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Summary. We introduce dynamical probabilistic P systems, a variant where probabili-
ties associated to the rules change during the evolution of the system, as a new approach
to the analysis and simulation of the behavior of complex systems. We define the notions
for the analysis of the dynamics and we show some applications for the investigation of the
properties of the Brusselator (a simple scheme for the Belousov-Zabothinskii reaction),
the Lotka-Volterra system and the decay process.

1 Introduction

P systems [4] are a class of distributed parallel computing devices, inspired by
the structure and the functioning of cells. The basic model consists of a cell-like
membrane structure, composed by several compartments where multisets of ob-
jects evolve according to given rules, in a nondeterministic and maximally parallel
manner. A computation device is obtained starting from an initial configuration
and letting the system evolve. In the following, we assume that the reader is
familiar with the basic notions and the terminology underlying P systems. We
refer, for details, to [5]. Updated information about P systems can be found at
http://psystems.disco.unimib.it/.

Many research studies around P systems concentrates on computational power
aspects. In this paper, we propose a new approach for the investigation and the
application of P systems, which consists in interpreting them as tools for the de-
scription and the analysis of the dynamical behavior of complex systems. A similar
approach is considered also in [1, 6]. As said, membrane systems are inspired from
the functioning of the cell, hence it is natural to consider them for modelling differ-
ent cellular processes and natural living systems, with the final goal of producing
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new tools and acquiring useful information for the scientists (mainly, biologists)
working on the modelled system. Some first steps in this direction have already
been made, see [3] for various applications.

Since we are interested in describing the evolution of a complex system, and
since changes of many different conditions can have direct influence on the reaction
parameters and behavior, the basic model of P systems is not suitable to describe
these kind of processes. For this reason we introduce, in Section 2, dynamical prob-
abilistic P systems, where a probability is associated to each rule and it changes
during the whole process (we will talk about evolution instead of computation). In
Section 3 we introduce some notions which will then be used to analyze the behav-
ior of such systems. In Section 4 we show some applications to the Brusselator, a
simplified theoretical scheme which describes the Belousov-Zhabotinskii reaction
(BZ, in short), the Lotka-Volterra and decay processes. In particular, we show we
can simulate the behavior of chemical oscillator reactions. Indeed, the interaction
of two or more oscillating systems is of interest for many biological processes and
systems, as it constitutes an important factor to keep alive an organism or a com-
plex system constituted by several sub-components of different types. Finally, in
Section 5 we present the conclusion and give some perspective for future work.

2 Dynamical Probabilistic P Systems

In this section we give the definition of a probabilistic P system where the proba-
bilities associated to the rules vary during the evolution of the system. The method
for evaluating probabilities and the way the system works are explained in details.
Then, we extend the definition to consider families of P systems of this type, whose
members differ among each other for the choice of some parameters, but not for
the main structure.

We assume the reader to be familiar with the basic notions and notations of P
systems [5]. Some prerequisites about multisets are here recalled.

Let V be an alphabet, we denote by V ∗ the set of all strings over V , by λ
the empty string and by V + = V ∗ \ {λ} the set of non-empty strings. A multiset
over V is a map M : V → N, where M(a) is the multiplicity of any symbol
a ∈ V , N is the set of natural numbers. A multiset M over V = {a1, . . . , al} can
be explicitly represented by the string x = a

M(a1)
1 a

M(a2)
2 . . . a

M(al)
l , for all ai such

that M(ai) 6= 0, and by all its possible permutations. By interpreting a multiset
in the corresponding form of a string x, we can denote by |x| its length and by
|x|a the number of occurrences of a symbol a in x. The set of symbols from V
occurring in x is denoted by alph(x). Moreover, to every string x ∈ V ∗ we can
associate the Parikh vector ΨV (x) = (|x|a1 , |x|a2 , . . . , |x|al

) (the order of symbols
occurring in x matters).

Definition 1. A dynamical probabilistic P system (DPP, in short) of degree n is
a construct Π = (V,O, µ,M0, . . . , Mn−1, R0, . . . , Rn−1, I; E), where:
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• V is the alphabet of the system, O ⊆ V is the set of analyzed symbols;
• µ is a membrane structure consisting of n membranes labelled with the numbers

0, . . . , n− 1. The skin membrane is labelled with 0;
• Mi, i = 0, . . . , n−1, is the multiset over V initially present inside membrane i;
• Ri, i = 0, . . . , n− 1, is a finite set of evolution rules associated with membrane

i. An evolution rule is of the form r : u
k−→ v, where u is a multiset over V ,

v is a string over V × ({here, out} ∪ {inj | 1 ≤ j ≤ n − 1}) and k ∈ R is a
constant associated to the rule;

• I ⊆ {0, . . . , n− 1} ∪ E is the set of labels of the analyzed regions;
• E = {VE ,ME , RE} is called the environment, it consists of an alphabet VE ⊆

V , a feeding multiset ME over VE and a finite set of feeding rules RE of the
type r : u → (v, in0), for u, v multisets over VE .

