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1 Computer Science Laboratory, Institute of Software
Chinese Academy of Sciences
100080 Beijing, China
chm@ios.ac.cn

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

3 Research Group on Natural Computing
Department of Computer Science and AI
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
tseren@yahoo.com, gpaun@us.es, marper@us.es

Summary. We consider spiking neural P systems with spiking rules allowed to introduce
zero, one, or more spikes at the same time. The computing power of the obtained systems
is investigated, when considering them as number generating and as language generating
devices. In the first case, a simpler proof of universality is obtained (universality is already
known for the restricted rules), while in the latter case we find characterizations of finite
and recursively enumerable languages (without using any squeezing mechanism, as it was
necessary in the case of restricted rules). The relationships with regular languages are
also investigated. In the end of the paper, a tool-kit for computing (some) operations
with languages is provided.

1 Introduction

We combine here two ideas recently considered in the study of the spiking neural
P systems (in short, SN P systems) introduced in [2], namely the extended rules
from [4] and the string generation from [1].

For the reader’s convenience, we shortly recall that an SN P system consists
of a set of neurons placed in the nodes of a graph and sending signals (spikes)
along synapses (edges of the graph), under the control of firing rules. One neuron
is designated as the output neuron of the system and its spikes can exit into the
environment, thus producing a spike train. Two main kinds of outputs can be
associated with a computation in an SN P system: a set of numbers, obtained by
considering the number of steps elapsed between consecutive spikes which exit the
output neuron, and the string corresponding to the sequence of spikes which exit
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the output neuron. This sequence is a binary one, with 0 associated with a step
when no spike is emitted and 1 associated with a step when a spike is emitted.

The case of SN P systems as number generators was investigated in several
papers, starting with [2], where it is proved that such systems are Turing complete
(hence also universal, because the proof is constructive; universality in a rigorous
framework was investigated in [4]). In turn, the string case is investigated in [1],
where representations of finite, regular, and recursively enumerable languages were
obtained, but also finite languages were found which cannot be generated in this
way.

Here we consider an extension of the rules, already used in [4], namely we allow
rules of the form E/ac → ap, with the following meaning: if the content of the
neuron is described by the regular expression E, then c spikes are consumed and
p are produced and sent to the neurons to which there exist synapses leaving the
neuron where the rule is applied (more precise definitions will be given in the next
section). Thus, these rules cover and generalize at the same time both spiking rules
and forgetting rules as considered so far in this area – with the mentioning that
we do not also consider here a delay between firing and spiking, because in the
proofs we never need such a delay.

As expected, this generalization allows much simpler constructions for the proof
of universality in the case of considering SN P systems as number generators (we
treat this issue in Section 4). More interesting is the case of strings produced by
SN P systems with extended rules: we associate a symbol bi to a step when the
system sends i spikes into the environment, with two possible cases – b0 is used as a
separated symbol, or it is replaced by λ (sending no spike outside is interpreted as
a step when the generated string is not grown). The first case is again restrictive:
not all minimal linear languages can be obtained, but still results stronger than
those from [1] can be proved in the new framework because of the possibility
of removing spikes under the control of regular expressions – see Section 5. The
freedom provided by the existence of steps when we have no output makes possible
direct characterizations of finite and recursively enumerable languages (not only
representations, modulo various operations with languages, as obtained in [1] for
the standard binary case) – Section 6. In Section 7 we also present constructions
of SN P systems for computing some usual operations with languages: union,
concatenation, weak coding, intersection with regular languages.

2 Formal Language Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory,
e.g., from [6] and [7], so that we introduce here only some notations and notions
used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ; the
empty string is denoted by λ, and the set of all nonempty strings over V is denoted
by V +. When V = {a} is a singleton, then we write simply a∗ and a+ instead of
{a}∗, {a}+. If x = a1a2 . . . an, ai ∈ V, 1 ≤ i ≤ n, then mi(x) = an . . . a2a1.
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A morphism h : V ∗
1 −→ V ∗

1 such that h(a) ∈ {a, λ} for each a ∈ V1 is called
a projection, and a morphism h : V ∗

1 −→ V ∗
2 such that h(a) ∈ V2 ∪ {λ} for each

a ∈ V1 is called a weak coding.
If L1, L2 ⊆ V ∗ are two languages, the left and right quotients of L1 with

respect to L2 are defined by L2\L1 = {w ∈ V ∗ | xw ∈ L1 for some x ∈ L2}, and
respectively L1/L2 = {w ∈ V ∗ | wx ∈ L1 for some x ∈ L2}. When the language L2

is a singleton, these operations are called left and right derivatives, and denoted
by ∂l

x(L) = {x}\L and ∂r
x(L) = L/{x}, respectively.

A Chomsky grammar is given in the form G = (N,T, S, P ), where N is the
nonterminal alphabet, T is the terminal alphabet, S ∈ N is the axiom, and P is the
finite set of rules. For regular grammars, the rules are of the form A → aB,A → a,
for some A,B ∈ N, a ∈ T .

We denote by FIN, REG, CF, CS,RE the families of finite, regular, context-
free, context-sensitive, and recursively enumerable languages; by MAT we denote
the family of languages generated by matrix grammars without appearance check-
ing. The family of Turing computable sets of numbers is denoted by NRE (these
sets are length sets of RE languages, hence the notation).

