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Dpto. de Ciencias de la Computación e Inteligencia Artificial
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Summary. In the literature, several examples of the efficiency of cell-like P systems in
order to solve NP-complete problems in polynomial time can be found. Recently, various
new models of tissue-like P systems have received important attention from the scientific
community. In this paper we present a linear-time solution to an NP-complete problem,
the 3-COL problem, and discuss the possibilities of tissue-like P systems to solve hard
problems.

1 Introduction

Membranes are involved in many reactions taking place inside various compart-
ments of a cell, and they act as selective channels of communication between differ-
ent compartments as well as between the cell and its environment [1]. Membrane
Computing is a branch of Natural Computing which starts from the assumption
that the processes taking place in the compartmental structure of a living cell can
be interpreted as computations.

This is a new cross-disciplinary field with contributions by computer scientists,
biologists, formal linguists and complexity theoreticians, enriching each others with
results, open problems and promising new research lines. One of the topics in
that field is the study of the computational power and efficiency of devices with
multisets distributed along the regions of a membrane structure, and with rules
for rewriting or moving the elements of such multisets.

This emergent branch of Natural Computing was introduced by Gh. Păun in
[21]. Since then it has received important attention from the scientific community.
In fact, Membrane Computing has been selected by the Institute for Scientific
Information, USA, as a fast Emerging Research Front in Computer Science, and
[20] was mentioned in [28] as a highly cited paper in October 2003.

The devices of this model are called P systems. Roughly speaking, a P sys-
tem consists of a membrane structure, in the compartments of which one places
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multisets of objects which evolve according to given rules in a synchronous non-
deterministic maximally parallel manner1.

In the last years, many different models of P systems have been proposed.
If the different models are classified according to the membrane structure, the
most studied variant is characterized by a cell-like membrane structure, where
the communication channels are from a membrane to the surrounding one. In
this model we have a set of nested membranes where the graph of neighborhood
relation is a tree.

Different models of these cell-like P systems have been successfully used in order
to design solutions to NP-complete problems in polynomial time (see [9] and refer-
ences therein). These solutions are obtained by generating an exponential amount
on workspace in polynomial time and using parallelism to check simultaneously all
the candidates to solution. Inspired in living cells, cell-like P systems abstract the
way of obtaining new membranes, mainly from two biological processes: mitosis
(membrane division) and autopoiesis, see [13] (membrane creation). Both ways of
generating new membranes have given rise to different variants of P systems: P
systems with active membranes, where the new workspace is generated by mem-
brane division and P systems with membrane creation, where the new membranes
are created from objects.

Both models are universal from a computational point of view, but technically,
they are pretty different. In fact, nowadays there does not exist any theoretical
result which proves that these models can simulate each other in polynomial time.

Under the hypothesis P 6=NP, Zandron et al. [27] established the limitations of
P systems that do not use membrane division concerning the efficient solution of
NP-complete problems. This result was generalized by Pérez-Jiménez et al. [17]
obtaining a characterization of the P 6=NP conjecture by the polynomial time un-
solvability of an NP-complete problem by language accepting P systems (without
membrane division rules).

We shall focus here on a second type of P systems, the so-called (because of their
membrane structure) tissue P systems. Instead of considering that membranes are
hierarchically arranged, the membranes are placed in the nodes of a graph, all of
them at the same level. This variant has two starting points (see [15]): intercellu-
lar communication and cooperation between neurons. The common mathematical
model of these two mechanisms is a net of processors dealing with symbols and
communicating these symbols along channels specified in advance. The commu-
nication among cells is based on symport/antiport rules2. Symport rules move
objects across a membrane together in one direction, whereas antiport rules move
objects across a membrane in opposite directions.

From the seminal definition of tissue P systems [14, 15], several research lines
have been developed and other variants have arisen (see, for example, [2, 5, 6, 11,
12, 23]). One of the most interesting variants of tissue P systems was presented in
[19]. This paper combines the definitions of tissue P systems and P systems with

1 A layman-oriented introduction can be found in [22] and further bibliography at [29].
2 This way of communication for P systems was introduced in [20].
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active membranes and consider tissue P systems (with the communication done
through symport/antiport rules) with cell division rules of the same form as in P
systems with active membranes, but without using polarizations.

