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1 Dipartimento di Informatica e Comunicazione
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Summary. We prove that P systems with mate and drip operations and using at most
five membranes during any step of a computation are universal. This improves a recent
similar result from [5], where eleven membranes are used. The proof of this result has the
“drawback” that the output of a computation is obtained on an inner membrane of the
system. A universality proof is then given for the case when the result of a computation is
found on the skin membrane (on its external side, hence “visible” from the environment),
but in this case we use one more membrane, as well as another basic brane operation
exo; moreover, the operations are now of the projective type, as introduced in [1].

1 Introduction

Membrane computing [9] and brane calculi [4] are two research areas starting from
the same reality, the biology of the cell. They were developed initially in different
directions, with different goals, and different tools, but in the last time started to
increasingly interact, importing from each other basic ingredients, such as using
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objects placed in/on membranes, operations with membranes, ways of using the
rules – synchronously or not, etc. We refer the reader to the recent papers [3], [5],
[6], [8], [10] for details.

This paper is a further contribution to this effort, of bridging brane calculi and
membrane computing, making use of the natural idea of considering P systems
based on brane operations. It should be noted that membrane computing has con-
sidered already many operations with membranes, but in an idealized framework
and under the control of objects placed inside the compartments defined by mem-
branes. This last aspect is an essential difference with respect to brane calculi,
where one adopts the other extreme position, taking into account only the objects
(“proteins”) placed on membranes. In particular, different classes of proteins asso-
ciated to the cellular membranes can be considered: the peripheral proteins, which
are linked only to the external or to the internal side of the membrane, and integral
(or transmembrane) proteins, which span the cellular bilayer and thus have part
of their molecule on either sides of the membrane.

This peculiar differences of membrane proteins inspired to investigate not the
case of usual brane operations (already considered in [5]) but their projective ver-
sion, proposed in [1], with the proteins placed on one of the sides of membranes,
hence visible/active only inside or only outside, respectively, representing either
peripheral proteins, either the external or internal active site of integral proteins.

Specifically, we start from the four basic operations introduced in [4], mate,
drip, pino, exo, and we consider them as operations in a P system – hence used
in a maximally parallel manner, with the system itself used for computing a set
of numbers. However, a simple examination of the proof of the universality result
from [5] shows that this proof works also in the projective case, just assuming that
all proteins are placed on the external side of the membranes. This is due to the
fact that one works with membrane structures with two levels, and only the inner
membranes play a role in the computation, the external one never interacts with
the other membranes; in particular, the inner membranes have no other membranes
inside.

Still, the construction from [5] has a “practical drawback”: the result of a
computation is placed in the halting configuration on the inner membrane, which
means that we have to “break the computer” in order to read the result. We try
here to do better, and we succeeded to have the result of a computation on the
skin membrane, even on its external side, the one visible from the environment.
This was achieved at the price of using three operations mate, drip, exo (of course,
of the projective type, in order to move proteins from the internal membranes to
the external side of the skin membrane, as a biologically well motivated process
which happens in living cells due to the bilayer structure of membranes).

Actually, this result follows from a new proof of the result from [5]. This proof
is based on the simulation of register machines, and it improves the proof from [5],
where eleven membranes were necessary: here we use only five. In the projective
case, when reading the result on the external side of the skin membrane, we need
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one additional membrane, hence the universality is obtained for six membranes
(with an additional price paid in the fact that number 1 is ignored).

Of course, the problem remains open whether or not the number of membranes
can be further decreased, and, perhaps more interesting, to investigate other com-
binations of rules (maybe non-universal, so that decidable properties can be found,
of possible interest for computational biology).

2 Prerequisites

We assume the reader to be familiar with basic language and automata theory
(e.g., from [11]), as well as with basics of membrane computing (e.g., from [9] – we
also refer to [12] for current information in this area), so that we introduce here
only some notations and the notion of register machines, used later in proofs.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ;
the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. The length of a string x ∈ V ∗ is denoted by |x|.