Let V = {b1, b2, . . . , bm}, for some m ≥ 1. For a string x ∈ V ∗, let us denote
by valm(x) the value in base m + 1 of x (we use base m + 1 in order to consider
the symbols b1, . . . , bm as digits 1, 2, . . . ,m, thus avoiding the digit 0 in the left
hand of the string). We extend this notation in the natural way to sets of strings.

All universality results of the paper are based on the notion of a regis-
ter machine. Such a device – in the non-deterministic version – is a construct
M = (m,H, l0, lh, I), where m is the number of registers, H is the set of instruc-
tion labels, l0 is the start label (labeling an ADD instruction), lh is the halt label
(assigned to instruction HALT), and I is the set of instructions; each label from H
labels only one instruction from I, thus precisely identifying it. The instructions
are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk non-deterministically chosen),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers); if we reach the halt
instruction, then the number n present in register 1 at that time is said to be
generated by M . (Without loss of generality we may assume that in the halting
configuration all other registers are empty; also, we may assume that register 1
is never subject of SUB instructions, but only of ADD instructions.) It is known
(see, e.g., [3]) that register machines generate all sets of numbers which are Turing
computable.



244 H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez

A register machine can also be used as a number accepting device: we introduce
a number n is some register r0, we start working with instruction with label l0,
and if the machine eventually halts, then n is accepted (we may also assume
that all registers are empty in the halting configuration). Again, accepting register
machines characterize NRE.

Furthermore, register machines can compute all Turing computable functions:
we introduce the numbers n1, . . . , nk in some specified registers r1, . . . , rk, we start
with the instruction with label l0, and when we stop (with the instruction with
label lh) the value of the function is placed in another specified register, rt, with
all registers different from rt being empty.

In both the accepting and the computing case, the register machine can be
deterministic, i.e., with the ADD instructions of the form li : (ADD(r), lj) (add 1
to register r and then go to the instruction with label lj).

In the following sections, when comparing the power of two language generat-
ing/accepting devices the empty string λ is ignored.

3 Spiking Neural P Systems with Extended Rules

We directly introduce the type of SN P systems we investigate in this paper; the
reader can find details about the standard definition in [2], [5], [1], etc.

An extended spiking neural P system (abbreviated as extended SN P system),
of degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, i0),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the form E/ac → ap, where E is a regular

expression over a and c ≥ 1, p ≥ 0, with the restriction c ≥ p;
3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m

(synapses between neurons);
4. i0 ∈ {1, 2, . . . , m} indicates the output neuron (σi0) of the system.

A rule E/ac → ap is applied as follows. If the neuron σi contains k spikes,
and ak ∈ L(E), k ≥ c, then the rule can fire, and its application means consuming
(removing) c spikes (thus only k − c remain in σi) and producing p spikes, which
will exit immediately the neuron. A global clock is assumed, marking the time for
the whole system, hence the functioning of the system is synchronized.
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Note that we do not consider here a delay between firing and spiking (i.e.,
rules of the form E/ac → ap; d, with d ≥ 0), because we do not need this feature
in the proofs below, but such a delay can be introduced in the usual way. (As a
consequence, here the neurons are always open.)

If a rule E/ac → ap has E = ac, then we will write it in the simplified form
ac → ap.

The spikes emitted by a neuron σi go to all neurons σj such that (i, j) ∈ syn,
i.e., if σi has used a rule E/ac → ap, then each neuron σj receives p spikes.

If several rules can be used at the same time, then the one to be applied is
chosen non-deterministically.

During the computation, a configuration of the system is described by the
number of spikes present in each neuron; thus, the initial configuration is described
by the numbers n1, n2, . . . , nm.

Using the rules as described above, one can define transitions among configu-
rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where no rule can
be used. With any computation (halting or not) we associate a spike train, the
sequence of symbols 0 and 1 describing the behavior of the output neuron: if the
output neuron spikes, then we write 1, otherwise we write 0 (note that at this stage
we ignore the number of spikes emitted by the output neuron into the environment
in each step, but this additional information will be considered below).

As the result of a computation, in [2] and [5] one considers the distance be-
tween two consecutive steps when there are spikes which exit the system, with
many possible variants: taking the distance between the first two occurrences of
1 in the spike train, between all consecutive occurrences, considering only alter-
nately the intervals between occurrences of 1, etc. For simplicity, we consider here
only the first case mentioned above: we denote by N2(Π) the set of numbers gen-
erated by an SN P system in the form of the number of steps between the first
two steps of a computation when spikes are emitted into environment, and by
Spik2SNePm(rulek, consp, prodq) the family of sets N2(Π) generated by SN P
systems with at most m neurons, at most k rules in each neuron, consuming at
most p and producing at most q spikes. Any of these parameters is replaced by ∗
if it is not bounded.

Following [1] we can also consider as the result of a computation the spike train
itself, thus associating a language with an SN P system. Specifically, like in [1],
we can consider the language Lbin(Π) of all binary strings associated with halting
computations in Π: the digit 1 is associated with a step when one or more spikes
exit the output neuron, and 0 is associated with a step when no spike is emitted
by the output neuron.

Because several spikes can exit at the same time, we can also work on an
arbitrary alphabet: let us associate the symbol bi with a step when the output
neuron emits i spikes. We have two cases: interpreting b0 (hence a step when no
spike is emitted) as a symbol or as the empty string. In the first case we denote
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the generated language by Lres(Π) (with “res” coming from “restricted”), in the
latter one we write Lλ(Π).

