
On Trace Languages Generated by Spiking

Neural P Systems

Haiming Chen1, Mihai Ionescu2, Andrei Păun3, Gheorghe Păun4, Bianca Popa3

1 Computer Science Laboratory, Institute of Software
Chinese Academy of Sciences
100080 Beijing, China
chm@ios.ac.cn

2 Research Group on Mathematical Linguistics
Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
armandmihai.ionescu@urv.net

3 Department of Computer Science
Louisiana Tech University, Ruston
PO Box 10348, Louisiana, LA-71272 USA
apaun@latech.edu, bdp010@latech.edu

4 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania, and
Research Group on Natural Computing
Department of Computer Science and AI
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
george.paun@imar.ro, gpaun@us.es

Summary. We extend to spiking neural P systems a notion investigated in the “stan-
dard” membrane systems: the language of the traces of a distinguished object. In our
case, we distinguish a spike by “marking” it and we follow its path through the neurons
of the system, thus obtaining a language. Several examples are discussed and some pre-
liminary results about this way of associating a language with a spiking neural P system
are given, together with a series of topics for further research. For instance, we show
that each regular language is the morphic image of a trace language intersected with a
very particular regular language, while each recursively enumerable language over the
one-letter alphabet is the projection of a trace language.

1 Introduction

We continue here the study of the spiking neural P systems (in short, SN P sys-
tems) recently introduced in [7], by considering in this framework the idea of
following the traces of an object through the system in order to get a language.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51400975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

208 H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa

For usual P systems (with symport/antiport rules), this way of generating a lan-
guage was introduced in [6] and then investigated in a series of papers (see, e.g.,
[3] and Section 4.4 of [9]).

In short, an SN P system consists of a set of neurons placed in the nodes of
a graph and sending signals (spikes) along synapses (edges of the graph), under
the control of firing rules. One also uses forgetting rules, which remove spikes from
neurons. Therefore, the spikes are moved, created, destroyed, but never modified
(there is only one type of objects in the system). This makes possible and natural
to distinguish one of the spikes present already in the initial configuration of the
system and to follow its path through the neurons, recording the labels of the
neurons and thus obtaining a string. More precisely, we assume that one of the
spikes has a “flag”, which remains with this spike as long as the spike is not
consumed or forgotten, but the flag passes to the produced spike when the old
holder is consumed; the flag disappears when the spike is forgotten or sent out of
the system. More precise definitions will be given in Section 3. We only add here
the fact that we consider only halting computations, so that the labels of neurons
visited by the flag form a string; due to the non-determinism in the SN P system
functioning, we get in this way a set of strings, hence a language, associated with
the system.

Because the SN P systems are Turing complete as number computing devices
(see [7] and [10]) and also complete modulo direct and inverse morphisms in the
case when they are used as language generators (see [1]), it is expected that the
SN P systems are powerful also as trace languages generators. This expectation is
somewhat confirmed below: we both produce a series of examples of systems with
an intricate functioning, we give a representation of regular languages (over any
alphabet), and we also show that unary recursively enumerable languages have
simple representations in terms of SN P systems trace languages. On the other
hand, because of the specific way the trace language is generated, there are finite
(even singleton) languages which cannot be obtained in this way. However, due to
the preliminary stage of our research, we do not have yet a precise estimation of
the size of the generated families of languages; many problems in this respect are
formulated along the paper.

In all these investigations we try to keep the used system as simple as pos-
sible, with respect to the many descriptional complexity measures which can be
considered for SN P systems: number of neurons, number of rules in each neuron,
number of consumed or forgotten spikes in each rule, etc.

2 Formal Language Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory,
e.g., from [11] and [12], so that we introduce here only some notations and notions
used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ;
the empty string is denoted by λ, and the set of all nonempty strings over V is

On Trace Languages Generated by Spiking Neural P Systems 209

denoted by V +. When V = {a} is a singleton, then we write simply a∗ and a+

instead of {a}∗, {a}+.
A morphism h : V ∗

1 −→ V ∗
1 such that h(a) ∈ {a, λ} for each a ∈ V1 is called

projection, and a morphism h : V ∗
1 −→ V ∗

2 such that h(a) ∈ V2 ∪ {λ} for each
a ∈ V1 is called a weak coding; it is a coding if h(a) ∈ V2 for all a ∈ V1.

If L1, L2 ⊆ V ∗ are two languages, the left and right quotients of L1 with
respect to L2 are defined by L2\L1 = {w ∈ V ∗ | xw ∈ L1 for some x ∈ L2},
and respectively L1/L2 = {w ∈ V ∗ | wx ∈ L1 for some x ∈ L2}. When L2 is a
singleton, L2 = {x}, we write ∂l

x(L1) for {x}\L1 and ∂r
x(L1) for L1/{x}, and we

call these operations left and right derivatives of L1 with respect to x.
A Chomsky grammar is given in the form G = (N,T, S, P), where N is the

nonterminal alphabet, T is the terminal alphabet, S ∈ N is the axiom, and P is the
finite set of rules. For regular grammars, the rules are of the form A → aB,A → a,
for some A,B ∈ N, a ∈ T .