The family of Turing computable sets of natural numbers is denoted by NRE
(this is the family of length sets of recursively enumerable languages, hence the
notation).

A register machine is a construct M = (m,H, l0, lh, I), where m is the number
of registers, H is the set of instruction labels, l0 is the start label (labeling an ADD
instruction), lh is the halt label (assigned to instruction HALT), and I is the set of
instructions; each label from H labels only one instruction from I, thus precisely
identifying it. The instructions are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M computes a number n in the following way: we start
with all registers empty (i.e., storing the number zero), we apply the instruction
with label l0 and we proceed to apply instructions as indicated by the labels (and
made possible by the contents of registers); if we reach the halt instruction, then
the number n stored at that time in the first register is said to be computed by M .
The set of all numbers computed by M is denoted by N(M). It is known (see, e.g.,
[7]) that register machines (even with a small number of registers, but this detail
is not relevant here) compute all sets of numbers which are Turing computable,
hence they characterize NRE.

Without loss of generality, we may assume that in the halting configuration,
all registers different from the first one are empty, and that the output register
is never decremented during the computation, we only add to its contents. In the
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proofs from the next sections we will always assume that the register machines
which we simulate have these properties.

In the following sections, when comparing the power of two number computing
devices the number zero is ignored. Thus, when saying that a set Q is in NRE,
we do not care whether or not 0 ∈ Q. (This is similar to the usual convention in
formal language theory to ignore the empty string when comparing the power of
two generating/accepting devices.)

Moreover, we consider the family 1NRE, of sets Q ∈ NRE which do not
contain number 1 (and, of course, neither number 0).

3 P Systems Using the Mate, Drip Operations

As we have mentioned in the Introduction, in brane calculi there were introduced
several operations with membranes, but in the universality result given in the next
section we work only with mate and drip, that is why we only define here these
operations. One more operation will be defined in Section 5; we also refer to [5]
for further details.

As usual in membrane computing, we represent a membrane by a pair of square
brackets, [ ], maybe with labels for identifying them. With membranes we associate
multisets of proteins (we also use to speak about “objects” instead of “proteins”),
which are supposed here to be placed on membranes (like in brane calculi), and
visible/accessible from both sides of them. We briefly remark that a different idea
would consist in defining the set of proteins u associated to a membrane as a string
instead of a multiset, thus a formal structure where each protein have a specific
mutual position with respect to all other proteins in the string. From a mathe-
matical point of view, this would introduce different methods to control and apply
operations; from a biological point of view, this representation is inspired from the
role played by specific membrane proteins in different places of the membranes
(for instance, the non-casual distribution – clustering – of receptors matters in
receptor-mediated endocytosis at the plasma membrane). Anyway, this topic will
be investigated in a forthcoming paper and, in the following, we will only consider
the case of multisets of proteins.

A membrane having associated a multiset u of proteins (we represent multisets
by strings, with the obvious observation that all permutations of a string represent
the same multiset) is written in the form [ ]u; we also use to say that the membrane
is marked with the multiset u.

With this notation, the two operations are written as follows:

mate : [ ]
ua

[ ]
v
→ [ ]

uxv
,

drip : [ ]
uav

→ [ ]
ux

[ ]
v
,

in all cases with a ∈ V , u, x ∈ V ∗, v ∈ V +, ux ∈ V + for drip rules, for a specified
alphabet V of proteins. (We imposed here the restriction that the strings ux, v
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are non-empty only for uniformity with [5], thus making our result from the next
section comparable with that from [5], but this restriction can be removed, e.g.,
allowing v = λ. Another possible change in this definition is to consider one more
“active” protein, b, placed on the membrane where v is placed, and which is trans-
formed together with a into multiset x when applying the operation. For instance,
the mate operation would look like [ ]

ua
[ ]

bv
→ [ ]

uxv
, with inspiration from the

biological process of recognition that take place between “complementary” proteins
lying on the membranes which mate together (for instance, the process of specific
targeting which allows vesicular transport among donor and target compartments
inside the cell. This would add more possibilities to control our operations, but we
do not introduce this extension here.)