The respective families are denoted by LαSNePm(rulek, consp, prodq), where
α ∈ {bin, res, λ} and parameters m, k, p, q are as above.

4 Extended SN P Systems as Number Generators

Because non-extended SN P systems are already computationally universal, this
result is directly valid also for extended systems. However, the construction on
which the proof is based is much simpler in the extended case (in particular, it
does not use the delay feature), that is why we briefly present it.

Theorem 1. NRE = Spik2SNeP∗(rule5, cons5, prod2).

Proof. The proof of the similar result from [2] is based on constructing an SN
P system Π which simulates a given register machine M . The idea is that each
register r has associated a neuron σr, with the value n of the register represented
by 2n spikes in neuron σr. Also, each label of M has a neuron in Π, which is
“activated” when receiving two spikes. We do not recall other details from [2],
and we pass directly to presenting modules for simulating the ADD and the SUB
instructions of M , as well as an OUTPUT module, in the case of using extended
rules: Figures 1, 2, and 3.
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Fig. 1. Module ADD, for simulating an instruction li : (ADD(r), lj , lk)



Spiking Neural P Systems with Extended Rules 247

Because the neurons associated with labels of ADD and SUB instructions have
to produce different numbers of spikes, in the neurons associated with “output”
labels of instructions we have written the rules in the form a2 → aδ(l), with δ(l) = 1
for l being the label of a SUB instruction and δ(l) = 2 if l is the label of an ADD
instruction.
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Fig. 2. Module SUB, for simulating an instruction li : (SUB(r), lj , lk)

Because li precisely identifies the instruction, the neurons ciα are distinct
for distinct instructions. However, an interference between SUB modules ap-
pears in the case of instructions SUB which operate on the same register r:
synapses (r, cis), (r, ci′s), s = 4, 5, exist for different instructions li : (SUB(r), lj , lk),
li′ : (SUB(r), lj′ , lk′). Neurons σci′s , σci′5 receive 1 or 2 spikes from σr even when
simulating the instruction with label li, but they are immediately forgotten (this
is the role of rules a → λ, a2 → λ from neurons σci4 , σci5).

The task of checking the functioning of the modules from Figures 1, 2, 3 is left
to the reader. ut
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Fig. 3. Module OUTPUT

5 Languages in the Restricted Case

We pass now to considering SN P systems as language generators, starting with
the restricted case, when the system outputs a symbol in each computation step.

In all considerations below, we work with the alphabet V = {b1, b2, . . . , bm},
for some m ≥ 1. By a simple renaming of symbols, we may assume that any given
language L is a language over V . When a symbol b0 is also used, it is supposed
that b0 /∈ V .

5.1 A Characterization of FIN

SN P systems with standard rules cannot generate all finite languages (see [1]),
but extended rules help in this respect.

Lemma 1. LαSNeP1(rule∗, cons∗, prod∗) ⊆ FIN , α ∈ {res, λ}.
Proof. In each step, the number of spikes present in a system with only one neuron
decreases by at least one, hence any computation lasts at most as many steps as
the number of spikes present in the system at the beginning. Thus, the generated
strings have a bounded length. ut
Lemma 2. FIN ⊆ LαSNeP1(rule∗, cons∗, prod∗), α ∈ {res, λ}.
Proof. Let L = {x1, x2, . . . , xn} ⊆ V ∗, n ≥ 1, be a finite language, and let xi =
xi,1 . . . xi,ri for xi,j ∈ V, 1 ≤ i ≤ n, 1 ≤ j ≤ ri = |xi|. Denote l = max{ri | 1 ≤
i ≤ n}. For b ∈ V , define index(b) = i if b = bi. Define αj = lm

∑j
i=1 |xi|, for all

1 ≤ j ≤ n.
An SN P system that generates L is shown in Figure 4.
Initially, only a rule aαn+lm/aαn−αj+m → aindex(xj,1) can be used, and in this

way we non-deterministically chose the string xj to generate. This rule outputs the
necessary number of spikes for xj,1. Then, because αj + (l− 1)m spikes remain in
the neuron, we have to continue with rules aαj−t+2+(l−t+1)m/am → aindex(xj,t), for
t = 2, and then for the respective t = 3, 4, . . . , rj−1; in this way we introduce xj,t,
for all t = 2, 3, . . . , rj − 1. In the end, the rule aαj−rj+2+(l−rj+1)m → aindex(xj,rj

)

is used, which produces xj,rj and concludes the computation.



Spiking Neural P Systems with Extended Rules 249

-

aαn+lm

aαn+lm/aαn−αj+m → aindex(xj,1)

1 ≤ j ≤ n
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1 ≤ j ≤ n

'

&

$

%

Fig. 4. An SN P system generating a finite language

It is easy to see that the rules which are used in the generation of a string xj

cannot be used in the generation of a string xk with k 6= j. Also, in each rule the
number of spikes consumed is not less than the number of spikes produced. The
system Π never outputs zero spikes, hence Lres(Π) = Lλ(Π) = L. ut
Theorem 2. FIN = LresSNeP1(rule∗, cons∗, prod∗) = LλSNeP1(rule∗, cons∗,
prod∗).