We ignore here the empty string and this convention is assumed in the paper
always when examining the generative power of any device.

We denote by FIN,REG,CF,CS,RE the families of finite, regular, context-
free, context-sensitive, and recursively enumerable languages; by MAT we denote
the family of languages generated by matrix grammars without appearance check-
ing ([11], [2]).

3 Trace Languages Associated with Spiking Neural P

Systems

We introduce first the SN P systems in their basic form, then we define the new
way of using them, as (trace) language generators; for further details we refer to
[7], [10].

A spiking neural P system (abbreviated as SN P system), of degree m ≥ 1, is
a construct of the form

Π = (O, σ1, . . . , σm, syn),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that for each rule E/ac →

a; d of type (1) from Ri, we have as /∈ L(E);

210 H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa

3. syn ⊆ {1, 2, . . . ,m} × {0, 1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤
i, j ≤ m (synapses between neurons), with 0 indicating the environment of the
system.

Note that, in contrast to [7], we have not indicated here an output neuron,
but we have allowed synapses (i, 0) for any neuron σi; actually, in the trace case
investigated here we do not really need such synapses, but we consider them just
because such links with the environment are “realistic”.

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the
rule E/ac → a; d can be applied. The application of this rule means consuming
(removing) c spikes (thus only k − c remain in σi), the neuron is fired, and it
produces a spike after d time units (a global clock is assumed, marking the time
for the whole system, hence the functioning of the system is synchronized). If d = 0,
then the spike is emitted immediately, if d = 1, then the spike is emitted in the next
step, etc. If the rule is used in step t and d ≥ 1, then in steps t, t+1, t+2, . . . , t+d−1
the neuron is closed (this corresponds to the refractory period from neurobiology),
so that it cannot receive new spikes (if a neuron has a synapse to a closed neuron
and tries to send a spike along it, then that particular spike is lost). In the step
t + d, the neuron spikes and becomes again open, so that it can receive spikes
(which can be used starting with the step t + d + 1), but it does not use any rule
at this step (the neuron is busy with sending out the spike it has produced d steps
before and stored up to now inside). A spike emitted by a neuron σi (is replicated
and a copy of it) goes to each neuron σj such that (i, j) ∈ syn, as well as to the
environment, if (i, 0) ∈ syn. (When a neuron σi emits a spike and there is no
neuron to receive it, then a synapse (i, 0) is used as an explicit way to point out
that the spike is “lost” in the environment.)

The rules of type (2) are forgetting rules and they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
simplified form ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can have
L(E1)∩L(E2) 6= ∅, it is possible that two or more rules can be applied in a neuron,
and in that case, only one of them is chosen non-deterministically. By definition,
if a firing rule is applicable, then no forgetting rule is applicable, and vice versa.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm, of spikes present in each neuron, with all neurons being open. Dur-
ing the computation, a configuration is described by both the number of spikes
present in each neuron and by the state of the neuron, more precisely, by the
number of steps from now on until it becomes open (this number is zero if the
neuron is already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the configuration where neu-
ron i = 1, 2, . . . ,m contains ri ≥ 0 spikes and it will be open after ti ≥ 0 steps;
with this notation, the initial configuration is C0 = 〈n1/0, . . . , nm/0〉.

On Trace Languages Generated by Spiking Neural P Systems 211

Using the rules as described above, one can define transitions among configu-
rations. A transition between two configurations C1, C2 is denoted by C1 =⇒ C2.
Any sequence of transitions starting in the initial configuration is called a com-

putation. A computation halts if it reaches a configuration where all neurons are
open and no rule can be used.

In the spirit of spiking neurons, see, e.g., [8], as the result of a computation, in
[7] and [10] one considers the distance between two consecutive spikes which exit
a distinguished neuron of the system. Then, in [1] one considers as the result of a
computation the so-called spike train of the computation, the sequence of symbols
0 and 1 obtained by associating 1 with a step when a spike exits the system and
0 otherwise. Languages over the binary alphabet are computed in this way.

Here we consider yet another idea for defining a language, taking into account
the traces of a distinguished spike through the system.

Specifically, we distinguish one of the neurons of the system as the input

one (thus, we add a further component, in, to the system description, with
in ∈ {1, 2, . . . ,m}) and in the initial configuration of the system we “mark” one
spike from this neuron – the intuition is that this spike has a “flag” – and we follow
the path of this flag during the computation, recording the labels of the neurons

where the flag is present in the end of each step. Actually, for neuron σi we con-
sider the symbol bi in the trace string. (When presenting the initial configuration
of the system, the number nin, of spikes present in the input neuron, is written in
the form n′

in, to indicate that the marked spike is here.)
The previous definition contains many delicate points which need clarifications