One of the main features of these tissue P systems with cell division is related
to their computational efficiency. In [19], a polynomial-time solution to the NP-
complete problem SAT is shown. In this paper we go on with the research in this
variant and present a linear-time solution to another well-known NP-complete
problem, the 3-COL problem.

The paper is organized as follows: first we recall some preliminaries and the
definition of tissue P systems with cell division. Next, recognizer tissue P systems
are briefly described. A linear–time solution to the 3-COL problem is presented in
the following section, with a short overview of the computation and the necessary
resources. Finally, the main results, some conclusions, and new open research lines
are presented.

2 Preliminares

In this section we briefly recall some of the concepts used later on in the paper.
An alphabet, Σ, is a non empty set, whose elements are called symbols. An

ordered sequence of symbols is a string. The number of symbols in the string is
the length of the string. As usual, the empty string (with length 0) will be denoted
by λ. The set of strings of length n built with symbols from the alphabet Σ is
denoted by σn and Σ? = ∪n≥0σ

n. A language over Σ is a subset from Σ?.
Let D be a set. A multiset over D is a pair3 〈D, f〉 where f : D → N is a

mapping. If A = 〈A, f〉 is a multiset, its support, supp(A) is defined as supp(A) =
{x ∈ A | f(x) > 0} and its size denoted by |A| is defined as

|A| =
∑

a∈A

f(a).

A multiset is empty (resp. finite) if its support is the empty set (resp. finite). The
set of all the multisets on D is denoted by M(D).

If m = (A, f) is a finite multiset on A, then it will be denoted as m =
{{a1, . . . , am}}, where the elements ai occurs f(ai) times.

A directed graph G is a pair G = (V,E) where V is a set and E ⊆ V × V . If
(u, v) ∈ E or (v, u) ∈ E, we will say that u is adjacent to v. The degree of v ∈ V
is the number of adjacent vertices to v.

A path of length n from a vertex x to a vertex y in a directed graph G =
(V, E) is a sequence {v0, v1, . . . , vn} of vertices such that v0 = x, vn = y and
{(vi, vi+1) | i = 0, . . . , n− 1} ⊆ E. If there is a path from u to v in G, we will say
that v is reachable from u in G and it will be denoted by u ÃG v. The vertices u
and v are connected in G if u ÃG v or v ÃG u. The directed graph is connected if
3 A detailed presentation of multisets can be found, for example, in [26].
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for every pair of different vertices from V , one of them is reachable from the other
one.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For details, see [24].

3 Tissue P Systems with Cell Division

In the first works on tissue P systems the membrane structure does not change
along the computation [14, 15]. Based on the cell-like model of P systems with
active membranes, in [19] a new model of tissue P systems is presented, with
cells able to divide. The biological inspiration is clear. Alive tissues are not static
network of cells. Cell are duplicated via mitosis in a natural way. As computational
model, the main features of this model are that cells are not polarized (the contrary
holds in the cell-like model of P systems with active membranes, see [24]); the cells
obtained by division have the same labels as the father cell and if a cell is divided,
the interaction of the cell with other cells or with the environment is blocked during
the mitosis process. In some sense, this means that a cell which divides, first cuts
all its communication channels with the other cells and with the environment.

Formally, a tissue P system with cell division is a construction of the form

Π = (Γ, w1, . . . , wm, E,R, io),

where:

1. m ≥ 1 is the initial degree of the system. At the beginning, the system has m
cells, labeled by 1, 2, . . . , m.

