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Summary. Purely catalytic P systems can generate all recursively enumerable sets of
natural numbers with only three catalysts in one membrane, whereas we know that one
catalyst in one membrane is not enough. On the other hand, P systems also allowing
(non-catalytic) non-cooperative evolution rules with only two catalysts in one membrane
are already computationally complete, too. We here investigate special variants of P
systems with only one catalyst in one membrane that are not computationally complete,
i.e., variants of P systems with only one catalyst in one membrane that cannot generate
all recursively enumerable sets of natural numbers.

1 Introduction

P systems with catalysts were already introduced in the original paper on mem-
brane systems in [10], with the additional feature of using priority relations on
the rules and proved to be computationally complete; in [15], [16] it was shown
that priority relations on the rules are not necessary to obtain this completeness
result. In [7] it finally was shown that P systems with only one membrane can
generate any recursively enumerable set of natural numbers (when not counting
the catalysts in the membrane) with only two catalysts. On the other hand, in
[8] [purely] catalytic P systems (where all evolution rules are catalytic ones) were
introduced and from results obtained in [6], [15] it was observed that seven cata-
lysts are enough if we only allow rules with catalysts; in [7], even three catalysts
were shown to be sufficient. As in [8] catalytic P systems with one catalyst in one
membrane were shown not to be able to generate all recursively enumerable sets of
natural numbers, the main open questions remaining are the computational power
of catalytic P systems with two catalysts in one membrane and the corresponding
question for P systems with one catalyst in one membrane (obviously, P systems
with no catalyst and only non-catalytic non-cooperative rules in one membrane
cannot generate all recursively enumerable sets of natural numbers; in fact, as an
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immediate consequence of Theorem 1 we see that exactly the regular sets can be
generated).

In the following section, after some prerequisites from formal language theory,
we define the specific variants of P systems with catalysts considered in this paper.
In the main part of the paper we show particular results proving that specific
variants of P systems with one catalyst in one membrane cannot generate all
recursively enumerable sets of natural numbers; unfortunately, the main problems,
i.e., the computational power of P systems with one catalyst in one membrane and
of catalytic P systems with two catalysts in one membrane remain unsolved.

2 Definitions

For well-known notions and basic results from the theory of formal languages, the
reader is referred to [4] and [14]. We only give some basic notations first. By N we
denote the set of non-negative integers (i.e., natural numbers). In the following,
two sets of natural numbers are considered to be equal if they only differ at most
by 0. By NRE we denote the set of all recursively enumerable sets of natural
numbers, and by NREG the set of all regular sets of natural numbers.

2.1 Multiset Grammars

In this paper we consider several types of multiset grammars (various interesting
models of grammars for generating multisets of objects were considered in [9],
multiset automata were investigated in [3]). In fact, we could also define the cor-
responding types of grammars generating strings which then are interpreted as
multisets.

In the following, a multiset of objects will simply be represented by any string
containing exactly the same number of each object as the multiset.

A multiset grammar is a construct

G = (V, T, P, S)

with V being a set of symbols (or objects), T ⊂ V is the set of terminal symbols
(terminal objects), S ∈ V −T is the start symbol, and P is a (finite) set of multiset
productions of the form u → v with u and v being multisets over V . The application
of the production u → v to a multiset x has the effect of replacing the multiset
u contained in x by the multiset v. We consider all derivations starting from the
multiset S and using productions from P and finally yielding a terminal multiset
(i.e., a multiset only consisting of objects from T ); the set of terminal multisets
generated in that way is denoted by L (G).

If all productions in P are of the form A → v with A ∈ V , then G is called
context-free.

A random context multiset grammar is a construct
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G = (V, T, R, S)

with the rules in R being of the form A → v| (P, Q) where A → v is a context-free
multiset production and P and Q are disjoint subsets of V ; the application of the
rule to a multiset x has the effect of replacing an object A from x by the multiset
v, but only if all objects from P appear in x (permitting contexts) and no object
from Q occurs in x (forbidden contexts). Again we consider all terminal derivations
starting from S and using rules from R, and we denote the set of terminal multisets
generated in that way by L (G). If all the rules in R are of the form A → v| (∅, Q),
i.e., we only have forbidden contexts, then G is called a forbidden random context
multiset grammar.