The length of the string uav (hence the total multiplicity of the multiset rep-
resented by this string) from each rule is called the weight of the rule (thus, we
work here only with rules of weight greater than or equal to two).

In each case, multisets of proteins are transferred from input membranes to
output membranes as indicated in the rules, with protein a evolved into the mul-
tiset x (which can be empty). It is important to note that the multisets u, v and
the protein a marking the left hand membranes of these rules correspond to the
multisets u, v, x from the right hand side of the rules; specifically, the multiset uxv
resulting when applying the drip rule is precisely split into ux and v, with these
two multisets assigned to the two new membranes.

The rules are applied to given membranes if they are marked with multisets
of proteins which include the multisets of proteins mentioned in the left hand of
rules; all proteins not specified in the rules are not affected by the use of rules, but,
in the case of drip, they are randomly distributed to the two resulting membranes.

The contents of membranes involved in these operations is transferred from the
input membranes to the output membranes in the same way as in brane calculus,
with the mentioning that here we have no objects inside a membrane, but possibly
only other membranes. In the case of the mate operation, the contents of the
starting membranes are put together in the resulting membrane; in the case of drip
operation, one membrane is empty, while the contents of the initial membrane is
placed in the membrane which inherits the multiset v, as suggested below:

drip : [ Q ]uav → [ ]ux[ Q ]v.

Rules as above can be used in a P system of the form

Π = (A,µ, u0, u1, . . . , um, R),

where:

1. A is an alphabet (finite, non-empty) of proteins;
2. µ is a membrane structure with at least two membranes (hence m ≥ 1);
3. u1, . . . , um are multisets of proteins (represented by strings over A) bound

to the m inner membranes of µ at the beginning of the computation (one
assumes that the membranes in µ have a precise identification, e.g., by means
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of labels, or of other “names”, in order to have the marking by means of
u1, . . . , um precisely defined; the labels play no other role than specifying this
initial marking of membranes); the skin membrane is labeled with 0 and u0 =
λ;

4. R is a finite set of mate, drip rules, of the forms specified above, using proteins
from the set A.

Note that the skin membrane has no protein associated, because it cannot enter
any rule, it is only meant to delimit the system from its environment.

When using any rule of any type, the membranes from its left hand side are
consumed and the membranes from the right hand side of the rule are produced
instead. Similarly, the protein a specified in the left hand side of rules is consumed,
and it is replaced by the multiset x. All other proteins which mark the membranes
which are consumed remain unchanged, and they are transferred to the newly cre-
ated membranes. In the case of mate all proteins are placed on the new membrane;
in the case of drip the proteins of the old membrane which are not involved in the
rule are non-deterministically distributed to the two new membranes.

The evolution of the system proceeds through transitions among configurations,
based on the non-deterministic maximally parallel use of rules. In each step, each
membrane and each protein can be involved in only one rule. A configuration
consists of the membrane structure of the system and the multisets marking the
membranes; thus, the initial configuration is that defined by µ and u0, u1, . . . , um.
In each step (a global clock is assumed to exist), we choose non-deterministically
and apply in a parallel manner a maximal set of rules which can be applied to the
current configuration. A membrane remains unchanged if no rule is applied to it.
The skin membrane never evolves.

A sequence of transitions constitutes a computation. A computation which
starts from the initial configuration is successful only if (i) it halts, that is, it reaches
a configuration where no rule can be applied, and (ii) in the halting configuration
there are only two membranes, the skin (marked with the empty multiset) and an
inner one. The result of a successful computation is the number of proteins which
mark the inner membrane in the halting configuration. (We can also take as the
result of a computation the vector which describes the multiplicity of objects placed
on the inner membrane in the halting configuration – this was the case considered
in [5]; the proof from the next section remains valid also for this generalization.)