2. Γ is a finite alphabet, whose symbols will be called objects.
3. w1, . . . , wm are strings over Γ , describing the multisets of objects placed in the

m cells of the system.
4. E ⊆ Γ is the set of objects placed in the environment in an arbitrary large

amount of copies.
5. R is a finite set of evolution rules of the following form:

(a) Communication rules: (i, x/y, j), for i, j ∈ {0, 1, 2, . . . ,m}, i 6= j, x, y ∈
Γ ∗, where 1, 2, . . . , m are the labels of the cells of the system (0 is the
label of the environment); when the rule (i, x/y, j) is applied, the objects
of the multiset represented by x are sent from the region i to the region j
and simultaneously, the objects of the multiset represented by y are sent
from the region j to the region i.

(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , m} and a, b, c ∈ Γ ; when
an object a appears in a cell labeled by i, the cell divides into other two
membranes with the same label. All the objects in the original cell are
replicated and copied in each of the new cells, with the exception of the
object a, which is replaced by the object b in the first new cell and by c in
the second one.

6. io is the output cell.
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Rules are applied as usual in the framework of membrane computing, that is, in
a maximally parallel way. In one step, each object in a membrane can only be used
for one rule (non-deterministically chosen when there are several possibilities), but
any object which can evolve by a rule of any form must do it, i.e., in each step we
apply a maximal set of rules and no other rule can be added.

This way of applying rules has only one restriction: when a cell is divided, the
division rule is the only which is applied for that cell in that step; the objects
inside that cell do not evolve in the step when the cell is divided.

4 Recognizer tP Systems

Usually, NP-completeness has been studied in the framework of decision problems.
Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

In a similar way to other P system models, some special features have to be
imposed for studying the efficiency of such systems in order to solve NP-complete
problems.

In order to study the computing efficiency for solving NP-complete decision
problems in [19] a variant of tissue P systems with membrane division is intro-
duced: recognizer tissue P systems with input. The key idea of such recognizer
system is the same as for recognizer P systems with cell-like structure.

Recognizer P systems were introduced in [18] and are the natural framework
to study and solve decision problems, since deciding whether an instance has an
affirmative or negative answer is equivalent to deciding if a string belongs or not
to the language associated with the problem.

In the literature, recognizer P systems are associated in a natural way with P
systems with input. The data related to an instance of the decision problem has to
be provided to the P system in order to compute the appropriate answer. This is
done by codifying each instance as a multiset placed in an input membrane. The
output of the computation (yes or no) is sent to the environment. In this way, P
systems with input and external output are devices which can be seen as black
boxes, in the sense that the user provides the data before the computation starts,
and then waits outside the P system until it sends to the environment the output
in the last step of the computation.

A recognizer tissue P system is a tuple

Π = (O,Σ, w1, . . . , wm, E,R, iin, io),

where:

• (O, w1, . . . , wm, E,R, iin) is a tissue P system.
• The working alphabet O has two distinguished objects yes and no, present in

at least one copy in w1, w2, . . . , wn but not present in E.
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• Σ is an (input) alphabet strictly contained in O.
• iin ∈ {1, . . . , m} is the input cell.
• The output region is the environment.
• All computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

Another important feature of P systems is the non-determinism. When design-
ing a family of recognizer P systems, one has to be aware of that, because all
possible non-deterministic computations must produce the same answer.

Definition 1. A P system with input is a tuple (Π, Σ, iΠ), where: (a) Π is a P
system, with working alphabet Γ , with p membranes labeled by 1, . . . , p, and initial
multisets w1, . . . , wp associated with them; (b) Σ is an (input) alphabet strictly
contained in Γ ; the initial multisets are over Γ − Σ; and (c) iΠ is the label of a
distinguished (input) membrane.

The computations of the system Π start from configurations of the form
(w1, w2, . . . , winw, . . . , wm; E), where w ∈ Γ ∗ (that is, after adding the multi-
set w to the contents of the input cell). We say that the multiset w is recognized
by Π if and only if the object yes is sent to the environment. We say that C is an
accepting computation (respectively, rejecting computation) if the object yes (re-
spectively, no) appears in the environment associated to the corresponding halting
configuration of C.
Definition 2. Let F be a class of recognizer P systems. We say that a decision
problem X = (IX , θX) is solvable in polynomial time by a family Π = (Π(n))n∈N,
of F , and we denote this by X ∈ PMCF , if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine constructing Π(n) from n ∈ N in polynomial
time.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is, there

exists a polynomial function p, such that for each u ∈ IX every computation
of Π(s(u)) with input cod(u) is halting and, moreover, it performs at most
p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.
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In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation of a system with the same input must
always give the same answer.