– and we use a simple example to do this.
Assume that in neuron σi we have three spikes, one of them marked; we write

aaa′ to represent them. Assume also that we have a spiking rule aaa/aa → a; 0.
When applied, this rule consumes two spikes, one remains in the neuron and one
spike is produced and sent along the synapses going out of neuron σi. Two cases
already appear: the marked spike is consumed or not. If not consumed, it remains
in the neuron. If consumed, then the flag passes to the produced spike. Now, if
there are two or more synapses going out of neuron σi, then again we can have
a branching: only one spike is marked, hence only on one of the synapses (i, j)
we will have a marked spike and that synapse is non-deterministically chosen (on
other synapses we send non-marked spikes). If σj is an open neuron, then the
marked spike ends in this neuron. If σj is a closed neuron, then the marked spike
is lost, and the same happens if j = 0 (the marked spike exits in the environment).
Anyway, if the marked spike is consumed, at the end of this step it is no longer
present in neuron i; it is in neuron σj if (i, j) ∈ syn and neuron σj is open, or it
is removed from the system in other cases.

Therefore, if in the initial configuration of the system neuron σi contains the
marked spike, then the trace can start either with bi (if the marked spike is not
consumed) or with bj (if the marked spike was consumed and passed to neuron
σj); if the marked spike is consumed and lost, then we generate the empty string,
which is ignored in our considerations. Similarly in later steps.

212 H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa

If the rule used is of the form aaa/aa → a; d, for some d ≥ 1, and the marked
spike is consumed, then the newly marked spike remains in neuron σi for d steps,
hence the trace starts/continues with bd

i . Similarly, if no rule is used in neuron σi

for k steps, then the trace records k copies of bi.
If a forgetting rule is used in the neuron where the marked spike is placed, then

the trace string stops (and no symbol is recorded for this step).
Therefore, when considering the possible branchings of the computation, we

have to take into account the non-determinism not only in using the spiking rules,
but also in consuming the marked spike and in sending it along one of the possible
synapses.

The previous discussion has, hopefully, made clear what we mean by recording

the labels of the neurons where the flag is present in the end of each step, and
why we have chosen the end of a step and not the beginning: in the latter case,
all traces would start with the same symbol, corresponding to the input neuron,
which is a strong – and artificial – restriction.

In the next section, we will illustrate all these points by a series of examples.
Anyway, we take into account only halting computations: irrespective whether

or not a marked spike is still present in the system, the computation should halt
(note that it is possible that the marked spike is removed and the computation
still continues for a while – but this time without adding further symbols to the
trace string).

For an SN P system Π we denote by T (Π) the language of all strings describing
the traces of the marked spike in all halting computations of Π. Then, we denote by
TSNPm(rulek, consp, forgq) the family of languages T (Π), generated by systems
Π with at most m neurons, each neuron having at most k rules, each of the spiking
rules consuming at most p spikes, and each forgetting rule removing at most q
spikes. As usual, a parameter m, k, p, q is replaced with ∗ if it is not bounded.

4 Examples

We consider here several examples, both illuminating the previous definitions and
relevant for the intricate work of SN P systems as language generators by means
of traces; indications on the power of these devices are also obtained in this way.

We start with a system already having a complex behavior, the one whose
initial configuration is given in Figure 1 (we denote it by Π1). This also gives us
the opportunity to introduce the way to graphically represent an SN P system:
as a directed graph, with the neurons as nodes and the synapses indicated by
arrows; in each neuron we give the rules and the spikes present in the initial
configuration, with the marked spike indicated by a prime; synapses of the form
(i, 0) are indicated by arrows pointing to the environment.

We have three neurons, labeled with 1, 2, 3, with neuron σ1 being the input
one. Each neuron contains three rules, and only neuron σ1 has two spiking rules,
but the non-determinism of the system is considerable, due to the possible traces
of the marked spike.

On Trace Languages Generated by Spiking Neural P Systems 213

'

&

$

%

'

&

$

%

'

&

$

%
-

�

�
�

�
�

��

�
�
�
�
�
�
���

A
A

A
A

AKA
A
A
A
A
A
A
AU

21

a3

a3/a2 → a; 0

a2 → λ

a → λ

a3/a2 → a; 0

aaa′

a3/a2 → a; 1

a → λ

3

a3

a3/a2 → a; 0

a2 → λ

a → λ

Fig. 1. The initial configuration of system Π1

The evolution of the system Π1 can be analyzed on a transition diagram as
that from Figure 2: because the number of configurations reachable from the initial
configuration is finite, we can place them in the nodes of a graph, and between two
nodes/configurations we draw an arrow if a direct transition is possible between
them.

It should be noted in Figure 2 an important detail: when presenting a config-
uration of the system where there is a marked spike, it is no longer sufficient to
indicate only the number of spikes and the open status of neurons, but we also
have to indicate the place of the marked spike (if the system still contains such a
spike). This is done by priming either the number of spikes from the neuron where
the marked spike is, or by priming the number of steps until the neuron is open,
in the case when a marked spike was produced by means of a spiking rule with
delay.

In Figure 2 we have also indicated on the arrows the symbol introduced in the
trace string by that arrow (this is bj , where σj is the neuron where the marked
spike arrives in the end of this step). Thus, following the marked arrows, we can
construct the language of all traces.