The set of all numbers computed in this way by Π is denoted by N(Π). The
family of all sets N(Π) computed by P systems Π using at any moment during a
halting computation at most m membranes, and mate, drip rules of weight at most
p, q, respectively, is denoted by NOPm(matep, dripq). When one of the parameters
m, p, q is not bounded, we replace it with ∗.
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4 Universality for the Mate/Drip Case

In [5] it is proved that NRE = NOPm(matep, dripq) for all m ≥ 11, p ≥ 5, and
q ≥ 5. We improve here this result for each of the three subscripts.

Theorem 1. NRE = NOPm(matep, dripq) for all m ≥ 5, p ≥ 4, and q ≥ 4.

Proof. We only have to prove the inclusion NRE ⊆ NOP5(mate4, drip4), and to
this aim we use the characterization of NRE by means of register machines. Let
M = (m,H, l0, lh, I) be a register machine as in Section 2. We construct the P
system

Π = (A,µ, u0, u1, u2, R),

with

A = {ar | 1 ≤ r ≤ m} ∪ {l, l′, l′′ | l ∈ H}
∪ {di | 1 ≤ i ≤ 8} ∪ {b, c, h, h′, s, #},

µ = [ [ ]
1
[ ]

2
]
0
,

u0 = λ, u1 = hl0, u2 = bc,

and the set R of rules constructed as follows.
The computations of Π start with one inner membrane marked with the label

l0 corresponding to the initial instruction of M , together with the helping object
h, and the second inner membrane marked with the auxiliary (control) objects b
and c. The contents of a register r of M will be represented by the number of
copies of object ar present in the system (on membranes produced from [ ]hl0

).

Both ADD and SUB instructions of M are simulated in eight steps of a com-
putation in Π, with the membranes produced from [ ]

bc
evolving in the same

way in the two cases. It is also important to note that the contents of registers,
represented by copies of objects ar, 1 ≤ r ≤ m, and placed on the membranes
which are produced from [ ]hl0

, are separated on at most two membranes, which
immediately produce a unique membrane by means of a mate operation. Hence
these objects are not “lost” in the system, they stay together on one or at most
two membranes.

Because the simulation of a SUB instruction is more complex, and it fixes
the number of steps mentioned above, eight, we start by presenting the way of
handling such an instruction, li : (SUB(r), lj , lk). One uses the rules from Table 1
(in the configurations presented in the right hand column we do not specify the
other objects present on the respective membranes, but only those involved in the
rules from the left hand column).

Note that, if a copy of the symbol ar exists (that is, the register r is not empty),
then it is removed by rule 4 and the computation continues with the symbol l′i
(corresponding to the lk instruction); if ar does not exist, then the computation
continues with the symbol l′′i (corresponding to the lj instruction); in both cases
the configuration [ [ ]

hl?i s
[ ]

d7
[ ]

d5d6
[ ]

c
]
λ

is reached after step 5.
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Step Rules Types Configuration

initial [ [ ]
hli

[ ]
bc

]
λ

1 [ ]
bc
→ [ ]

d1d2d3
[ ]

c
drip [ [ ]

hli
[ ]

d1d2d3
[ ]

c
]
λ

2 [ ]
d1d2d3

→ [ ]
s
[ ]

d2d3
drip [ [ ]

hli
[ ]

s
[ ]

d2d3
[ ]

c
]
λ

3 [ ]
hli

[ ]
s
→ [ ]

hl′is
mate [ [ ]

hl′is
[ ]

d4
[ ]

d3
[ ]

c
]
λ

[ ]
d2d3

→ [ ]
d4

[ ]
d3

drip

4 [ ]
l′iarhs

→ [ ]
l′i
[ ]

hs
drip [ [ ]

l′i
[ ]

hs
[ ]

d5d6d3
[ ]

c
]
λ

[ ]
d4

[ ]
d3
→ [ ]

d5d6d3
mate or [ [ ]

l′ish
[ ]

d5d6d3
[ ]

c
]
λ

5 [ ]
l′i
[ ]

sh
→ [ ]