As multisets over a one-letter alphabet V correspond with natural numbers,
the set of multisets L (G) generated by a (random context) multiset grammar with
a one-letter terminal alphabet can be seen as the corresponding set of natural
numbers, and we denote the sets of natural numbers generated by context-free
multiset grammars, random context multiset grammars, and forbidden random
context multiset grammars by NCF , NRC, and NfRC, respectively. It is well
known (e.g., see [9]) that NCF = NREG; moreover, from the results known for the
corresponding families of string languages, we immediately infer NfRC $ NRE
(e.g., see [5]).

2.2 The Standard Model of (Catalytic) P Systems

The standard type of membrane systems (P systems) has been studied in many
papers and several monographs; we refer to [2], [5], [10], [11], and [12] for motivation
and examples. In the definition of the P system below we omit all ingredients (like
priority relations on the rules) not needed in the following.

A P system (of degree d, d ≥ 1) is a construct

Π = (V, C, µ, w1, . . . , wd, R1, . . . , Rd, io) ,

where:

(i) V is an alphabet; its elements are called objects;
(ii) C ⊆ V is a set of catalysts;
(iii)µ is a membrane structure consisting of d membranes (usually labeled with i

and represented by corresponding brackets [i and ]i, 1 ≤ i ≤ d);
(iv)wi, 1 ≤ i ≤ d, are strings over V associated with the regions 1, 2, . . . , d of µ;

they represent multisets of objects present in the regions of µ (the multiplicity
of a symbol in a region is given by the number of occurrences of this symbol
in the string corresponding to that region);

(v) Ri, 1 ≤ i ≤ d, are finite sets of evolution rules over V associated with the
regions 1, 2, . . . , d of µ; these evolution rules are of the forms a → v or ca →
cv, where c is a catalyst, a is an object from V − C, and v is a string from
((V − C)× {here, out, in})∗;
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(vi)io is a number between 1 and d and it specifies the output membrane of Π.

The membrane structure and the multisets represented by wi, 1 ≤ i ≤ d, in Π
constitute the initial configuration of the system. A transition between configura-
tions is governed by an application of the evolution rules which is done in parallel:
all objects, from all membranes, which can be the subject of local evolution rules
have to evolve simultaneously (maximally parallel derivation mode).

The application of a rule u → v in a region containing a multiset M results in
subtracting from M the multiset identified by u, and then in adding the multiset
identified by v. The objects can eventually be transported through membranes
due to the targets in and out (we usually omit the target here). We refer to [2]
and [12] for further details and examples. According to [8], the P system Π is
called catalytic, if every evolution rule involves a catalyst.

The system continues maximally parallel derivation steps until there remain
no applicable rules in any region of Π; then the system halts. We consider the
number of objects from V contained in the output membrane io at the moment
when the system halts as the result of the underlying computation of Π, but in
contrast to the original definitions we do not take into account the catalysts. The
set of results of all halting computations possible in Π is denoted by N (Π) . The
set of all sets of natural numbers computable by P systems/(purely) catalytic P
systems (as the numbers of objects different from the catalysts to be found in the
output membrane io at the end of halting computations) of the above type with d
membranes and the set of catalysts containing at most m elements is denoted by
N−cOPd (catm) and N−cOPd (pcatm), respectively.

2.3 Specific Variants of P Systems

The results we elaborate in the following section are formulated for P systems with
only one membrane, hence, we can omit the membrane structure and describe the
P system in the following way, where w denotes the initial multiset and R the set
of rules in the membrane:

Π = (V,C, w,R) .

Now let us consider P systems of that kind where in addition the set V is
divided into three disjoint subsets V ′, V ′′, and V ′′′ such that the rules in R obey
to the following constraints:

• for a ∈ V ′, there exists no rule in R with a on the left-hand side;
• for a ∈ V ′′, the rules in R are of the form ca → cv with c ∈ C and v ∈

(V ′ ∪ V ′′)∗;
• for a ∈ V ′′′, the rules in R are of the form a → v with v ∈ (V ′ ∪ V ′′′)∗.

P systems fulfilling all the requirements stated above are called 1-separated, and
the corresponding family of sets of natural numbers generated by such P systems
is denoted by N−cOP1 (sepcatm).
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The main idea of 1-separated P systems is that catalytic rules and non-catalytic
rules are separated with respect to the symbols they generate and therefore cannot
interfere, i.e., the objects generated by catalytic rules cannot be affected by non-
catalytic rules and vice versa.