The set of all decision problems which can be solved by means of recognizer
tP systems with cell division in a number of steps bounded by a mapping f form
the complexity4 class MCTD(f). We are interested in polynomial time solutions,
therefore we consider the class PMCTD, obtained as the union of the classes
MCTD(f), for all polynomials f .

5 A Solution to 3-COL

Let G be a graph with V (G) as set of vertices and E(G) as set of edges. A k-coloring
of a graph G is a function C : V (G) → {1, . . . , k} such that for all v, w ∈ V (G),
if C(v) = C(w), then ((v, w) 6∈ E(G). The k − COL problem is to determine the
number of such k-colorings for G.

This problem is related to the famous Four Color Conjecture (proved by Appel
and Haken [3, 4]). It is a special case of the problem of k-colorability of a graph,
in which the range of C is {1, . . . , k} with k being specified as part of the instance.
The NP-completeness of the 3-COL problem was proved by Stockmeyer [25] (see
[8]).

Next, we will see that the 3-COL problem can be solved by tissue P systems
with cellular division in linear time.

Let us consider a graph G = (U, V ), where U = {ui | 1 ≤ i ≤ n} is the set of
vertices and V = {vj | vj = uj1uj2 ∧ 1 ≤ j ≤ m ∧ 1 ≤ j1 < j2 ≤ n} is the set of
edges.

Let us consider (n, (Aij)n) in order to denote a generic instance of the problem,
with n the size of the graph G, i.e., the number of vertices in G and let A be the
set of the edges in the graph G, with

(Aij)n = (Aij : AiAj ∈ V ∧ 1 ≤ i < j ≤ n).

We will address the resolution via a brute force algorithm, in the framework
of recognizer tissue P systems with cell division, which consists in the following
phases:

• Generation Stage: The initial cell, labeled by 2, is divided into two new cells.
These cells are divided again, and so on. After several divisions we have an
element Ri, Bi or Gi for each element Ai. Hence, after an appropriate number
of divisions, in each cell labeled with 2 we will have a candidate solution to the
problem. Simultaneously, in the membrane labeled by 1 a counter evolves to
determine the moment in which the checking stage starts.

4 More precise definitions of complexity classes in terms of membrane computing can
be found in [16].
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• Checking Stage: After the generation stage, the checking stage begins. For each
cell labeled by 2, we check if there exists a pair of adjacent vertices with the
same color. If this happens, an element [ is brought from the environment.
Otherwise, the object [ is not brought in.

• Output Stage: The system sends to the environment the right answer according
to the previous stage.
1. Answer Yes: There exists a cell labeled by 2 such that it does not contain

an object [. In this case, an object T is sent to the cell labeled by 1 and an
object Yes is sent to the environment.

2. Answer No: It is the converse case. If all the cells labeled by 2 contain an
object [, then the cell labeled by 1 does not receive any object T , and an
object No is sent to the environment.

Next, we provide a linear time solution of 3-COL by a family of recognizer
tissue P systems with membrane division.

Let us consider a size mapping on the set of instances of the problem. Let s be
the mapping s : I3−COL → N where I3−COL is the set of all instances u = (n, (Aij)n)
of the 3-COL problem and s(u) = n. Obviously, s is linear time computable.

