′C2/q25XC0

28. q25X
′C ′

0/q1XC1

29. q25X
′C0/q32XC4

30. q27X
′C ′

3/q32XC4

31. q27X
′C3/q1XR0C1

32. q32X
′C ′

4/q1XC1

The symbols X and X ′ work as a trigger indicating an even and odd number of
steps performed so far. In each odd step, a checker symbol Ci tests whether register
i is zero or not – in case it is non-zero, a corresponding symbol Ri is eliminated
and the checker is turned to its primed version C ′

i. These rules are used in the odd
steps of a computation in Π together with the antiport rule X/X ′, whereas the
rules involving state symbols qj can only be used in the even steps together with
the symbol X ′ in rules which bring back the symbol X.

For example, the subprogram of Figure 1 including the states q1, q2, and q3

with the exit to the state q4 thus is easily simulated by the two antiport rules

10. q1X
′C1/q4R6C5X

11. q1X
′C1/q1R7X

58 R. Freund, M. Oswald

together with the antiport rules

1. X/X ′

3. C1R1/C ′
1

using the maximally parallel derivation mode. In a similar way, the other instruc-
tions of URM32 are simulated by the antiport rules in Π using the maximally
parallel derivation mode.

Sometimes, an analysis of the function of specific parts of the diagram in Fig-
ure 1 allows for even shorter simulations, e.g., consider the loop from q10 to q10

via q7 simulated by
16. q10X

′C ′
7C

′
6/q10XR1R3C7C6

and its “exits” via the rules 17 to 19. Moreover, as the division by three is the
main function of the “Decoder part”, in the lower part some shortcuts are possible,
but we do not go into more details here. Only one more observation has to be
explained, because so far we have 32 and not only 31 rules: As register 2 and
register 3 both are only used once – in the “Simulation part” – the states q23

and q27 can be taken to be identical because the two symbols C2 and C3 and their
primed versions, respectively, identify the correct state; on the other hand, as both
decrement operations from the states q23 and q27 lead to the same instruction, we
can even identify the symbols C ′

2 and C ′
3; thus, we get the modified antiport rule

5′. C3R3/C ′
2 as well as

25′. q18X
′C5

3/q23XC3

30′. q23X
′C ′

2/q32XC4

31′. q23X
′C3/q1XR0C1

As the rules 30′ and 26 now are identical, finally we only have 31 rules in R and
only 34 objects in O. These observations complete the proof. ut

In the literature, the result of a halting computation often consists of the
number of all symbols in the designated output membrane without specifying the
set of terminal symbols in the antiport P system. A thorough analysis of the
universal register machine URM32 shows that when it halts not only register
2 as the output register, but also register 6 and register 1 (still containing the
code of the register machine to be simulated) may be non-empty. (Due to the
features of the 3-register machine as constructed in [9] and simulated by URM32
in registers 0, 2, and 3, at the end of a computation registers 0 and 3 are empty;
observe that the emptiness of these registers cannot be inferred from the program
of URM32.) Therefore, to eliminate all non-terminal symbols, we would have to
add the following rules (using the additional symbols q33 and q34):

32. q32X
′C4/q33XC6

33. q33X
′C ′

6/q33XC6

34. q33X
′C6/q34XC1

35. q34X
′C ′

1/q34XC1

36. q34X
′C1/λ

Small Universal Antiport P Systems and Universal Multiset Grammars 59

Corollary 1. aNO34P1(anti6)31 = NRE.

Proof. The construction of the preceding theorem already yields the desired result,
as, given L ∈ NRE, we just have to simulate a register machine computing the
partial recursive function f : N → N with f (n) = 0 for any n ∈ L and f (n) being
undefined otherwise. ut

Corollary 2. gNO35P1(anti6)33 = NRE.

Proof. We add the following two rules (using the additional symbol q0) for gener-
ating an arbitrary number n in register 2:

0. (q0/R2q0, λ)
0′. (q0/q1, λ)

Now we start with q0XC1R
m
1 , apply rule 0 for n times and once rule 0′, and then

we just simulate the acceptance of the number n in register 2 as in the preceding
corollary. ut

5 A Small Universal Antiport P System with Forbidden
Context Working in the Sequential Derivation Mode

Based on the universal register machine URM32, in this section we construct uni-
versal antiport P systems with forbidden context computing any partial recursive
function f : N → N as well as universal antiport P systems with forbidden context
accepting/generating arbitrary recursively enumerable sets of natural numbers.

Theorem 2. cNO12f5P1(anti4)16 = cNRE.