This characterization is sharp in what concerns the number of neurons, because
of the following result:

Proposition 1. LαSNeP2(rule2, cons3, prod3)− FIN 6= ∅, α ∈ {res, λ}.
Proof. The SN P system Π from Figure 5 generates the infinite language
Lres(Π) = Lλ(Π) = b∗3b1{b1, b3}. ut
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a3

a3 → a3

a3

a3 → a3

a3 → a

Fig. 5. An SN P system generating an infinite language

5.2 Representations of Regular Languages

Such representations are obtained in [1] starting from languages of the form
Lbin(Π), but in the extended SN P systems, regular languages can be represented
in an easier and more direct way.



250 H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez

Theorem 3. If L ⊆ V ∗, L ∈ REG, then {b0}L ∈ LresSNeP4(rule∗, cons∗,
prod∗).

Proof. Consider a regular grammar G = (N, V, S, P ) such that L = L(G), where
N = {A1, A2, . . . , An}, n ≥ 1, S = An, and the rules in P are of the forms
Ai → bkAj , Ai → bk, 1 ≤ i, j ≤ n, 1 ≤ k ≤ m.

Then {b0}L can be generated by an SN P system as shown in Figure 6.

an+i+m → an+m

an+2m

'

&

$

%
i = 1, . . . , m

an+i+m → an+m

an+2m
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i = 1, . . . , m

a2n+m

an+i+m → ak

for Ai → bk ∈ P

'

&
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1 2

3

ai → ai

4'

&

$

%
i = 1, . . . , m

-

¾

6 6½
½

½
½½=

?

?

Fig. 6. The SN P system from the proof of Theorem 3

In each step, neurons σ1 and σ2 will send n + m spikes to neuron σ3, provided
neuron σ2 receives spikes from neuron σ3. Neuron σ3 fires in the first step by a
rule a2n+m/a2n−j+m → ak (or a2n+m → ak) associated with a rule An → bkAj

(or An → bk) from P , produces k spikes and receives n + m spikes from neuron
σ2. In the meantime neuron σ4 does not spike, hence it produces the symbol b0,
and receives spikes from neuron σ3, therefore in the second step it generates the
first symbol of the string.
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Assume in some step t, the rule an+i+m/an+i−j+m → ak, for Ai → bkAj , or
an+i+m → ak, for Ai → bk, is used, for some 1 ≤ i ≤ n, and n + m spikes are
received from neuron σ2.

If the first rule is used, then k spikes are produced, n + i − j + m spikes are
consumed and j spikes remain in neuron σ3. Then in step t+1, we have n+ j +m
spikes in neuron σ3, and a rule for Aj → bkAl or Aj → bk can be used. In step
t + 1 neuron σ3 also receives n + m spikes from σ2. In this way, the computation
continues, unless the second rule is used.

If the second rule is used, then k spikes are produced, all spikes are consumed,
and n + m spikes are received in neuron σ3. Then, in the next time step, neuron
σ3 receives n + m spikes, but no rule can be used, so no spike is produced. At the
same time, neuron σ4 fires using spikes received from neuron σ3 in the previous
step, and then the computation halts.

In this way, all the strings in {b0}L can be generated. ut
Corollary 1. Every language L ∈ REG,L ⊆ V ∗, can be written in the form
L = ∂l

b0
(L′) for some L′ ∈ LresSNeP4(rule∗, cons∗, prod∗).

One neuron in the previous representation can be saved, by adding the extra
symbol in the right hand end of the string.

Theorem 4. If L ⊆ V ∗, L ∈ REG, then L{b0} ∈ LresSNeP3(rule∗, cons∗,
prod∗).

Proof. The proof is based on a construction similar to the one from the proof of
Theorem 3. Specifically, starting from a regular grammar G as above, we construct
a system Π as in Figure 7, for which we have Lres(Π) = L{b0}. We leave the task
to check this assertion to the reader. ut

Corollary 2. Every language L ∈ REG,L ⊆ V ∗, can be written in the form
L = ∂r

b0
(L′) for some L′ ∈ LresSNeP3(rule∗, cons∗, prod∗).

5.3 Going Beyond REG

We do not know whether the additional symbol b0 can be avoided in the previous
theorems (hence whether the regular languages can be directly generated by SN
P systems in the restricted way), but such a result is not valid for the family of
minimal linear languages (generated by linear grammars with only one nonterminal
symbol).

Lemma 3. The number of configurations reachable after n steps by an extended
SN P system of degree m is bounded by a polynomial g(n) of degree m.

Proof. Let us consider an extended SN P system Π = (O, σ1, . . . , σm, syn, i0) of
degree m, let n0 be the total number of spikes present in the initial configuration
of Π, and denote α = max{p | E/ac → ap ∈ Ri, 1 ≤ i ≤ m} (the maximal number
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for Ai → bkAj ∈P
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for Ai → bk ∈ P

Fig. 7. The SN P system for the proof of Theorem 4

of spikes produced by any of the rules of Π). In each step of a computation, each
neuron σi consumes some c spikes and produces p ≤ c spikes; these spikes are
sent to all neurons σj such that (i, j) ∈ syn. There are at most m − 1 synapses
(i, j) ∈ syn, hence the p spikes produced by neuron σi are replicated in at most
p(m − 1) spikes. We have p(m − 1) ≤ α(m − 1). Each neuron can do the same,
hence the maximal number of spikes produced in one step is at most α(m− 1)m.
In n consecutive steps, this means at most α(m− 1)mn spikes. Adding the initial
n0 spikes, this means that after any computation of n steps we have at most
n0 +α(m−1)mn spikes in Π. These spikes can be distributed in the m neurons in
less that (n0 +α(m−1)mn)m different ways. This is a polynomial of degree m in n
(α is a constant) which bounds from above the number of possible configurations
obtained after computations of length n in Π. ut
Theorem 5. If f : V + −→ V + is an injective function, card(V ) ≥ 2, then there
is no extended SN P system Π such that Lf (V ) = {x f(x) | x ∈ V +} = Lres(Π).