l′′i sh
mate [ [ ]

hl?i s
[ ]

d7
[ ]

d5d6
[ ]

c
]
λ

[ ]
d3d5d6

→ [ ]
d7

[ ]
d5d6

drip

6 [ ]
hl?i s

[ ]
d7
→ [ ]

hlαsd7
mate [ [ ]

hlαsd7
[ ]

d8
[ ]

d5
[ ]

c
]
λ

[ ]
d6d5

→ [ ]
d8

[ ]
d5

drip

7 [ ]
hslαd7

→ [ ]
h
[ ]

lαd7
drip [ [ ]

h
[ ]

lαd7
[ ]

bc
[ ]

d5
]
λ

[ ]
d8

[ ]
c
→ [ ]

bc
mate

8 [ ]
lαd7

[ ]
h
→ [ ]

lαh
mate [ [ ]

lαh
[ ]

bc
]
λ

[ ]
bc

[ ]
d5
→ [ ]

bc
mate

Table 1. Rules simulating a SUB instruction li : (SUB(r), lj , lk); l?i ∈ {l′i, l′′i }, if l?i = l′′i ,
then lα = lj , and if l?i = l′i, then lα = lk.

Due to the subscripts of objects di, 1 ≤ i ≤ 8, the simulation proceeds almost
deterministically: in each step there is only one choice of rules to apply, with the
only three exceptions being the possibilities of using (i) the rule [ ]d2d3

→ [ ]d4
[ ]d3

already in step 2, and not in step 3 as indicated in Table 1, (ii) the rule [ ]
d6d5

→
[ ]

d8
[ ]

d5
already in step 5, and not in step 6 as indicated in Table 1, and (iii) the

rule [ ]
bc
→ [ ]

d1d2d3
[ ]

c
in step 8 instead of the rule [ ]

bc
[ ]

d5
→ [ ]

bc
.

In order to prevent the halting of the computation in these cases, we introduce
in R the additional rules:

1. [ ]
h
[ ]

d5
→ [ ]

##d5
,

2. [ ]
##

→ [ ]
#

[ ]
#

,

3. [ ]#[ ]# → [ ]##.

In fact, there are the following three different computations to consider as
alternative to that outlined in Table 1.

In all the three cases (i), (ii), (iii), when we do not follow the rules from Table
1, at some moment a membrane marked (among others) with h and a membrane
marked (among others) with d5 have to mate by means of the first additional rule
above. In this way, the trap object # is introduced, and the computation continues
forever by means of rules 2, 3. For instance, assume that in step 2 we use the rule
[ ]d2d3

→ [ ]d4
[ ]d3

. This means that we get the configuration [ [ ]hli
[ ]d4

[ ]d3
[ ]c]λ

(with d1 placed on one of the membranes marked with d3 and d4). We continue
to [ [ ]

hli
[ ]

d5d6d3d1
[ ]

c
]
λ
. Now we either use the rule from step 5 or the one from
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step 6 for handling the membrane [ ]
d5d6d3d1

; in the first case we separate d5 from
d6 in one further step, also introducing d8 instead of d6, in the next step d5 and
h are not used by other rules than rule 1 mentioned above, and the computation
never halts. Similar results are obtained also in other cases.

Therefore, if we do not use exactly the rules indicated in Table 1 for the eight
steps of the simulation, then the computation never halts. If we use the rules as
indicated, then the simulation of the SUB instruction is correctly completed (one
copy of ar was removed in step 4, if this was possible, and, depending on this fact,
we introduce the correct label-object lj or lk), and we return to a configuration as
the one we have started with, hence with two inner membranes, one marked with
hlα, for α ∈ {lj , lk}, and one marked with bc.

As said before, the simulation of an ADD instruction li : (SUB(r), lj , lk) is very
much similar to the simulation of a SUB instruction, with many rules being used
in common. For the sake of readability, we give in Table 2 the rules used in the
eight steps of the simulation.