The alphabet O and the set I specify which symbols and regions are of peculiar
importance in Π, namely those elements whose evolution will be analyzed and
simulated.

Definition 2. Let Π be a DPP. We call the parameters of Π the set P consisting
of: (1) the multisets M0, . . . , Mn−1, ME initially present in µ and in E, (2) the
constants of all rules in R0, . . . , Rn−1.

Note that the alphabets V,O, VE , the membrane structure µ, the form of the
rules in R0, . . . , Rn−1, RE and the set I of analyzed regions do not belong to the
set of parameters of Π. We call these components the main structure of Π. We can
now extend Definition 1 and consider a family of DPPs, where the main structure is
equal for all members of the family, while the parameters can change from member
to member. For instance, one can choose to analyze the same DPP with some
different settings of initial conditions, such as different initial multisets and/or
different rule constants (this can be useful when not all of them are previously
known) and/or different feeding multisets.

Definition 3. A family of DPPs is defined as F = {(Π,P) | Π is a DPP and
P is the set of parameters of Π}. Given two elements (Π1,P1), (Π2,P2) ∈ F , it
holds Π1 = Π2 for the main structure and P1 6= P2 for the choice of (all or some)
elements in P1 and P2.

In the following, we will talk about the evolution, not computation, of a DPP,
since we are not interested in generating languages but in simulating biological
or chemical systems. The family F describes a general model of the biological or
chemical system of interest and, for any choice of the parameters, we can investi-
gate the evolution of the corresponding fixed DPP.

A fixed initial configuration of Π depends on the choice of P, hence it consists
of the multisets initially present inside the membrane structure, the chosen rule
constants and the feeding multiset, which is given as an input to the skin mem-
brane from the environment at each step of the evolution by applying the feeding
rules. Different strategies in the feeding process can be used: for instance, one can
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use it to keep at a constant value the concentrations of chemicals involved in a
certain reaction (see Section 4.1 for an application to the BZ), or to increase the
concentrations of substances mimicking the biological transport from the extra-
cellular space. We assume that, as long as the system evolves, the environment
contains as many symbols as they are needed to continuously feed the system.

At each step of the evolution, all applicable rules are simultaneously applied
and all occurrences of the left-hand sides of the rules are consumed, hence the
parallelism is maximal at both levels of objects and of rules. For simplicity, in
this paper we assume that the system evolves according to a universal clock, that
is all membranes and the application of all rules are synchronized. In the future,
this condition will be extended to considering also non-synchronized evolutions.
The applied rules are chosen according to the probability values dynamically as-
signed to them; the rules with the highest normalized probability value will be
more frequently tossed. In simulations, the tossing process is obtained by means
of a random number generator, as described below. If some rules compete for ob-
jects and have the same probability values, then objects are nondeterministically
assigned to them.

The probability associated to each rule in any set Ri, i = 0, . . . , n − 1, is a
function of its constant and of the current multiset occurring in membrane i, and
it is evaluated as follows. Let V = {a1, . . . , al}, Mi be the multiset inside membrane
i, r : u

k−→ v a rule in Ri; let alph(u) = {a1, . . . , as} and u = aα1
1 . . . aαs

s . To obtain
the actual normalized probability pi of applying r with respect to all other rules
that are applicable in membrane i at the same step, we need to evaluate the non-
normalized probability p̃i(r) of r, which depends on the constant associated to r
and on the left-hand side of r, namely:

p̃i(r) = k ·
s∏

h=1

Mi(ah)!
αh!(Mi(ah)− αh)!

=

= k ·
s∏

h=1

Mi(ah)(Mi(ah)− 1) . . . (Mi(ah)− αh + 1)
αh!