Proof. Assume that there is an extended SN P system Π of degree m such that
Lres(Π) = Lf (V ) for some f and V as in the statement of the theorem. Ac-
cording to the previous lemma, there are only polynomially many configurations
of Π which can be reached after n steps. However, there are card(V )n ≥ 2n

strings of length n in V +. Therefore, for large enough n there are two strings
w1, w2 ∈ V +, w1 6= w2, such that after n steps the system Π reaches the same
configuration when generating the strings w1 f(w1) and w2 f(w2), hence after step
n the system can continue any of the two computations. This means that also
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the strings w1 f(w2) and w2 f(w1) are in Lres(Π). Due to the injectivity of f
and the definition of Lf (V ) such strings are not in Lf (V ), hence the equality
Lf (V ) = Lres(Π) is contradictory. ut
Corollary 3. The following languages are not in LresSNeP∗(rule∗, cons∗, prod∗)
(in all cases, card(V ) = k ≥ 2):

L1 = {xmi(x) | x ∈ V +},
L2 = {xx | x ∈ V +},
L3 = {x cvalk(x) | x ∈ V +}, c /∈ V.

Note that language L1 above is a non-regular minimal linear one, L2 is context-
sensitive non-context-free, and L3 is non-semilinear. In all cases, we can also add
a fixed tail of any length (e.g., considering L′1 = {xmi(x)z | x ∈ V +}, where
z ∈ V + is a given string), and the conclusion is the same – hence a result like that
in Theorem 4 cannot be extended to minimal linear languages.

6 Languages in the Non-Restricted Case

As expected, the possibility of having intermediate steps when no output is pro-
duced is helpful, because this provides intervals for internal computations. In this
way, we can get rid of the operations used in [1] and in the previous section when
dealing with regular and with recursively enumerable languages.

6.1 Relationships with REG

Lemma 4. LλSNeP2(rule∗, cons∗, prod∗) ⊆ REG.

Proof. In a system with two neurons, the number of spikes from the system can
remain the same after a step, but it cannot increase: the neurons can consume
the same number of spikes as they produce, and they can send to each other the
produced spikes. Therefore, the number of spikes in the system is bounded by the
number of spikes present at the beginning. This means that the system can pass
through a finite number of configurations and these configurations can control
the evolution of the system like states in a finite automaton. Consequently, the
generated language is regular (see similar reasonings, with more technical details,
in [2], [1]). ut
Lemma 5. REG ⊆ LλSNeP3(rule∗, cons∗, prod∗).

Proof. For the SN P system Π constructed in the proof of Theorem 4 (Figure 7)
we have Lλ(Π) = L(G). ut

This last inclusion is proper:
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Fig. 8. An SN P system generating a non-regular language

Proposition 2. LλSNeP3(rule3, cons4, prod2)−REG 6= ∅.
Proof. The SN P system Π from Figure 8 generates the language Lλ(Π) =
{bn+1

2 bn
1 | n ≥ 2}. Indeed, for a number of steps, neuron σ2 consumes two spikes by

using the rule (a2)+/a2 → a2 and receives four from the other two neurons. After
changing the parity of the number of spikes (by using the rule (a2)+/a3 → a2),
neuron σ2 will continue by consuming four spikes (using the rule a(a2)+/a4 → a)
and receiving only two. ut
Corollary 4. LλSNeP1(rule∗, cons∗, prod∗) ⊂ LλSNeP2(rule∗, cons∗, prod∗) ⊂
LλSNeP3(rule∗, cons∗, prod∗), strict inclusions.

6.2 Going Beyond CF

Actually, much more complex languages can be generated by extended SN P sys-
tems with three neurons.

Theorem 6. The family LλSNeP3(rule3, cons6, prod4) contains non-semilinear
languages.

Proof. The system Π from Figure 9 generates the language

Lλ(Π) = {b2
4b2b

22

4 b2 . . . b2n

4 b2 | n ≥ 1}.

We start with 2 + 4 · 20 spikes in neuron σ1. When moved from neuron σ1 to
neuron σ3, the number of spikes is doubled, because they pass both directly from
σ1 to σ3, and through σ2. When all spikes are moved to σ3, the rule a2 → a of σ1

should be used. With a number of spikes of the form 4m + 1, neuron σ3 cannot
fire, but in the next step one further spike comes from σ2, hence the first rule of
σ3 can now be applied. Using this rule, all spikes of σ3 are moved back to σ1 –
in the last step we use the rule a2 → a2, which makes again the first rule of σ1

applicable.
This process can be repeated any number of times. In each moment, after

moving all but the last 6 spikes from neuron σ1 to σ3, we can also use the rule
a6 → a3 of σ1, and this ends the computation: there is no spike in σ1, neuron



Spiking Neural P Systems with Extended Rules 255

#

"

Ã

!

'

&

$

%'

&

$

% ?