Let us follow on this diagram some of the possible traces. As long as neuron σ1

uses the rule a3/a2 → a; 0, the marked spike circulates among neurons σ1, σ2, σ3

and the computation continues. Note that the marked spike can be consumed or
not; in the first case it moves to one of the partner neurons, non-deterministically
chosen, in the latter case it remains in the neuron where it is placed.

214 H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa

〈0/0, 0/0, 0/0〉

〈1′/0, 1/0, 1/0〉 〈1/0, 1/0, 1/0〉〈1/0, 1′/0, 1/0〉 〈1/0, 1/0, 1′/0〉

〈1′/1, 2/0, 2/0〉 〈1/1′, 2/0, 2/0〉 〈1/1, 2′/0, 2/0〉 〈1/1, 2/0, 2′/0〉

〈3′/0, 3/0, 3/0〉 〈3/0, 3′/0, 3/0〉 〈3/0, 3/0, 3′/0〉

� ^ U s/ N

? ? s s ?

q R /)

~

}

~

I

�� �� ��
???

-
U/

b3

b1

b1 b3

b2

b2

b1

b3

b2

b3

b3

b2

b2

b1b1

b1 b2 b3

Fig. 2. The transition diagram of system Π1

When neuron σ1 uses the rule a3/a2 → a; 1, then the computation passes to
the halting phase – in the diagram from Figure 2, we leave the upper level and we
pass to the next level of configurations. If the marked spike was in neuron σ1, it is
or not consumed; this is the case when reaching the configurations 〈1′/1, 2/0, 2/0〉,
〈1/1′, 2/0, 2/0〉: all neurons consume two spikes, but neurons σ2 and σ3 exchange
one spike, hence they end the step with two spikes inside; neuron σ1 has only one
spike inside (it is closed, does not accept spikes from neurons σ2 and σ3) and one
ready to be emitted, and either one of them can be the marked one.

In each case, after two more steps the computation halts with no spike in the
system.

Thus, the traces start with an arbitrary string x over {b1, b2, b3}, and end with
one of the strings b1b1, b1b2, b1b3, b2, b3, depending on the last symbol of x.

On Trace Languages Generated by Spiking Neural P Systems 215

#
"

!
#
"

!

'

&

$

%
�
�
�
�-

6
6

1

2

3 4

aaa′

a3/a2 → a; 0

a2 → λ

a2 → λ

a

a → a; n − 1

a

a → a; m − 1

Fig. 3. The initial configuration of system Π2

We continue with two simpler examples, not devoid of interest: in search for
counterexamples, we have tried several finite languages, and for many of them the
result was that in all cases it was possible to find an SN P system to generate
these languages. We continue to present these systems in a graphical form instead
of giving them formally, because the figures are much easier to understand.

'

&

$

%
'
&
$
%

-

�

1
2

aaaa′

a4/a2 → a; 0

a2 → a; 0

a2

a3 → a; 0

Fig. 4. The initial configuration of system Π3

The two examples are given in Figures 3, 4, and the respective systems are
denoted by Π2,Π3, respectively.

The system Π2 from Figure 3 generates the language T (Π2) = {bn
1 , bm

2 }, for
n,m ≥ 1. In the first step, neuron σ1 consumes or does not consume the marked
spike, thus keeping it inside or sending it to neuron σ2. One spike remains in
neuron σ1 and one is placed in neuron σ2. Simultaneously, neurons σ3 and σ4 fire,
and they spike after n − 1 and m − 1 steps, respectively. Thus, in steps n and m,
neurons σ1 and σ2, respectively, receive one more spike, which is forgotten in the
next step together with the spike existing there.

Note that n and m can be equal or different.
For the system in Figure 4 we have T (Π3) = {b1b2, b2b1} – we leave the task

to check this equality to the reader.

216 H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa

'

&

$

%

'

&

$

%

�
�
�
�
�
�
�
�

'
&
$
%

'

&

$

%

'

&

$

%
-

�

@
@

@R

�
�

��/

�
�

��/

S
S

SSw

?

��������?

Q
Q

Q
Q

QQs

-

�

1

a2

a2/a → a; 0

a2/a → a; 1

a → λ

2

a2

a2/a → a; 0

a → λ

3
a → a; 0

a2 → λ

4

a → a; 0 a → a; 0

5

6

a′

a → a; 0

a3 → λ

a2 → λ

7

a → a; 0

a3 → λ

a2 → λ

Fig. 5. The initial configuration of system Π4

We end this section with a slightly more complex system, Π4, whose initial
configuration is given in Figure 5. We have T (Π4) = (b7b6)

+b7 ∪ (b7b6)
+b7b6.