Step Rules Types Configuration

initial [ [ ]
hli

[ ]
bc

]
λ

1 [ ]
bc
→ [ ]

d1d2d3
[ ]

c
drip [ [ ]

hli
[ ]

d1d2d3
[ ]

c
]
λ

2 [ ]
d1d2d3

→ [ ]
s
[ ]

d2d3
drip [ [ ]

hli
[ ]

s
[ ]

d2d3
[ ]

c
]
λ

3 [ ]
hli

[ ]
s
→ [ ]

hl′iars
mate [ [ ]

hl′iars
[ ]

d4
[ ]

d3
[ ]

c
]
λ

[ ]
d2d3

→ [ ]
d4

[ ]
d3

drip

4 [ ]
l′ihs

→ [ ]
l′i
[ ]

hs
drip [ [ ]

l′i
[ ]

hs
[ ]

d5d6d3
[ ]

c
]
λ

[ ]
d4

[ ]
d3
→ [ ]

d5d6d3
mate

5 [ ]
l′i
[ ]

sh
→ [ ]

l′′i sh
mate [ [ ]

hl′′i s
[ ]

d7
[ ]

d5d6
[ ]

c
]
λ

[ ]
d3d5d6

→ [ ]
d7

[ ]
d5d6

drip

6 [ ]
hl′′i s

[ ]
d7
→ [ ]

hlαsd7
mate [ [ ]

hlαsd7
[ ]

d8
[ ]

d5
[ ]

c
]
λ

[ ]
d6d5

→ [ ]
d8

[ ]
d5

drip

7 [ ]
hslαd7

→ [ ]
h
[ ]

lαd7
drip [ [ ]

h
[ ]

lαd7
[ ]

bc
[ ]

d5
]
λ

[ ]
d8

[ ]
c
→ [ ]

bc
mate

8 [ ]
lαd7

[ ]
h
→ [ ]

lαh
mate [ [ ]

lαh
[ ]

bc
]
λ

[ ]
bc

[ ]
d5
→ [ ]

bc
mate

Table 2. Rules simulating an ADD instruction li : (ADD(r), lj , lk); lα ∈ {lj , lk}.

In step 3 we already introduce a copy of ar, as required by the ADD instruction
li. In step 4 we use a rule for the first inner membrane, and from step 5 we continue
with l′′i present in the configuration; note that this passage is redundant (we could
continue the computation with l′i), but we proceed in this way for uniformity with
the simulation of the SUB instruction (the rest of the computation is just the same
for both the instructions). In step 6 one of the label-objects lj and lk is introduced
non-deterministically. After 8 steps we return at a configuration similar to the
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starting one. The non-determinism in choosing the rules for steps 2, 5, and 8 is
treated in the same way as for SUB instructions.

The simulation of ADD and SUB instructions is repeated. It is important
to note that because the label li precisely identifies the instruction, one cannot
mix other rules than those common in Tables 1 and 2 when simulating different
instructions.

The computation in Π halts if and only if the computation in M halts. How-
ever, in order to have a successful computation in Π we need to keep only one
membrane inside the system and to remove all other objects than a1, the object
whose multiplicity represents the contents of register 1 of M . To this aim, we use
the rules from Table 3. The steps of this phase proceed deterministically (we are
assuming that the numerical result of a halting computation is not 0, that is, that
there exists at least one copy of a1 in the system), hence the computation halts
correctly.

Step Rules Types Configuration

initial [ [ ]
hlh

[ ]
bc

]
λ

1 [ ]
hlh

[ ]
bc
→ [ ]

hlhb
mate [ [ ]

hlhb
]
λ

2 [ ]
lhhb

→ [ ]
lhh′ [ ]

b
drip [ [ ]

lhh′ [ ]
b

]
λ

3 [ ]
h′lh

[ ]
b
→ [ ]

h′b mate [ [ ]
h′b ]

λ

4 [ ]
h′ba1

→ [ ]
h′ [ ]

a1
drip [ [ ]

h′ [ ]
a1

]
λ

5 [ ]
h′ [ ]

a1
→ [ ]

a1
mate [ [ ]

a1
]
λ

Table 3. Rules ending the computation.