For each n ∈ N, we will consider the system

Π(n) = (Γ (n), Σ(n),R(n), E(n),M1(n),M2(n), i(n), o(n)),

where:

• Γ (n) = {Ai, Ri, Ti, Bi, Gi, Ri, Bi, Gi | 1 ≤ i ≤ n}∪{ai | 1 ≤ i ≤ 2n+dlog2me+
12}∪{ci | 1 ≤ i ≤ 2n+1}∪{di | 1 ≤ i ≤ dlog2me+1}∪{fi | 2 ≤ i ≤ dlog2me+
7} ∪ {Pij , P ij , Rij , Bij , Gij | 1 ≤ i < j ≤ n} ∪ {b,D, E, e, T, S,N, [, yes, no},

• Σ(n) = {Aij | 1 ≤ i < j ≤ n},
• M1(n) = a1, b, c1, yes, no,
• M2(n) = D, A1, . . . , An,
• R(n) is the set of rules:

1. Division rules:
r1,i = [Ai]2 → [Ri]2[Ti]2 for i = 1, . . . , n,
r2,i = [Ti]2 → [Bi]2[Gi]2 for i = 1, . . . , n,

2. Communication rules:
r3,i = (1, ai/ai+1, 0) for i = 1, . . . , 2n + dlog2me+ 11,
r4,i = (1, ci/c2

i+1, 0) for i = 1 . . . , 2n,
r5 = (1, c2n+1/D, 2),
r6 = (2, c2n+1/d1E, 0),
r7,i = (2, di/d2

i+1, 0) for i = 1, . . . , dlog2me,
r8 = (2, E/e f2, 0),
r9,i = (2, fi/fi+1, 0) for i = 2, . . . , dlog2me+ 6,
r10,ij = (2, ddlog2me+1Aij/Pij , 0) for 1 ≤ i < j ≤ n,
r11,ij = (2, Pij/RijP ij , 0) for 1 ≤ i < j ≤ n,
r12,ij = (2, P ij/BijGij , 0) for 1 ≤ i < j ≤ n,
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r13,ij = (2, RiRij/RiRj , 0) for 1 ≤ i < j ≤ n,
r14,ij = (2, BiBij/BiBj , 0) for 1 ≤ i < j ≤ n,
r15,ij = (2, GiGij/GiGj , 0) for 1 ≤ i < j ≤ n,
r16,j = (2, RjRj/[, 0) for 1 ≤ j ≤ n,
r17,j = (2, BjBj/[, 0) for 1 ≤ j ≤ n,
r18,j = (2, GjGj/[, 0) for 1 ≤ j ≤ n,
r19 = (2, e [/λ, 0),
r20 = (2, fdlog2me+7e/T, 0),
r21 = (2, T/λ, 1),
r22 = (1, b T/S, 0),
r23 = (1, Syes/λ, 0),
r24 = (1, a2n+dlog2me+12b/N, 0),
r25 = (1, Nno/λ, 0),

• E(n) = Γ − {yes, no},
• i(n) = 2 is the input cell,
• o(n) = env is the output cell.

5.1 An overview of the computation

First of all we define a polynomial encoding of the 3-COL problem in the family
Π constructed in the previous section. Given an instance u of the problem, u =
(n, (Aij)n), with size s(u) = n the codification of the instance will be the multiset
cod(u) = {{Aij | 1 ≤ i < j ≤ n}}.

Next we describe informally how the recognizer tissue P system with cell divi-
sion Π(s(u)) with input cod(u) works.

Let us start with the generation stage. Recall that if a division rule is triggered,
the communication rules do not work. In this stage we have two parallel processes.

• On the one hand, in the cell labeled by 1 we have two counters: ai, which will
be used in the answer stage and ci, which will be multiplied until step 2n,
where 4n copies are obtained.

• On the other hand, in the cell labeled by 2, the division rules are applied. For
each object Ai (which codifies a vertex of the graph) we get three cells labeled
by 2, each of them encoding one of the three colors.
After the appropriate divisions, in the step 2n we get exactly 3n cells encoding
all the possible 3-colorings of the graph

In this way, in the step 2n the generation step is finished and the checking stage
starts.

One of the copies of the counter c in the cell 1 is traded by each object D that
appears in each cell labeled by 2. Therefore, in the cell 1, there remain 4n − 3n

copies of the counter c. When the object c2n+1 arrives to the cell labeled by 2, the
communication starts.

At the beginning of the process, we pay attention to the counters d and f . The
former, d, will be multiplied until at least m copies are obtained. At this point, we
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will start the work with the edges. The latter, f , will be useful in order to send an
object T to the cell 1.