6

HHHHj -

©©©©¼

1

a6

a2(a4)+/a4 → a4

a2 → a

a6 → a32

a4 → a4

a → a 3

a2(a4)+/a4 → a4

a2 → a2

Fig. 9. An SN P system generating a non-semilinear language

σ2 cannot work when having 3 spikes inside, and the same with σ3 when having
4m + 3 spikes.

Now, one sees that σ3 is also the output neuron and that the number of times
of using the first rule of σ3 is doubled after each move of the contents of σ3 to σ1.
ut

In this proof we made use of the fact that no spike of the output neuron means
no symbol introduced in the generated string. If we work in the restricted case, then
symbols b0 are shuffled in the string, hence the non-semilinearity of the generated
language is preserved.

6.3 A Characterization of RE

If we do not bound the number of neurons, then a characterization of recursively
enumerable languages is obtained.

Let us write m in front of a language family notation in order to denote the
subfamily of languages over an alphabet with at most m symbols (e.g., 2RE de-
notes the family of recursively enumerable languages over alphabets with one or
two symbols).

Lemma 6. mRE ⊆ mLλSNeP∗(rulem′ , consm, prodm), where m′ = max(m, 2)
and m ≥ 1.

Proof. We follow here the same idea as in the proof of Theorem 5.9 from [1],
adapted to the case of extended rules.

Take an arbitrary language L ⊆ V ∗, L ∈ RE. Obviously, L ∈ RE if and only if
valm(L) ∈ NRE. In turn, a set of numbers is recursively enumerable if and only if
it can be accepted by a deterministic register machine. Let M1 be such a register
machine, i.e., N(M1) = valm(L).
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#

"

Ã

!
#

"

Ã

!

'

&

$

%

'

&

$

%

#

"

Ã

!

#

"

Ã

!

'

&

$

%

º

¹

·

¸
º

¹

·

º̧

¹

·

¸

'

&

$

%

#

"

Ã

!

¾

½

»

¼

'

&

$

%

'

&

$

%

º

¹

·

¸º

¹

·

º̧

¹

·

¸

Z
Z

ZZ}
?

'

&

$

%

B
B

B
B

B
B

B
B

B
B
BM

B
B

B
B

B
B

BBM6

6

6

C
C
C
C
C
C
C
CO

6

¡¡µ

HHHY

³³³³³³³³³³³)

¤
¤
¤
¤
¤
¤
¤
¤¤²

Z
Z

ZZ~

6

´
´

´́3

£
£
££±

A
A

AAK

Z
Z

ZZ~

6oI

M0

M1

c0 l0,0

lh,0

c1

a3 → a2

l0,1

d1

ai → ai

ai → ai

ai → ai

d2

out

ai → a

d3 d4

ai → a

ai → a

d5

d9

am

am → ai

d6

a2 → a

a2 → a2

a → λ

a2 → a2

a → λ

a2 → a

d7 d8

e1

em

. . .

a → a

a2 → λ

a → a

a2 → λ

Fig. 10. The structure of the SN P system from the proof of Lemma 6

We construct an SN P system Π performing the following operations (σc0 and
σc1 are two distinguished neurons of Π, which are empty in the initial configura-
tion):

1. Output i spikes, for some 1 ≤ i ≤ m, and at the same time introduce the
number i in neuron σc0 ; in the construction below, a number n is represented in
a neuron by storing there 3n spikes, hence the previous task means introducing
3i spikes in neuron σc0 .

2. Multiply the number stored in neuron σc1 (initially, we have here number 0)
by m + 1, then add the number from neuron σc0 ; specifically, if neuron σc0

holds 3i spikes and neuron σc1 holds 3n spikes, n ≥ 0, then we end this step
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with 3(n(m + 1) + i) spikes in neuron σc1 and no spike in neuron σc0 . In the
meantime, the system outputs no spike.

3. Repeat from step 2, or, non-deterministically, stop the increase of spikes from
neuron σc1 and pass to the next step.

4. After the last increase of the number of spikes from neuron σc1 we have here
valm(x) for a string x ∈ V +. Start now to simulate the work of the register
machine M1 in recognizing the number valm(x). The computation halts only
if this number is accepted by M1, hence the string x produced by the system
is introduced in the generated language only if valm(x) ∈ N(M1).

In constructing the system Π we use the fact that a register machine can be
simulated by an SN P system. Then, the multiplication by m+1 of the contents of
neuron σc1 followed by adding a number between 1 and m is done by a computing
register machine (with the numbers stored in neurons σc0 , σc1 introduced in two
specified registers); we denote by M0 this machine. Thus, in our construction, also
for this operation we can rely on the general way of simulating a register machine
by an SN P system. All other modules of the construction (introducing a number
of spikes in neuron σc0 , sending out spikes, choosing non-deterministically to end
the string to generate and switching to the checking phase, etc.) are explicitly
presented below.
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@@R

li

a3 → a3

rlj

a3 → aδ(lj)

Fig. 11. Module ADD (simulating li : (ADD(r), lj))

The overall appearance of Π is given in Figure 10, where M0 indicates
the subsystem corresponding to the simulation of the register machine M0 =
(m0, H0, l0,0, lh,0, I0) and M1 indicates the subsystem which simulates the reg-
ister machine M1 = (m1,H1, l0,1, lh,1, I1). Of course, we assume H0 ∩H1 = ∅. In
all cases, i ∈ {1, 2, . . . , m}.