The observation that the maximum number of membranes used is 5 (after step
2 of simulating ADD and SUB instructions), and that we never use more than 4
objects in controlling the rules (in steps 4, 6, 7 from Table 1, in steps 6, 7 from
Table 2, and in step 1 from Table 3), concludes the proof. ut

We do not know whether the previous result is optimal in what concerns the
number of membranes and the weight of the used rules.

5 P Systems with Projective Operations

Let us now pass to the projective version of the brane operations, as introduced in
[1]. Actually, we formalize only three of them, mate, drip, exo, because only these
operations are used below.

First, the notation: the fact that a multiset u is placed on the internal side of
a membrane and a multiset v on its external side is denoted as [ u]v, hence with
the right hand bracket having both left and right subscripts.
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Then, the three operations are as follows:

mate : [ ]ua[ ]v → [ ]uxv,

drip : [ ]uav → [ ]ux[ ]v,

exo : [ [ ]
v au] → [ uxv] ,

where a ∈ V, u, x ∈ V ∗, ux 6= λ, v ∈ V +, for an alphabet V of proteins. One
sees that there is no difference between the projective and the standard mate, drip
operations, they use only proteins placed on the external side of membranes. In
what concerns the proteins present on the membranes entering these operations,
they are distributed on one of the sides of the resulting membranes as suggested
below (x1, x2, x3, x4 are generic multisets, and Q indicates the contents of the
respective membranes, i.e., the possible membranes present inside it):

mate : [ x1
]uax2

[ x3
]vx4

→ [ x1x3
]uxvx2x4

,

drip : [ Q x1x2
]uavx3x4

→ [ x1
]uxx3

[ Q x2
]vx4

,

exo : [ [ Q x1
]vx2 aux3

]x4
→ [ uxvx2x3

]x1x4
Q.

Thus, the operations are controlled by the multiset uav, with u and v being
the “context” where a is transformed; all other proteins are move unchanged on
the resulting membranes, with precise destinations, in the case of exo changing
the inside-outside position; when splitting a multiset in two multisets, this is done
randomly, one of them can be any sub-multiset of the starting multiset and the
other the complement.

An additional extension would consist in allowing two “dual” operations of
drip type, by letting it be driven by proteins occurring either on the external side,
or on the internal side of the membranes (but the two cases should not be mixed
together, if one wants to maintain some biological motivation). Namely, the drip
operation could be substituted by

dripint : [Q x1x2uav]x3x4 → [ x1ux]x3 [Q x2v]x4 ,

dripext : [Q x1x2 ]uavx3x4 → [ x1 ]uxx3 [Q x2 ]vx4 .

The same is not biologically motivated for mate or exo operations, hence this note
introduces some difference between (mem)brane operations which can exist – with
respect to the appearance side of active proteins – only in one form, that is, mate
and exo, and those which can exist in two reciprocal forms, that is, drip. In what
follows, we will not consider this extension anyway.

Now, a P system using operations as above is defined in the standard way,
with the only difference that for each membrane we have to specify two multisets,
the one marking it from inside and the one marking it from outside. Formally,
we write Π = (A,µ, (u1, v1), . . . , (um, vm), R), with the meaning that ui is the
internal marking of membrane i and vi is the external marking of this membrane.
In each step, each membrane and each protein can be involved in only one rule, but
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the rules are applied in the maximally parallel way, non-deterministically choosing
the rules, the objects, and the membranes. In the same style as in Section 3, we
consider as successful only halting computations (we do not need to restrict the
number of membranes – although this is possible, as we will see in the next section,
even to a single membrane).

In this moment, we have a problem: how to define the result of a computation?
If, like above, we impose to have only one inner membrane and we count the objects
placed on this membrane in the halting configuration, then the proof of Theorem 1
also holds for the projective case: there are only two levels of membranes, and the
skin membrane is inert, it never participates to any operation; if we assume that
the inner membranes are marked on their external side, the rules used in the proof
of Theorem 1 can be considered as projective mate and drip.