When the m copies of the object d are obtained, each of them are send together
an object Aij (which codifies an edge for each 1 ≤ i < j ≤ n) to the environment
and an object Pij is got.

When the objects Pij are obtained, they are interchanged by Rij , Bij , Gij with
the environment. In this way, all the possible colors for the edges are obtained and
the proper checking stage starts.

This stage consists on checking, for each cell labeled by 2, if for each edge there
exist two adjacent vertices with the same color. Let us take a color, say red (for
green and blue, the process is similar):

• An edge Rij is taken.
• If the vertex i is encoded in the cell 2 with the color red, then the object Rj is

brought from the environment.
• If the vertex j is also of color red, then the objects RjRj are traded with the

environment by [.
• If [ appears, it is sent out together e to the environment and the rule which

sends an object T to the cell 1 can not be triggered.
• If the object [ does not appears in the step dlog2me + 11, then T is brought

from the environment, and it is sent in the next step to the cell 1.

Notice that in the generation stage, the processes are parallel, but in the check-
ing stage, when the red color is checked, the checking of the other two colors has
not begun. If there do not exist two vertices with the same color when the counter
f ends, then the object T is changed with the objects fdlog2me+7 and e. The counter
d is multiplied until it reaches m copies (the number of edges).

If the object T appears in the cell 1 in the step 2n + dlog2me + 11, then the
object S is brought from the environment interchanged by the objects b and T . In
the next step S and yes are sent to the environment and the computation halts.
No more rules can be applied, since b has been sent out from the cell 1.

Otherwise, if in the step 2n + dlog2me + 12 the object T has not appeared,
the last element of the counter a, together with b are sent to the environment and
N is sent into the cell. In the next step, N and no are sent to the environment.
Therefore, the number of steps is 2n + dlog2me+ 15 if the answer is not.

5.2 Necessary Resources

The presented family of tissue P systems that solves the 3-COL problem is poly-
nomially uniform by Turing machines. It can be observed that the definition of
the family is done in a recursive manner from a given instance, in particular from
the constants n and m. Furthermore the necessary resources to build an element
of family are:

• size of the alphabet: 12n + 6m + 3dlog2me+ 31 ∈ θ(n + m),
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• initial number of cells: 2 ∈ θ(1),
• initial number of objects: n + m + 6 ∈ θ(n + m)
• number of rules: 9n + 6m + 3dlog2me+ 27, the maximal length of a rule is 4,

then the sum of the rules’ lengths is about θ(n + m).

So a Turing machine can build Π(h(u)) in lineal time with respect to h(u).

5.3 Main results

From the discussion in the previous sections and according to Section 4, we deduce
the following result:

Theorem 1. 3-COL∈ PMCTD.

Although the next result is a corollary of Theorem 1, we formulate it as another
theorem, in order to stress its relevance.

Theorem 2. NP ⊆ PMCTD.

Proof. It suffices to make the following observations: the 3-COL problem is NP-
complete, 3-COL ∈ PMCTD and the class PMCTD is stable under polynomial-
time reduction. ut

This theorem can be extended, if we notice that the class PMCTD is closed
under complement.

Theorem 3. NP ∪ co−NP ⊆ PMCTD.

6 Conclusions and Future Work

The power and efficiency of cell-like P systems for solving NP-complete problems
have been widely studied. Nevertheless, there are very few works studying the case
of tissue-like P systems.

In this paper we propose a new solution to an NP-complete problem which
can be used as a scheme for designing solutions to other problems from Graph
Theory as the Vertex Cover Problem, Clique, etc. Moreover, the type of solution
presented can be also adapted for solving numerical problems.

Recently, a new P system model based on the idea of spiking neurons has been
presented (see, for example, [10]). It remains as further work to bridge tissue P
systems and this new model.
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9. M.A. Gutiérrez-Naranjo, M.j. Pérez-Jiménez, F.J. Romero-Campero: A linear solu-
tion for QSAT with membrane creation. In Membrane Computing (R. Freund, Gh.
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