If we relax the third condition stated above for 1-separated P systems and allow
the non-catalytic rules to be of the most general form a → v with v ∈ V ∗, then
these P systems are called weakly 1-separated and the corresponding set of sets of
natural numbers generated by such P systems is denoted by N−cOP1 (wsepcatm).

The only restriction remaining in the case of weakly 1-separated P systems is
that “catalytic objects” a ∈ V ′′ cannot generate “non-catalytic objects” a ∈ V ′′′,
yet this feature already will allow us to show that N−cOP1 (wsepcatm) $ NRE
(see Theorem 1).

Another quite simple restriction is to require that there is no object such that
the only rules affecting this object are catalytic ones. This requirement guarantees
that if a symbol cannot be taken by a catalytic rule then it will be affected by a non-
catalytic rule (observe that we are working in the maximally parallel derivation
mode). We shall call P systems with catalysts in only one membrane obeying
to this condition 1-complete. The corresponding set of sets of natural numbers
generated by 1-complete P systems is denoted by N−cOP1 (complcatm).

3 Results

We first cite some well-known results from [7]:

N−cOP1 (cat2) = N−cOP1 (pcat3) = NRE.

Moreover, from [8] we know that N−cOP1 (pcat1) $ NRE, hence, for catalytic P
systems, the main open question remained if N−cOP1 (pcat2) were already compu-
tationally complete, too. In the following, we now investigate the generative power
of the specific variants of P systems with one catalyst in one membrane as defined
in the preceding section.

Theorem 1 NREG = N−cOP1(cat0) = N−cOP1(sepcat1) = N−cOP1(wsepcat1).

Proof. As N−cOP1 (cat0) k NREG is obvious and well-known and, moreover, the
inclusions

N−cOP1 (cat0) j N−cOP1 (wsepcat1) j N−cOP1 (sepcat1)

are clear from the definitions, we only have to prove N−cOP1 (wsepcat1) j NREG.
Now let Π = (V, {c} , w, R) be a weakly 1-separated P system with only one

catalyst c and with the rules in R fulfilling the condition that the objects appearing
on the right-hand side v of a catalytic rule ca → cv can only be affected by
a catalytic rule. Moreover, according to the definition of weakly 1-separated P
systems given above, the set V is divided into three disjoint subsets V ′, V ′′, and
V ′′′ such that the rules in R obey to the following constraints:
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• for a ∈ V ′, there exists no rule in R with a on the left-hand side;
• for a ∈ V ′′, the rules in R are of the form ca → cv with c ∈ C and v ∈

(V ′ ∪ V ′′)∗;
• for a ∈ V ′′′, the rules in R are of the form a → v with v ∈ V ∗.

Then we construct a context-free multiset grammar

G = ((V − V ′) ∪ {S} , {d} , P, S)

with d, S being new objects not contained in V and P containing the following
multiset productions

• S → h (w);
• a → h (v), for a ∈ V ′′ and the rule ca → cv in R with c ∈ C and v ∈ (V ′ ∪ V ′′)∗;
• a → h (v), for a ∈ V ′′′ and the rule a → v in R with v ∈ V ∗;

the morphism h : V → {d} ∪ V ′′ ∪ V ′′′ is defined by

• h (a) = d for a ∈ V ′, and
• h (a) = a for a ∈ V ′′ ∪ V ′′′.

Obviously, G generates the same results as Π: by the definition of weakly 1-
separated P systems, the objects generated by catalytic rules can only be affected
by catalytic rules; for the application of the catalytic rules the maximally parallel
derivation mode has no regulating effect, because all the possible evolutions of the
catalytic objects from V ′′, even those generated at some time by the non-catalytic
rules, can be simulated sequentially by the multiset grammar G; on the other
hand, as we only consider halting computations in Π, the possible evolutions of
the non-catalytic objects from V ′′′ in Π can be simulated sequentially in G, too,
because there is no regulating interplay with the objects from V ′′. On the other
hand, each derivation in G yields a result – represented by the number of terminal
symbols d – that can also be obtained as the result – represented by the number of
terminal objects from V ′ – of a halting maximally parallel derivation in Π. These
observations complete the proof. ut
Theorem 2 N−cOP1 (complcat1) j NfRC.