(1)

that is p̃i(r) is dynamically defined, according to the current multiset occurring
inside membrane i, since we choose αh copies of symbols ah among all its Mi(ah)
copies currently available in the membrane itself. If Ri = {r1, . . . , rm}, the nor-
malized probability of any rule rj is

pi(rj) =
p̃i(rj)∑m

j=1 p̃i(rj)
. (2)

In the simulations, the parallel application of the rules is done by splitting one
parallel step into several sequential sub-steps. It is possible to separate each single
parallel step into two stages, exploiting the fact that the probability distribution
and the applicability of the rules are functions only of the left-hand side of the rules
and their constants. In the first stage objects are assigned to rules by means of a
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random number generator, while in the second one the multiset is updated using
a stored trace of the rules previously tossed. It should be pointed out that, during
the first stage, the probability distribution of the rules has to be kept constant,
otherwise the application of the rules would become sequential.

Remark 1. A different probability distribution over rules could be obtained by using
the classical rate law of Chemistry, though the approach used in equation (1) is
more accurate from the combinatorial point of view [2]. It is well known from
Chemistry that the rate of a reaction ρ at any time is governed by the concentration
of the chemicals involved, namely

ρ = k ·
∏

j∈J

[Aj ]σj ,

where the index j varies over all chemicals involved in the reaction, [Aj ] represents
the concentration of each chemical Aj and k is called the rate constant. The value
σj is always experimentally determined but in the elementary reactions, where it
is assumed to be the stoichiometric coefficient.

Indeed, at high concentrations (multiplicities) the two approaches are undistin-
guishable, but at lower ones our choice is preferable since it accounts for the exact
number of all possible tuples of evolving objects.

3 Analysis of the Dynamics in DPP

In this section we introduce some notions that will be used for the analysis of the
behavior of a DPP. The final goal is to introduce an appropriate definition of the
phase space. Usually, the evolution of a physical system is completely determined
by means of the motion equations, a set of differential equations inferred by the
system properties. In the case of P systems this role should be accomplished by
the evolution rules, which create a one-to-one mapping between the application of
each rule and the relative displacement of the system in the phase space.

First of all, to keep trace of the system evolution we extend the definition of
the alphabet V = {a1, . . . , al} of Π by introducing the parameter time, that is we
define the space Ṽ := V × N = V × {time}.
Definition 4. Let M = {aα1

1 , . . . , aαl

l } be a multiset over V , where αi ≥ 0 for
all h = 1, . . . , l. We call a t-multiset the structure M = {aα1

1 , . . . , aαl

l , t} over the
space Ṽ .

By abuse of notation, we will denote both the multiset over V and the t-multiset
in Ṽ with the same symbol M , being it clear when one considers also the time
component or not. To represent a t-multiset in the space Ṽ we define its position
relatively to the t-multiset O = {0, . . . , 0} of Ṽ (the first l components of O are
the null multiplicities of the symbols from V ). We need also to extend the notion
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of Parikh vector to the space Ṽ as ΨṼ (M) = (α1, . . . , αl, t). This is necessary if
we want to distinguish among two multisets having the same total numbers of
symbols but different multiplicities for (at least) one symbol from V .

Definition 5. The position of a t-multiset M over Ṽ is the vector
−→
M = ΨṼ (M).

The vector
−→
O = ΨṼ (O) is called the origin of Ṽ .

From Definition 5 it follows that the positions of t-multisets
−→
O and

−→
M are

vectors in the space Nl × N. The next step is to introduce a scalar product in
Nl, to naturally define the notion of distance between t-multisets, thus giving the
structure of an euclidian space to Nl.

Definition 6. Let
−→
M i,

−→
M j be two positions in Nl × N. The distance between−→

M i,
−→
M j is a function d : Nl+1×Nl+1 −→ R+ defined as d2(

−→
Mi,

−→
Mj) =

∑m
k=1(αi,k−

αj,k)2.

Note that the two positions
−→
M i,

−→
M j in Definition 6 need not to be necessarily

one the evolution of the other (that is, the multiset inside the same membrane
taken into different time steps). In fact, given a family F of DPP and two positions−→
M i,

−→
M j , the following cases may hold:

1.
−→
M i,

−→
M j occur in distinct time steps, in the same membrane of the same DPP

with equal setting P;
2.
−→
M i,

−→
M j occur in distinct or equal time steps, in different membranes of the

same DPP with equal setting P;
3.
−→
M i,

−→
M j occur in distinct or equal time steps, in the same membrane of the

same DPP with different settings P1, P2;
4.
−→
M i,

−→
M j occur in distinct or equal time steps, in different membranes of the

same DPP with different settings P1, P2.