The neurons σ6, σ7 exchange the marked spike among them as long as they
do not get “flooded” by neurons σ4, σ5, when a spike comes from neuron σ3. In
turn, this neuron spikes only in the step when neuron σ1 uses the rule a2/a →
a; 1 (if neuron σ1 uses the rule a2/a → a; 0, then the cooperation of neurons
σ1, σ2 continues, both of them returning to the initial state by exchanging spikes).
When neurons σ6, σ7 have inside two or three spikes, they forget them and the
computation stops. Depending on the step when neuron σ1 uses the rule a2/a →
a; 1 (an odd or even step), the string ends with b7 or with b7b6.

On Trace Languages Generated by Spiking Neural P Systems 217

5 The Generative Power of SN P Systems as Trace

Language Generators

The following inclusions are direct consequences of the definitions:

Lemma 1. TSNPm(rulek, consp, forgq) ⊆ TSNPm′(rulek′ , consp′ , forgq′) ⊆
TSNP∗(rule∗, cons∗, forg∗) ⊆ RE, for all 1 ≤ m ≤ m′, 1 ≤ k ≤ k′, 1 ≤ p ≤ p′,
1 ≤ q ≤ q′.

We pass now to investigating the relationship with the families of languages
from Chomsky hierarchy, starting with a counterexample result.

Theorem 1. There are singleton languages which are not in TSNP∗(rule∗,
cons∗, forg∗).

Proof. Let us consider the language L = {b1b2b1b3}. In order to generate it, at
least three neurons should be used, with labels 1, 2, 3. Moreover, the synapses
(1, 2), (2, 1), (1, 3) are necessary. The existence of the synapses (1, 2), (2, 1) makes
possible also the trace b1b2b1b2: the marked spike exists after the third step and
it can go non-deterministically to each neuron σ2 and σ3. Thus, T (Π) cannot be
a singleton, for an SN P system Π such that b1b2b1b3 ∈ T (Π). ⊓⊔

Clearly, this reasoning can be applied to any string of the form w =
w1bibjw2bibkw3 with j 6= k, and to any language which contains a string like
w but not also the string w1bibjw2bibjw3.

Let us mention now a result already proved by the considerations related to
the first example from the previous section (this introduces another complexity
parameter, of a dynamical nature: the number of spikes present in the neurons
during a computation).

Theorem 2. The family of trace languages generated by SN P systems by means of

computations with a bounded number of spikes present in their neurons is strictly

included in the family of regular languages.

Proof. The inclusion follows from the fact that the transition diagram associated
with the computations of an SN P system which use a bounded number of spikes
is finite and can be interpreted as the transition diagram of a finite automaton, as
already done in Section 4. The fact that the inclusion is proper is a consequence
of Theorem 1. ⊓⊔

However, modulo some simple squeezing operations, SN P systems with a
bounded number of spikes inside can generate any regular language:

Theorem 3. For each regular language L ⊆ V ∗ there is an SN P system Π
such that each neuron from any computation of Π contains a bounded number

of spikes, and L = h(∂r
c (T (Π)) for some coding h, and symbol c not in V ; ac-

tually, T (Π) ∈ TSNPmL
(rulekL

, conspL
, forg0), for some constants mL, kL, pL

depending on language L.

218 H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa

Proof. Let us assume that V = {b1, b2, . . . , bn}, and take a regular grammar G =
(N,V, S, P) generating the language L. Without loss of the generality, we may
assume that each rule A → biB from P has A 6= B. If this is not the case with the
initial set of rules, then we proceed as follows. Take a rule A → biA; we consider a
new nonterminal, A′, and we replace the rule A → biA with A → biA

′, then we also
add the rule A′ → biA as well as all rules A′ → bjB for each A → bjB ∈ P . Let us
continue to denote by G the obtained grammar. It is clear that this change does
not modify the language generated by G, but it diminishes by one the number
of rules having the same nonterminal in both sides. Continuing in this way, we
eliminate all rules of this form.

Assume that G contains k rules of the form A → biB (from the previous
discussion, we know that A 6= B). We construct the SN P system Π as follows.

The set of neurons is the following:

1. σ〈S〉 = (1′, {a → a; 0}),
2. σ〈i,B〉 = (0, {aj → a; 0 | 1 ≤ j ≤ k − 1}), for each rule A → biB of G,
3. σ〈i〉 = (0, {aj → a; 0 | 1 ≤ j ≤ k − 1}, for each rule A → bi of G,
4. σf = (0, {aj → a; 0 | 1 ≤ j ≤ k − 1}),
5. σci

= (0, {a → a; 0}), for i = 1, 2, . . . , k,
6. σ1 = (2, {a2/a → a; 0, a2/a → a; 1}),
7. σ2 = (2, {a2/a → a; 0, a → λ}),
8. σ3 = (0, {a → a; 0, a2 → λ}).

Among these neurons, we take the following synapses:

syn = {(〈S〉, 〈i, A〉) | S → biA ∈ P}

∪ {(〈i, A〉, 〈j, B〉 | A → bjB ∈ P, 1 ≤ i ≤ n}

∪ {(〈i, A〉, 〈j〉) | A → bj ∈ P, 1 ≤ i ≤ n}

∪ {(〈S〉, 〈j〉) | S → bj ∈ P}

∪ {(〈i〉, f) | 1 ≤ i ≤ n}

∪ {(1, 2), (2, 1), (1, 3), (2, 3)} ∪ {(3, ci) | 1 ≤ i ≤ k}

∪ {(ci, 〈j, A〉), (ci, 〈j〉 | 1 ≤ i ≤ k, 1 ≤ j ≤ n,A ∈ N}.