Proof. We simulate the computation of the partial recursive function f : N → N
computed by the register machine with code m on the natural number n by the
antiport P system with forbidden context

Π = (O, {R2} , [1]1, q1R
m
1 Rn

2 , R) ,

in the following way: The initial multiset q1R
m
1 Rn

2 represents the code m by the
corresponding number of symbols R1 and the input number by the corresponding
number of symbols R2; in general, the contents of register i is represented by the
corresponding number of symbols Ri. In a halting computation, the result of the
computation is represented by the number of terminal symbols R2. In sum, we use
the objects in

O = {Ri | 0 ≤ i ≤ 7} ∪ {qj | j ∈ {1, 4, 10, 18}}

and the following antiport rules in R:

60 R. Freund, M. Oswald

1. (q1R1/q1R7, λ)
2. (q1/q4R6, R1)
3. (q4R5/q4R6, λ)
4. (q4R6/q10R5, R5)
5. (q10R7R6/q10R1R5, λ)
6. (q10R7/q4R1, R6)
7. (q10/q1, R6R7)
8. (q10R6R4/q1, R7)
9. (q10R6R5/q18, R7R4)
10.

(
q18R5

3/R4q18, λ
)

11. (q18/R0q1, R5R3)
12.

(
q18R5

2R0/q1, R5
3R2

)
13.

(
q18R5

2R2/q1, R5
3
)

14.
(
q18R5

2/q1, R5
3R2R0

)
15. (q18R3R4/q1, R5)
16.

(
q18R5R4/q1R2R3, R5

2
)

As we can check for the occurrence of a multiset and not only of one symbol, we
now can do several zero tests with one rule; especially the “Simulation block” can
be “checked through” directly from state q18; observe that the increment operation
at state q22 and the decrement operation at state q15 neutralize each other, hence,
in the rules 12 to 14 we can omit R4 on both sides of the antiport rule. Halting
computations end up with a multiset containing q18 with none of the rules 10 to
16 being applicable anymore. ut

Corollary 3. aNO12f5P1(anti4)16 = NRE.

Proof. Given L ∈ NRE, we just simulate – according to the construction given in
the preceding theorem, a register machine computing the partial recursive function
f : N → N with f (n) = 0 for any n ∈ L and f (n) being undefined otherwise. ut

Corollary 4. gNO13f5P1(anti4)18 = NRE.

Proof. We add the following two rules (using the additional symbol q0) for gener-
ating an arbitrary number n in register 2:

0. (q0/R2q0, λ)
0′. (q0/q1, λ)

Now we start with q0R
m
1 , apply rule 0 for n times and once rule 0′, and then

we just simulate the acceptance of the number n in register 2 as in the preceding
corollary. ut

5.1 Tuning the complexity parameters

As is well known, e.g., see [6], antiport rules of weight 2 in one membrane are
sufficient for generating any recursively enumerable set of natural numbers. Hence,

Small Universal Antiport P Systems and Universal Multiset Grammars 61

in the following theorem, we bound the weights of the antiport rules by two, but
also allow the forbidden context multiset to check for the non-occurrence of a single
object only.

Theorem 3. cNO22f1P1(anti2)26 = cNRE.

Proof. Again, we simulate the universal register machine URM32; due to the
restrictions on the weights of the rules and on the size of the forbidden contexts,
more rules than in the proof of Theorem 2 are needed, because we have to introduce
some intermediate states.

In that way we obtain the antiport P system with forbidden context

Π = (O′, {R2} , [1]1, q1R
m
1 Rn

2 , R′)

with the objects in

O′ = {Ri | 0 ≤ i ≤ 7}
∪ {qj | j ∈ {1, 4, 7, 10, 13, 14, 16, 18, 20, 23, 25, 27, 30, 32}}

and the following antiport rules in R′:

1. (q1R1/q1R7, λ)
2. (q1/q4R6, R1)
3. (q4R5/q4R6, λ)
4. (q4/q7, R5)
5. (q7R6/q10R5, λ)
6. (q7/q4, R6)
7. (q10R7/q7R1, λ)
8. (q10/q13, R7)
9. (q13R6/q14R6, λ)
10. (q13/q1, R6)
11. (q14R4/q1, λ)
12. (q14/q16, R4)
13. (q16R5/q18, λ)
14. (q16/q23, R5)
15. (q18R5/q20, λ)
16. (q18/q27, R5)
17. (q20R5/q16R4, λ)
18. (q20/q30R2, R5)
19. (q23R2/q32, λ)
20. (q23/q25, R2)
21. (q25R0/q1, λ)
22. (q25/q32, R0)
23. (q27R3/q32, λ)
24. (q27/q1R0, R3)
25. (q30/q32R3, λ)
26. (q32R4/q1, λ)

62 R. Freund, M. Oswald

As the forbidden context multisets contain only one symbol, in this case we
only check for the appearance of this symbol in the underlying multiset which in
fact is a less powerful control mechanism than checking for the non-appearance of
a finite multiset. ut

As in the previous cases, we immediately get the following corollaries:

Corollary 5. aNO22f1P1(anti2)26 = aNRE.

Corollary 6. gNO23f1P1(anti2)28 = NRE.

6 Universal Multiset Grammars

The results obtained for antiport P systems with forbidden context allow us to
derive similar results for forbidden random context multiset grammars with ar-
bitrary multiset productions, because the antiport rule with forbidden context
(x/y, z) can be interpreted as the multiset production with forbidden random con-
text (x → y, z) .

Theorem 4. cNO14fRC5(arb4)21 = cNRE.