Proof. We start with the 1-complete P system Π = (V, {c} , w, R), i.e., there is no
object in V such that the only rules in R affecting this object are catalytic rules
(observe that there must be symbols that are not affected by any rule, because
otherwise no halting derivation would be possible), and then construct a forbidden
random context multiset grammar

G = (V ∪ V ′
1 ∪ V ′′

1 ∪ {S, X, Y, Z} , {d} , P, S) ,
V0 = {b | b ∈ V, there is no rule cb → cv ∈ R

and no rule b → v ∈ R} ,
V1 = V − V0,
V ′

1 = {b′ | b ∈ V1} ,
V ′′

1 = {b′′ | b ∈ V1} ,
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with d, S,X, Y, Z being new symbols not contained in V ∪V ′
1∪V ′′

1 , and P containing
the following rules (as we are using only rules with forbidden context, we simply
write A → v|Q instead of A → v| (P, Q)):

1. S → h0 (w) X|∅;
h0 is the morphism h0 : V → V1 ∪ {d} with
• h0 (b) = b for b ∈ V1 and
• h0 (b) = d for b ∈ V0

(we start with the control symbol X and the morphic image of the axiom w
where all terminal objects b ∈ V0 from Π are replaced by the single terminal
symbol d from G);

2. a → a′′|V ′
1 ∪ V ′′

1 ∪ {S, Y, Z} for every a with a rule ca → cv ∈ R
(such a rule can only be applied once in the presence of the control symbol
X);

3. X → Y |V ′
1 ∪ (V ′′

1 − {a′′}) ∪ {S, Y, Z} for every a with a rule ca → cv ∈ R
(after having introduced at most one symbol a′′ in the presence of the control
symbol X, the control symbol is changed from X to Y );

4. a′′ → h(v)|V ′
1 ∪ (V ′′

1 − {a′′}) ∪ {S, X, Z} for every a with a rule ca → cv ∈ R
and
a → h(v)|V ′′

1 ∪ {S, X,Z} for every a with a rule a → v ∈ R;
h is the morphism h : V → V ′

1 ∪ {d} defined by
• h (b) = b′ for b ∈ V1, and
• h (b) = d for b ∈ V0

(in the presence of the control symbol Y , first eventually the single symbol a′′

has to be affected by simulating one of the corresponding catalytic rules and
then for all other symbols b ∈ V1 a non-catalytic evolution rule is simulated
thereby replacing every terminal object b ∈ V0 by the terminal symbol d);

5. Y → Z|V1 ∪ V ′′
1 ∪ {S,X, Z}

(if all symbols from V1 are primed – after having applied at most one rule for
a marked symbol a′′ and rules for every other symbol b ∈ V1 – we change the
control symbol from Y to Z);

6. a′ → a|V ′′
1 ∪ {S, X, Y } for every a ∈ V1

(we then rename the primed symbols to the corresponding non-primed ones
until finally we get a multiset of symbols over V1 ∪{d} and the control symbol
Z);

7. Z → X|V ′
1 ∪ V ′′

1 ∪ {S, X, Y }
(we now may start again with simulating another derivation step in Π by
changing the control symbol from Z to X, or we may stop the derivation by
using the next rule);

8. Z → λ|V1 ∪ V ′
1 ∪ V ′′

1 ∪ {S, X, Y }
(if the multiset only consists of terminal symbols d, we may erase the control
symbol Z thus obtaining the same result for the number of terminal symbols
as in the halting derivation in Π – there counting the number of objects from
V0).
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The reader should observe that we can mark (with two primes) at most one
symbol, but on the other hand we cannot enforce that this one symbol is marked
in any case, which is the main reason why we have to demand the P system to
be complete, i.e., if we do not simulate the catalytic rule, then the symbol will
be affected by simulating a non-catalytic rule (which has to exist because of the
completeness of the P system). In fact, it is easy to see that G simulates exactly
the derivations in Π. 2

Instead of solving the original problem concerning the computational power
of P systems with one catalyst in one membrane, the results proved above give
rise to new interesting problems, e.g., we may investigate the generative power of
complete or (weakly) separated P systems with more than one catalyst in possibly
more than one membrane.

4 Conclusion

In this paper, specific variants of P systems with one catalyst in one membrane
were shown not to be able to generate all recursively enumerable sets of natural
numbers. For the original variant of P systems with one catalyst in one membrane,
we also conjecture a similar result, but unfortunately were not able to prove it. The
problem of the generative power of purely catalytic P systems with two catalysts
in one membrane remains open, too.
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