We start with a single spike in the system, marked, placed in neuron σ〈S〉; the
input neuron spikes in the first step.

The neurons σ1, σ2, σ3, σf , σc1
, . . . , σck

will be discussed separately below.
Among neurons with labels of the form 〈S〉, 〈i, A〉, and 〈j〉, we have synapses

only if the labels of these neurons are linked by a rule of the grammar. If there
are several rules of the form A → bi1B1, . . . , A → bir

Br, then the spike emitted
by each neuron σ〈j,A〉, 1 ≤ j ≤ n, goes to all neurons σ〈it,Bt〉, 1 ≤ t ≤ r – and
the marked spike can take any of these choices. Conversely, we can have several
(actually, at most k − 1) synapses coming to the same neuron, if more rules have
the same right hand member. Thus, in any neuron we can collect at most k − 1
spikes in a step. All of them are immediately consumed, hence never the number

On Trace Languages Generated by Spiking Neural P Systems 219

of spikes from any neuron becomes greater than k − 1. Clearly, the marked spike
can follow a derivation in G.

Because the grammar G can contain cycles (for instance, pairs of rules of the
form A → biB,B → biA), the system Π can contain pairs of self-sustaining
neurons, hence the computation in Π could not stop, even if a derivation in G
was correctly simulated (this is due to the fact that the spikes leaving a neuron
are replicated to all neurons to which we have a synapse).

In order to prevent such “wrong” evolutions, we use the “halting module”,
composed of the neurons σ1, σ2, σ3, σf , σc1

, . . . , σck
: neurons σ1, σ2 exchange spikes

for an arbitrary number of steps; when σ1 uses the rule a2/a → a; 1, their interplay
stops, but neuron σ3 fires and sends a spike to all neurons σci

, 1 ≤ i ≤ k. These
neurons will send spikes to all neurons σ〈j,A〉, σ〈j〉, and σ〈S〉 of the system, thus
halting their evolution (they do not have rules for handling more than k−1 spikes).
The computation halts.

What is not ensured yet by the construction of Π is the fact that the compu-
tation is not halted as above before finishing the derivation in G which we want
to simulate, that is, with the marked spike present inside the system. This aspect
is handled by the squeezing mechanism: we take the alphabet

U = {b〈i,A〉 | 1 ≤ i ≤ n,A ∈ N}

∪ {b〈i〉 | 1 ≤ i ≤ n},

the symbol c = bf , and the coding h : U∗ −→ V ∗ defined by

h(b〈i,A〉) = bi, 1 ≤ i ≤ n,A ∈ N,

h(b〈i〉) = bi, 1 ≤ i ≤ n.

The right derivative with respect to bf selects from T (Π) only those traces
for which the marked spike reaches the “final” neuron σf , which is accessible only
from a “terminal” neuron σ〈i〉, hence the marked spike has followed a complete
derivation in G. Then, the coding h renames the symbols, thus delivering exactly
the strings of L(G).

Clearly, we can determine the constants mL, kL, pL as in the statement of the
theorem, depending on the size of grammar G, and this observation completes the
proof. ⊓⊔

A related result can be obtained by slightly changing the previous proof.

Theorem 4. For each regular language L ⊆ V ∗ there is an SN P system Π such

that each neuron from any computation of Π contains a bounded number of spikes,

and L = h(T (Π) ∩ U∗
1 U2), for some coding h and alphabets U1, U2.

Proof. We just repeat the construction above, removing neuron σf and all synapses
involving it. Then, we take the alphabets

U1 = {b〈i,A〉 | 1 ≤ i ≤ n,A ∈ N},

U2 = {b〈i〉 | 1 ≤ i ≤ n},

220 H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa

and the same coding h : (U1 ∪ U2)
∗ −→ V ∗ as above

Now, the intersection with U∗
1 U2 selects from T (Π) only those traces for which

the marked spike reaches a “terminal” neuron σ〈i〉, hence it follows a complete
derivation in G. ⊓⊔

As expected, also non-regular languages can be generated – of course, by using
systems whose computations are allowed to use an unbounded number of spikes in
the neurons. We start by considering a particular example, the one of the system
Π5 given in Figure 6.

#
"

!

�
�
�
�

�
�

�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

'

&

$

%
#
"

!

'
&
$
%
'
&
$
%

�
�
�
�

-
�

?

�
�

�
�

�
�

�
�	

?

?

-

?

Z
Z

ZZ~

�
�

��=

C
C
C
C
C
C
C
C
CCW

�
�
�
�
�
�
�
�
���

?