Proof. We can interpret the antiport P system with forbidden context

Π = (O, {R2} , [1]1, q1R
m
1 Rn

2 , R)

as the forbidden context multiset grammar with arbitrary multiset productions

G = (O, {R2} , q1R
m
1 Rn

2 , R′)

with R′ = {(x → y, z) | (x/y, z) ∈ R} . As now we have to derive terminal mul-
tisets, we in any case have to eliminate the non-terminal symbols occurring in
the final multisets of halting computations in Π. As already mentioned above, a
thorough analysis of the universal register machine URM32 shows that we have to
introduce rules for eliminating an arbitrary number of symbols R1 and R6 as well
as the state symbol q18. Yet, instead of just adding rules accomplishing these tasks,
we only take the rules 1 to 14 from R into R′ and then add the following rules
instead of the last two rules having the state symbol q18 and R4 on the left-hand
side of the multiset production:

15. (q18R3 → q32, R5)
16.

(
q18R5 → q32R2R3, R5

2
)

17. (q32R4 → q1, λ)
18. (q32 → q33, R4)
19. (q33R6 → q33, λ)
20. (q33R1 → q33, λ)
21. (q33 → λ, R1R6)

Small Universal Antiport P Systems and Universal Multiset Grammars 63

Hence, in total, we have 21 rules and the set of objects

O′′ = {Ri | 0 ≤ i ≤ 7} ∪ {qj | j ∈ {1, 4, 10, 18, 32, 33}} .

In sum, we have obtained the forbidden random context multiset grammar

G′′ = (O′′, {R2} , q1R
m
1 Rn

2 , R′′)

with R′′ containing the 21 rules as constructed above and therefore fulfilling all
the desired constraints. ut

If we were not allowing initial multisets but only a start symbol from V − T
in the multiset grammar, then we would have to add the start symbol q0 and the
start rule

0′. (q0 → Rm
1 q1, λ)

which would not allow us to bound the size of the multiset productions.

The following corollary immediately follows from the constructions given in the
proof of the preceding theorem.

Corollary 7. aNO14fRC5(arb4)21 = gNO15fRC5(arb4)23 = NRE.

7 Conclusion

The results obtained in this paper concerning the complexity of antiport P systems
and antiport P systems with forbidden context as well as forbidden random context
grammars with arbitrary multiset productions are summarized in the following
tables:

cNRE = cNO34P1(anti6)31
= cNO12f5P1(anti4)16
= cNO22f1P1(anti2)26
= cNO14fRC5(arb4)21

The table for the complexity of the systems computing partial recursive func-
tions immediately yields the table for the complexity of the accepting systems with
exactly the same size of the parameters:

NRE = aNO34P1(anti6)31
= aNO12f5P1(anti4)16
= aNO22f1P1(anti2)26
= aNO14fRC5(arb4)21

For the generating systems, we need some additional symbols and rules for
generating a representation of the initial number to be analyzed:

64 R. Freund, M. Oswald

NRE = gNO35P1(anti6)33
= gNO13f5P1(anti4)18
= gNO23f1P1(anti2)28
= gNO15fRC5(arb4)23

Improvements especially with respect to the number of rules, but also with
respect to the number of objects as well as with respect to the complexity of
the antiport rules themselves remain for future research as well as the challenge
to find a variant of P systems allowing for a universal system with less than
16/16/18 rules for computing any partial recursive function on the set of natu-
ral numbers/accepting any arbitrary recursively enumerable set of natural num-
bers/generating any arbitrary recursively enumerable set of natural numbers.

Acknowledgement

The work of Marion Oswald is supported by FWF-project T225-N04. The first
author gratefully acknowledges the interesting discussions with Sergey Verlan and
Artiom Alhazov during the Brainstorming Week providing the main ideas which
the results of Section 4 are based on.

References

1. C.S. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Multiset Processing – Math-
ematical, Computer Science and Molecular Computing Points of View. LNCS 2235,
Springer, Berlin, 2001.

2. C.S. Calude, Gh. Păun: Computing with Cells and Atoms. Taylor & Francis, London,
2001.

3. E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana: Multiset automata. In [1], 69–84.
4. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,

Berlin, 1989.
5. R. Freund, M. Oswald: GP systems with forbidding context. Fundamenta Informat-

icae, 49, 1–3 (2002), 81–102.
6. R. Freund, M. Oswald: P Systems with activated/prohibited membrane channels. In

[12], 261–268.
7. I. Korec: Small universal register machines. Theoretical Computer Science, 168,

(1996), 267–301.
8. M. Kudlek, C. Mart́ın-Vide, Gh. Păun: Toward a formal macroset theory. In [1],

123–134.
9. M.L. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood

Cliffs, NJ, 1967.
10. A. Păun, Gh. Păun: The power of communication: P systems with symport/antiport.

New Generation Computing, 20, 3 (2002), 295–306.
11. Gh. Păun: Membrane Computing: An Introduction. Springer, Berlin, 2002.
12. Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.: Membrane Computing. In-

ternational Workshop, WMC-CdeA 2002, Curtea de Argeş, Romania, August 2002.
LNCS 2597, Springer, Berlin, 2003.

13. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer, Berlin,
1997.