We start with spikes only in neuron σd9 . We spike in the first step, non-
deterministically choosing the number i of spikes to produce, hence the first letter
bi of the generated string. Simultaneously, i spikes are sent out by the output
neuron, 3i spikes are sent to neuron σc0 , and three spikes are sent to neuron σl0,0 ,
thus triggering the start of a computation in M0. The subsystem corresponding
to the register machine M0 starts to work, multiplying the value of σc1 with n + 1
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and adding i. When this process halts, neuron σlh,0 is activated, and in this way
two spikes are sent to neuron σd6 .

This is the neuron which non-deterministically chooses whether the string
should be continued or we pass to the second phase of the computation, of checking
whether the produced string is accepted. In the first case, neuron σd6 uses the rule
a2 → a, which makes neurons σe1 , . . . , σem

spike; these neurons send m spikes to
neuron σd9 , like in the beginning of the computation. In the latter case, one uses
the rule a2 → a2, which activates the neuron σl0,1 by sending three spikes to it,
thus starting the simulation of the register machine M1. The computation stops if
and only if valm(x) is accepted by M1.
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Fig. 12. Module SUB (simulating li : (SUB(r), lj , lk)) for machine M0
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In order to complete the proof we need to show how the two register machines
are simulated, using the common neuron σc1 but without mixing the computations.
To this aim, we consider the modules ADD and SUB from Figures 11, 12, and 13.
Like in Section 4, neurons are associated with each label of the machine (they fire
if they have three spikes inside) and with each register (with 3t spikes representing
the number t from the register); there also are additional neurons with primed
labels – it is important to note that all these additional neurons have distinct
labels.
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Fig. 13. Module SUB (simulating li : (SUB(r), lj , lk)) for machine M1

The simulation of an ADD instruction is easy, we just add three spikes to
the respective neuron; no rule is needed in the neuron – Figure 11. The SUB
instructions of machines M0,M1 are simulated by modules as in Figures 12 and
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13, respectively. Note that the rules for M0 fire for a content of the neuron σr

described by the regular expression (a3)+a and the rules for M1 fire for a content of
the neuron σr described by the regular expression (a3)+a2. To this aim we use the
rule a3 → a2 in σli instead of a3 → a, while in σr we use the rule (a3)+a2/a5 → a4

instead of (a3)a/a4 → a3. This ensures the fact that the rules of M0 are not used
instead of those of M1 or vice versa. In neurons associated with different labels
of M0, M1 we have to use different rules, depending on the type of instruction
simulated, that is why in Figures 11, 12, and 13 we have written again some rules
in the form a3 → aδ(l), as in Figures 1 and 2. Specifically, δ(l) = 3 if l labels an
ADD instruction, δ(l) = 1 or δ(l) = 2 if l labels a SUB instruction of M0 or of
M1, respectively, and, as one sees in Figure 10, we also take δ(lh,0) = 2.

With these explanations, the reader can check that the system Π works as
requested, hence Lλ(Π) = L. ut
Theorem 7. RE = LλSNeP∗(rule∗, cons∗, prod∗).

In the proof of Lemma 6, if the moments when the output neuron emits no
spike are associated with the symbol b0, then the generated strings will be shuffled
with occurrences of b0. Therefore, L is a projection of the generated language.

Corollary 5. Every language L ∈ RE, L ⊆ V ∗, can be written in the form L =
h(L′) for some L′ ∈ LresSNeP∗(rule∗, cons∗, prod∗), where h is a projection on
V ∪ {b0} which removes the symbol b0.

7 A Tool-Kit for Handling Languages

In this section we present some constructions for performing operations with lan-
guages generated by SN P systems with extended rules.

For instance, starting with two SN P systems Π1,Π2, we look for a system Π
which generates the language Lλ(Π1)¦Lλ(Π2), where ¦ is a binary operation with
languages.

For the union of languages, such a system Π is easy to be constructed (as
already done in [2]): we start with the systems Π1,Π2 without any spike inside
and we consider a module which non-deterministically activates one of these sys-
tems, by introducing in their neurons as many spikes as we have in the initial
configurations of Π1 and Π2.

Not so simple is the case of concatenation, which, however, can be handled as
in Figure 14. We start with system Π1 as it is (with the neurons loaded with the
necessary spikes), and with system Π2 without any spike inside.

We have in Figure 14 three sub-systems/modules with specific tasks to solve.
For instance, neurons σd5 , σd6 , σd7 non-deterministically choose a moment when
the string generated by system Π1 is assumed completed. After using rule a2 → a
in σd6 , neuron σd5 fires, this activates neurons σc1 , . . . , σcn , and these neurons
both “flood” neuron σd4 with m + 1 spikes and activate the neurons of system
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d2 d3

a+/a → a a+/a → a

d4
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1 ≤ i ≤ m
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. . . . . .a → a a → a a → a

d5

a3 → a

a4 → λ
d6

a2

a2 → a2

a2 → a

d7

a2

a2 → a2

Fig. 14. Computing the concatenation of two languages

Π2, introducing as many spikes as Π2 has in its initial configuration. Specifically,
we have n = max{m + 1, spin(Π2)}, where m is the cardinality of the alphabet
we work with, and spin(Π2) is the maximum of the number of spikes present in
any neuron of Π2 in the initial configuration. Then we have synapses (ci, d4) for
1 ≤ i ≤ m + 1, and (ci, k), for σk a neuron in Π2, for 1 ≤ i ≤ nk, where nk is the
number of spikes present in σk in the initial configuration of Π2.