That is, we might be interested in looking at the multiset occurring inside a mem-
brane during its evolution, or comparing two multisets of different membranes of
the same DPP (in equal or different time steps), or else two multisets inside the
same (or even a different) membrane but analyzed in two different evolutions of
the family of the DPP. In each of the four cases, the distance gives information
about “how far” the states in the two trajectories are (that is, the t-multisets in
the two evolutions).

In particular, given any couple of positions
−→
M i,

−→
M j of the same DPP (for the

same or different set of fixed parameters P), we can say that they are simultaneous
if they exist at the same time step. This concept can be useful mainly when one
considers a membrane structure with degree n ≥ 1, where many multisets are
co-evolving.

Definition 7. Let
−→
M i,

−→
M j be two positions in Nl+1. The displacement between−→

M i,
−→
M j is a function −→u : Nl+1 × Nl+1 −→ Zl defined as −→u (

−→
Mi,

−→
Mj) = (αi,1 −

αj,1, . . . , αi,l − αj,l).
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Note that the displacement can be either a positive or negative value, and
it tells how the system “moves”; in details, it tells how the multiplicities in the
positions

−→
M j differ from those in

−→
M i. Hence, it gives more information than the

distance, since it also considers the direction of the variation. Indeed, it is also
possible to construct the versor û : Nl+1×Nl+1 −→ Rl of the displacement which
only gives the information about the direction of −→u :

û(
−→
Mi,

−→
Mj) =

(
αi,1 − αj,1

d(
−→
Mi,

−→
Mj)

, . . . ,
αi,l − αj,l

d(
−→
Mi,

−→
Mj)

)
.

Note that −→u = û · d, for construction.
The last step before arriving to the definition of the phase space consists in

defining the velocity, which carries on the information about the time the displace-
ment between two t-multisets (in the same DPP, with equal initial settings) needs
to take place. That is, it tells how fast the evolution from one state of the DPP to
the other is.

Definition 8. Let
−→
Mi,

−→
Mj be positions occurring inside the same membrane of a

DPP (for a fixed choice of the parameters) in distinct time steps. The velocity is
a function −→v : Nl+1 × Nl+1 −→ Rl defined as

−→v (
−→
Mi,

−→
Mj) =

(
αi,1 − αj,1

ti − tj
, . . . ,

αi,l − αj,l

ti − tj

)
.

It should be pointed out here that, actually, this is the definition of the average
velocity, which becomes the “instantaneous” velocity when ti−tj = 1, which is the
minimal time increment allowed in a discrete-time system, as a DPP is. Note that if−→
Mj is the position evolved from

−→
Mi in the same membrane, then the instantaneous

velocity gives the variation of that multiset in a single time step.
We are now ready to define the phase space for a DPP, which is constructed

as the cartesian product of the phase spaces of all membranes in the DPP. Let−→
M i = (α1, . . . , αl, t) be the position of the t-multiset inside membrane i at time
t, and let −→v (

−→
M i,

−→
M i) = (v1, . . . , vl) be its instantaneous velocity (that is, the

variation of
−→
M i at time t with respect to time t− 1, for any t ≥ 1).

Definition 9. We call a phase point of
−→
M i the vector −→ϕt

i = (α1, . . . , αl, v1,
. . . , vl) ∈ Nl × Rl, for any fixed t ∈ N.

The phase point represents the state of membrane i at any given time t. The
evolution of the multiset in membrane i can be described by the phase curve, which
is a function −→ϕ i : N −→ Nl × Rl such that −→ϕ i(t) = −→ϕt

i.
The space Nl×Rl is the set of all the points −→ϕt

i corresponding to an evolution
of the multiset inside any membrane.

Definition 10. Let Π be a DPP of degree n, for some n ≥ 1. The space Φi = Nl×
Rl is called the phase space of the membrane i. The space ΦΠ = Φ0×· · ·×Φn−1×ΦE

is called the phase space of the DPP.



282 D. Pescini, D. Besozzi, C. Zandron, G. Mauri

Hence, the phase space of a DPP describes the evolution of the whole system,
with respect to both the change of all multisets and the passing of time. Actually,
in analyzing the behavior of a given DPP, we will be interested in considering only
the phase space restricted to the regions specified in the set I (see Definition 1).
Similarly, only the evolution of symbols from O will be analyzed for the multisets
present in the regions in I.

4 Applications

In this section we present some applications of the DPP model to known problems
and the relative results obtained from the corresponding simulations.