�
��+

@
@R

?
- -

1

a2

a2/a → a; 0

a2 → a; 1

2

a2

a2/a → a; 0

a → λ

a → a; 0

4

3

a2 → a; 0

a → λ

5

aa′

a(aa)+/a2 → a; 0

a → a; 0

6

a → a; 0

7

a → a; 0

8

a → a; 0

9

a → a; 0

10

a(aa)∗/a → a; 0

a2 → a; 0

11
12

a(aa)+/a2 → a; 0

a → a; 0

Fig. 6. An SN P system whose trace language is not regular

On Trace Languages Generated by Spiking Neural P Systems 221

The neurons σ1 and σ2 play the same role as neurons σ1 and σ2 from Figure 5;
as long as neuron σ1 uses the rule a2/a → a; 0, the computation continues with two
spikes sent in each step to neuron σ5. When neuron σ1 uses the rule a2 → a; 1, this
phase is finished, neuron σ5 receives only one spike (from neuron σ2 via neuron
σ4), and neurons σ1, σ2, σ3 forget all their spikes. Let us assume that we have
accumulated 2n + 1 spikes in neuron σ5, for some n ≥ 1.

In the moment when neuron σ5 receives a single spike, its rules can be applied
(they need an odd number of spikes to fire).

For each step when neuron σ5 fires (hence for n times), neuron σ12 receives two
spikes from neuron σ5, via neurons σ7 and σ8. Simultaneously, one spike of neuron
σ5 is sent to neuron σ6 and from here to neurons σ9 and σ10. Neuron σ10 fires only
when it has an odd number of spikes inside, and this happens first time two steps
after the first moment when neuron σ5 fires and once again one step after the last
spike of neuron σ5 (neuron σ6 sends nothing to neuron σ10, but neuron σ9 does
it). Therefore, neuron σ12 will hold an odd number of spikes – and can fire for the
first time – three steps after the last spike of neuron σ5 (we need three steps to
pass from neuron σ9 to neuron σ11 and from here to neuron σ12). Now, neuron
σ12 starts to spike, and it will do it for n+1 times, and then the computation will
stop.

Let us consider the language T (Π5)∩ b∗5b7b
∗
12, which means that we select only

those traces where the marked spike passes from neuron σ5 to neuron σ7 and from
here to neuron σ12 (note that it can go to neuron σ6, then to σ9 or σ10, and in
neuron σ10 it can remain forever).

The strings in this language are of the form bn+1+i
5 b7b

m
12, where i = 0 if the

marked spike leaves neuron σ5 at the first use of the rule a(aa)+/a2 → a; 0, or
greater, with the maximal value n, in the case when the marked spike leaves the
neuron in the last moment, by using the rule a → a; 0. In turn, m can be 3 in the
case i = n and the marked spike leaves neuron σ12 with the first application of the
rule a(aa)+/a2 → a; 0, or greater, with the maximal value being 2n+5 in the case
i = 0 and the marked spike leaves neuron σ12 in the last moment, when using the
rule a → a; 0.

This language is not regular (we cannot pump a substring of the suffix bm
12),

hence the language T (Π5) is not regular.

Theorem 5. TSNP12(rule2, cons2, forg1) − REG 6= ∅.

Actually, much more complex languages can be generated. First, the previous
example can be generalized in order to generate non-context-free languages: in the
same way as passing the contents of neuron σ5 to neuron σ12, we can pass also the
contents of neuron σ12 to another neuron, by repeating the block of neurons σ6 –
σ12 under neuron σ12. In this way, strings with three correlated substrings would
be generated and a language with such strings (even selected by an intersection
with a regular language) is not context-free.

Still, we can go much further.

222 H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa

Theorem 6. Every unary language L ∈ RE can be written in the form L =
h(L′) = (d∗1\L

′) ∩ d∗2, where L′ ∈ TSNP∗(rule2, cons3, forg3), and h is a projec-

tion.

Proof. This result is a consequence of the fact that SN P systems can simulate
register machines. Specifically, as proved in [7], starting from a register machine
M (we do not need precise definitions and notations; details about register ma-
chines can be found in many books), we construct an SN P system Π which halts
its computation with 2n spikes in a specified neuron σout if and only if n can be
generated by the register machine M ; in the halting moment, a neuron σlh of Π
associated with the label of the halting instruction of M gets two spikes and fires.
The neuron σout contains no rule used in the simulation of M (the correspond-
ing register is only incremented, but never decremented – see the details of the
construction from [7]).

Now, consider a language L ⊆ b∗2, L ∈ RE. There is a register machine M
such that n ∈ N(M) if and only if bn

2 ∈ L. Starting from such a machine M ,
we construct the system Π as in [7], having the properties described above. We
append to the system Π six more neurons, as indicated in Figure 7. There is a
marked spike in neuron σ1, and it will stay here during all the simulation of M .
In the moment when neuron σlh of Π spikes, its spike goes both to neuron σout

and to neuron σ1.
Neurons σ3, σ4, σ5, σ6 play the same role as neurons σ6, σ9, σ10, σ12 in the sys-

tem from Figure 6, namely to send a spike to neuron σ2 only when neuron σout has
finished its work (this happens after n steps of using the rule a(aa)+/a2 → a; 0,
for 2n being the contents of neuron σout in the moment when neuron σlh spikes).