The pair of neurons σd4 , σout takes care of the output of the whole system, first
passing the output of Π1 to σout and then taking the output of Π2 and sending
it out. If σd4 receives any further spike from Π1 after neurons σd5 , σd6 , σd7 have
“decided” that the work of Π1 is finished, then σd4 fires (note that it cannot fire
for exactly m+1 spikes), this makes σd1 fire, and then the computation will never
finish, because of the pair of neurons σd2 , σd3 .

Thus, the computation ends if and only if after sending out a complete string
generated by Π1 we also send out a string generated by Π2, hence we generate the
concatenation of strings produced by the two systems.
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Fig. 15. Computing the intersection with a regular language

Consider now an arbitrary SN P system Π1 and an SN P system Π2 simulating
a regular grammar G, like in Figure 7, with the following changes: chain rules
Ai → Ai are added to grammar G for all nonterminals Ai; then, we assume that
the number of rules (n in the construction) is strictly bigger than the number of
symbols (m) – if this is not the case, then we simply duplicate some rules. The
system looks now as in Figure 16 (k can be 0 only for chain rules Ai → Ai, where
b0 = λ). Thus, after simulating a rule Ai → bk, neurons σ1, σ2 are “flooded” and
have to stop. The grammar G – and hence also Π2 – outputs a terminal symbol
after an arbitrary number of steps of using chain rules Ai → Ai, hence steps when
nothing exits the system. This makes possible the synchronization of Π1 and Π2

in the sense that they output spikes in the same steps. What remains to do is to
compare the number of spikes emitted by the two systems, so that we can select
the strings from the intersection Lλ(Π1) ∩ Lλ(Π2).

This is ensured as suggested in Figure 15 (in order to keep the figure smaller,
we have not indicated the range of parameter i, but it is as follows: in all neurons
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Fig. 16. Simulating a regular grammars having chain rules

σcj and σc′j , 1 ≤ j ≤ m− 2, we have 2 ≤ i ≤ m). If the two systems Π1 and Π2 do
not spike at the same time or one sends out r ≥ 1 spikes and the other one s ≥ 1
spikes for r 6= s, then the neurons σe1 , σe2 will get activated and the computation
never stops: the spikes emitted by the two systems circulate from top down along
the chains of neurons σc0 , σc1 , . . . , σcm−2 and σc′0 , σc′1 , . . . , σc′m−2

, and if we do not
obtain exactly one spike at the same time in the two columns, then the neuron σd

fires and activates the neurons σe1 , σe2 .

We do not know how to compute – in an elegant way – morphisms, but the
particular case of weak codings can be handled as in Figure 17. The difficulty is
to have h(bi) = bj with i < j, and to this aim the “spike supplier” pair of neurons
σc1 , σc2 is considered. In each step, they send m + 1 spikes to neuron σc3 . If this
neuron receives nothing at the same time from the system Π, then the m+1 spikes
are forgotten. If i spikes come from system Π, 1 ≤ i ≤ m, then, using the m+1+ i
spikes, neuron σc3 can send j + 1 spikes to the output neuron, which emits the
right number of spikes to the environment.

At any time, the neurons σc1 , σc2 can stop their work; if this happens pre-
maturely (before having the system Π halted), then neuron σc3 will emit only
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one spike, and this triggers the “never halting module”, composed of the neurons
σc4 , σc5 , σc6 , which will continue to work forever.

The reader can check that the system produces indeed the language h(Lλ(Π)),
for a weak coding h which moves some bi into bk, and erases other symbols bj .

We do not know how to compute arbitrary morphisms or the other AFL oper-
ations, Kleene + and inverse morphisms.
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Π

am+1+i → ak+1

for h(bi) = bk

am+1+j → λ

for h(bj) = λ

am+1 → λ

ai → a

for 1 ≤ i ≤ m

out

aj → aj−1

2 ≤ j ≤ m + 1

c4

a → a

ak → λ, k ≥ 2

c5

a+/a → a

c6

a+/a → a

Fig. 17. Computing a weak coding

A possible way to address these problems is to reduce them to another problem,
that of introducing delays of arbitrarily many steps in between any two steps of
computations in an arbitrary SN P system Π (in the same way as the chain
rules introduce such “dummy steps” in the work of a regular grammar). If such a
slowing-down of a system would be possible, then we can both compute arbitrary
morphisms and the intersection of languages generated by two arbitrary SN P
systems (not only with one of them generating a regular language, as above).

Another open problem of interest (but difficult, we believe) is to find an SN P
system, as small as possible in the number of neurons, generating a Dyck language
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(over at least two pairs of parentheses). If such a systems would be found, then a
representation of context-free languages would be obtained, using the Chomsky-
Schützenberger characterization of these languages as the weak coding of the in-
tersection of a Dyck language with a regular language.

8 Final Remarks

We have investigated here the power of SN P systems with extended rules (rules
allowing to introduce several spikes at the same time) both as number generators
and as language generators. In the first case we have provided a simpler proof of
a known universality result, in the latter case we have proved characterizations
of finite and recursively enumerable languages, and representations of regular lan-
guages.

Finding characterizations (or at least representations) of other families of lan-
guages from Chomsky hierarchy and Lindenmayer area remains as a research topic.
It is also of interest to investigate the possible hierarchy on the number of neurons,
extending the result from Corollary 4.
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