Still, as mentioned also in the Introduction, reading the result of a computation
on an inner membrane might look unacceptable, that is why we define now the
result of a computation as the number of objects which mark the external side of
the skin membrane of the system in the halting configuration.

Again, the length of the string uav involved in a rule gives the weight of
that rule. Then, the family of all sets N(Π) computed by P systems Π us-
ing at any moment during a halting computation at most m membranes, and
projective mate, drip, exo rules of weight at most p, q, r, respectively, is de-
noted by NOPm(pmatep, pdripq, pexor). When one of the parameters m, p, q, r
is not bounded we replace it with ∗. When number 1 is ignored, we denote by
1NOPm(pmatep, pdripq, pexor) the corresponding families.

6 Universality for the Projective Operations

For the above way of defining the result of a computation, on the external side of
the skin membrane, it is not possible to use only mate and drip operations, we also
need operations which handle multisets placed on the inner side of membranes –
in particular, on the inner side of the skin membrane.

Theorem 2. 1NRE = 1NOPm(pmatep, pdripq, pexor) for all m ≥ 6, p ≥ 4,
q ≥ 4, and r ≥ 3.

Proof. We proceed as in the proof of Theorem 1, proving only the inclusion
1NRE ⊆ 1NOP6(pmate4, pdrip4, pexo3). For a set Q ∈ 1NRE, we consider the
set Q′ = {n − 1 | n ∈ Q}. This is clearly a set in NRE, hence there is a register
machine M such that N(M) = Q′. We construct the P system Π as in the proof
of Theorem 1, such that Q′ = N(M) = N(Π), and then we modify this system as
follows.

First, we start from the initial configuration

[ [ [ f1
]l0h [ λ]bc f2

]λ f3
]λ
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(some membranes are marked on both sides, and one further membrane is added
around the system); the new objects f1, f2, f3 are added to the alphabet of objects.

We repeat the construction of system Π with the markings of membranes used
in rules considered of the projective type. Because the mate and drip operations do
not move proteins from one side of a membrane to another side, the simulation of
ADD and SUB instructions using the projective version of the rules from Tables 1
and 2 are correct, and they do not use the external membranes, those with internal
markings f2 and f3.

In what concerns the final sequence of steps, we replace the last two rows from
Table 3 with the two steps indicated in Table 4 – we recall also the configuration
obtained after step 3, including the multiset an

1 marking the inner membrane,
n ≥ 1.

Step Rules Types Configuration

7 [ [ [ f1
]
bh′a1an−1

1
f2

]λ f3
]λ

8 [ [ ]
h′a1 f2

] → [ h′a1
] exo [ [ h′an

1
]f1 f3

]λ
9 [ [ ]

f1 f3
] → [ f1

] exo [ f1
]h′an

1

Table 4. Rules for the last two steps of the computation in the projective case.

The two exo steps move the result of the computation on the external side of
the unique membrane present in the system in the halting configuration. Besides
the n copies of a1 corresponding to a value n ∈ N(M) = Q′, we also have here the
object h′, hence we compute the number n + 1 ∈ Q. Consequently, for Π ′ being
the system obtained by modifying Π as suggested above, we have N(Π ′) = Q.
Because the exo rules have the weight at most three, the proof is complete. ut

It remains as an open problem to improve the previous result by including also
number 1 in the computed sets.

7 Final Remarks

We have improved here the universality result from [5], decreasing the number of
membranes from 11 to 5. In the case of projective operations, we have shown that
the universality can be obtained (using one additional membrane and “losing” the
number 1) also when imposing that the result of a computation is “accessible”
from outside the system, namely, encoded in the number of objects placed on the
external side of the skin membrane. The optimality of these results remains to be
checked.

A related general research topic is to investigate other combinations of rules,
checking whether they lead or not to universality.
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