The marked spike leaves neuron σ1 four steps after using the rule a2 → a; 4,
hence five steps after the spiking of neuron σlh . This means that the marked spike
waits in neuron σ2 exactly n steps. When the spike of neuron σ6 reaches neuron
σ2, the two spikes present here, the marked one included, are forgotten.

Thus, the traces of the marked spike are of the form br
1b

n
2 , for some r ≥ 1

and n ∈ N(M). By means of the left derivative with the regular language b∗1 we
can remove prefixes of the form bk

1 and by means of the intersection with b∗2 we
ensure that the maximal prefix of this form is removed. Similarly, the projection
h : {b1, b2}

∗ −→ {b1, b2}
∗ defined by h(b1) = λ, h(b2) = b2, removes all occurrences

of b1. Consequently, L = (b∗1\T (Π)) ∩ b∗2 = h(T (Π)).
The system Π from [7] (Theorem 7.1 there) has the rule complexity described

by rule2, cons3, forg3; one sees that the construction from Figure 7 does not in-
crease these parameters.

In what concerns the number of neurons, we do not have a bound for the
language L′ from the previous theorem.

Corollary 1. Each family TSNP∗(regk, consp, forgq) with k ≥ 2, p ≥ 3, q ≥ 3,
is incomparable with each family of languages FL which contains the singleton

languages, is closed under left derivative with regular languages and intersection

On Trace Languages Generated by Spiking Neural P Systems 223

�
�
�
�
�
�
�
�

'
&
$
%�

�
�
�

�
�
�
��

�
�
�

'

&

$

%

'
&
$
%

�
�

�
��

?

?

?

?

?
-

�
�

�=

S
S
Sw

Π

out

a(aa)+/a2 → a; 0

lh

a2 → a; 0

a → λ

1

a′

a2 → a; 4

2

a2 → λ

a → a; 0

3

4

a → a; 0

5

a(aa)∗/a → a; 0

6

a2 → a; 0

Fig. 7. The SN P system from the proof of Theorem 6

with regular languages, and does not contain all unary recursively enumerable lan-

guages.

Families as above are FIN,REG,CF,CS,MAT etc. (every one-letter language
in MAT is regular, see [4]).

6 Final Remarks

We have considered here the possibility of generating a language by means of a
spiking neural P system by following the traces of a distinguished spike during
a halting computation. The power of such devices seems to be rather large –
Theorem 6 – but we do not have a precise characterization of the obtained families
of languages. Theorem 6 also raises the natural question whether RE languages
over arbitrary alphabets can be represented starting from trace languages of SN
P systems.

224 H. Chen, M. Ionescu, A. Păun, Gh. Păun, B. Popa

The main difficulty in handling the trace languages of SN P systems is, in the
previous setup, the non-determinism of the marked spike evolution. A possible
way to better control the marked spike is to consider spiking rules of the forms
E′/ac → a; d and E/a′ac → a′; d, with the meaning that the prime indicates
whether or not the rule consumes the marked spike: this is not the case when the
prime is attached to E, but this happens if the prime marks one of the consumed
spikes, and hence also the produced spike. This removes the non-determinism
induced by the use of the marked spike when applying the rules, but still non-
determinism remains in what concerns the choice of synapses towards neighboring
neurons (and this was the basis of the easy counterexample from Theorem 1). How
also this non-determinism can be removed remains as a research topic.

References

1. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. In the present volume.

2. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

3. P. Frisco. H.J. Hoogeboom: Simulating counter automata by P systems with
symport/antiport. In Membrane Computing. International Workshop, WMC 2002,

Curtea de Argeş, Romania, August 2002. Revised Papers (Gh. Păun, G. Rozenberg,
A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer-Verlag, Berlin, 2003, 288–301.

4. D. Hauschild, M. Jantzen: Petri nets algorithms in the theory of matrix grammars.
Acta Informatica, 31 (1994), 719–728.

5. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sosik, S. Woodworth: Nor-
mal forms for spiking neural P systems. In volume II of the present proceedings.

6. M. Ionescu, C. Martin-Vide, A. Păun, Gh. Păun: Membrane systems with sym-
port/antiport: (unexpected) universality results. In Proc. 8th International Meeting

of DNA Based Computing (M. Hagiya, A. Ohuchi, eds.), Japan, 2002, 151–160.
7. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-

maticae, 71, 2-3 (2006), 279–308.
8. W. Maass: Computing with spikes. Special Issue on Foundations of Information

Processing of TELEMATIK, 8, 1 (2002), 32–36.
9. Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.

10. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-
tems. Intern. J. Found. Computer Sci., to appear (also available at [13]).

11. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes. Springer-
Verlag, Berlin, 1997.

12. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
13. The P Systems Web Page: http://psystems.disco.unimib.it.