4.1 The Belousov-Zhabotinskii Reaction

The BZ chemical reaction is considered the prototype oscillator and exhibits an
extraordinary variety of temporal and spatial phenomena. Its oscillating behav-
ior is one of the most widely studied, both theoretically and experimentally, thus
making this reaction a suitable workbench for the capabilities of DPP. Its basic
mechanism consists in the oxidation of malonic acid, in acid medium, by bromate
ions and catalyzed by cerium, which has two states. The sustained periodic oscil-
lations are observed in the cerium ions. The Brusselator is a simplified theoretical
scheme introduced in [7] to explain the nonlinear oscillating behavior, and after
that was carefully studied in, e.g., [8]. Despite the fact that it is physically unre-
alistic, as it involves a trimolecular state, it is recognized to be the skeleton for
the explanation of the oscillating behavior in chemical reactions. Moreover, it has
a very simple description: A

k1−→ X, B + X
k2−→ Y + D, 2X + Y

k3−→ 3X, X
k4−→ E.

In this section we describe the Brusselator in terms of DPP and we show
the analysis and some results obtained from the simulations. Indeed, in order
to describe a chemical or a biological system evolving over time, a kind of rule
able to react to the variation of occurrences of symbols (that is, concentrations of
substances) is needed. For this purpose, we believe that the dynamical probabilistic
rules are really suitable, so we consider the family of DPP that, according to
Definition 1, are given by

ΠBZ = ({A, B,X, Y }, {X, Y }, [0 ]0,M0, R0, 0;EBZ),

where M0 = {Am1 , Bm2 , Xm3 , Y m4} and R0 = {r1 : A
k1−→ X, r2 : BX

k2−→ Y,

r3 : XXY
k3−→ XXX, r4 : X

k4−→ λ}, for some k1, . . . , k4 ∈ R. Note that, with
respect to the original equations in the Brusselator, we choose not to consider the
chemicals D and E since they are not relevant for the system evolution. The envi-
ronment EBZ is given by the alphabet {A,B}, the multiset MEBZ = {An1 , Bn2},
for some n1, n2 ∈ N and the feeding rules REBZ = {r5 : A −→ (A, in0), r6 :
B −→ (B, in0)}. According to Definition 2, the set of parameters of ΠBZ is
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PBZ = {m1, . . . , m4, k1, . . . , k4, n1, n2}. A family FBZ can be given by considering
different values for the elements in PBZ .

The simulations based on the DPP approach have shown all the dynamical be-
haviors which characterize the continuously stirred BZ (see for example [1, 2, 8]),
but here due to space limits we only present the quasi periodic oscillations (in
Figure 1, for Pqp

BZ={100, 100, 1000, 2000, 50, 0.5, 5 · 10−5, 5, 100, 100}) and the at-
tractor (in Figure 2, for Patt

BZ = {100, 100, 1000, 2000, 1, 1, 1, 1, 100, 100}). A fading
transition from one to the other is possible by tuning the parameters in PBZ . Since
in the literature on the Brusselator the phase plane has been widely identified with
the X-Y plane, our attention is focused on the dynamic of these symbols. A first
characterization of the system dynamic can be obtained by looking directly to the
temporal evolution of the two variables: Fig.1.(a) and Fig.2.(a) allow to discrimi-
nate the quasi periodic oscillation of the first case from the attracted dynamic of
the second one. Fig.1.(b) and Fig.2.(b) show the phase space of membrane 0: in
the first case we obtain a limit cycle, in the second case only the initial multiset
(point at right-up corner) and the attractor (point at left-bottom corner) can be
displayed. Fig.1.(c) and Fig.2.(c) show the evolution of multiplicities of X and Y ;
the projection on X−Y plane of these pictures obviously correspond to Fig.1.(b),
Fig.2.(b), respectively. Finally, Fig.1.(d) and Fig.2.(d) show the spectra: in the
first case, the spectrum shows the highest peak, corresponding to the principal
oscillation frequency, and some other harmonics, plus the stochastic contribute
which is spread all over the other frequencies; in the second case (where the Y axis
is in logarithmic scale), the spectrum corresponds to a δ of Dirac centered in the
0 frequency (the height of δ is equal to the mean value of the multiplicities of X
and Y ), since this is the Fourier transform of a constant (in time) signal.

Remark 2. To make clear the definitions of Section 3, we give some ex-
amples by extracting three t-multisets from the simulated evolution of
(ΠBZ ,Pqp

BZ). Chosen the t-multisets M39 = {100, 100, 1921, 1029, 39}, M40 =
{100, 100, 2701, 262, 40}, M53 = {100, 100, 109, 1055, 53}, their positions are
M39 = (100, 100, 1921, 1029, 39), M40 = (100, 100, 2701, 262, 40), M53 =
(100, 100, 109, 1055, 53). The distance between M53 and M39 is d(M53,M39) =
(0 + 0 + (−1812)2 + 262)1/2 ≈ 1812.19, while the displacement is u(M53,M39) =
(0, 0,−1812, 26). The versor associated to this displacement is û(M53,M39) =
(0, 0,−1812/1812.19, 26/1812.19) ≈ (0, 0,−0.99, 0.0014), which says that the pre-
dominant direction of the motion is along the X axes (that is, the highest variation
occurs for the multiplicities of the symbol X). The average velocity v(M53,M39) =
(0, 0,−1812/14, 26/14) ≈ (0, 0,−129.43, 1.86) is quite different from the instanta-
neous one, which is v(M40,M39) = (0, 0, 780,−767).

4.2 Decay

The radioactive decay process is such that the population of a radioactive isotope
varies in time with a fixed rate and usually it is described by the ordinary differ-
ential equation dX

dt = cX. This process is very simple and can be described by the
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Fig. 1. BZ: Quasi-periodic cycle.

DPP
Πdec = ({X}, {X}, [0 ]0,M0, R0, 0),

where M0 = {Xm1} and R0 = {r1 : X
k1−→ λ, r2 : X

k2−→ X} with k2 = 1 − k1.
No environment is needed in this case. According to Definition 2, the set of pa-
rameters of Πdec is Pdec = {m1, k1, k2}. A family Fdec can be given by considering
different values for the elements in Pdec. For demonstrative purpose we can choose
Pdec = {107, 0.2, 0.8} and show its time evolution in Fig.3.(a) which reproduces
the characteristic exponential decay. In Fig.3.(b) we show the corresponding phase
space built from Definition 10, which exhibits the linear relation between the pop-
ulation and its variation.

4.3 Lotka-Volterra

The Lotka-Volterra model, also known as the predator-prey model, can be de-
scribed in term of DPP as

ΠLV = ({A,X, Y }, {X, Y }, [0 ]0, M0, R0, 0;ELV ),

where M0 = {Xm1 , Y m2} and R0 = {r1 : AX
k1−→ 2X, r2 : XY

k2−→ 2Y, r3 :
Y

k3−→ λ}. The environment ELV is given by the alphabet {A}, the multiset
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Fig. 2. BZ: Attractor.
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MELV
= {An1}, for some n1 ∈ N and the feeding rule RELV

= {r4 : A −→
(A, in0)}. According to Definition 2, the set of parameters of ΠLV is PLV =
{m1,m2, k1, k2, k3, n1}. A family FLV can be given by considering different values
for the elements in PLV .

If we set PLV = {100, 100, 10−2, 10−2, 1, 103} we can find the oscillating be-
havior of the two species, as shown in Fig.4.(a), in Fig.4.(b), which corresponds to
the X − Y plane, and in Fig.4.(c), which corresponds to the temporal evolution
in three dimensions of the two species. The power spectra in Fig.4.(d) shows the
presence of a not so strong periodic oscillation (the smooth peaks) merged with
the important contribution from the chaotic behavior.
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Fig. 4. Lotka-Volterra.

5 Conclusions and Future Work

In this paper we introduced dynamical probabilistic P systems as a new approach
for describing and analyzing complex biological or chemical processes. We also
sketched some novel definitions, such as timed-multisets, the position and dis-
placement of a multiset, the phase space of a P system, which are needed for the
investigations of dynamical properties of the system of interest.
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In particular, we applied such system to two simple cases such the decay pro-
cess and the Lotka-Volterra Model, and then to the analysis of a chemical oscilla-
tor reaction, the well-known Belousov-Zhabotinskii reaction. The obtained results
showed a good description of this reaction in discrete terms.

The future work will consist in a further deep investigation of our model, both
from a theoretical and an experimental point of view, as well as in its use for
the analysis of complex cellular processes. For instance, we are currently applying
dynamical probabilistic P systems and the tools here introduced to the analysis of
the role of protein p53 in cell growth arrest and apoptosis.
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3. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds.: Applications of Membrane Com-
puting, Springer–Verlag, Berlin, in press.
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