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ON ARBITRARY SETS AND ZFC

JOSÉ FERREIRÓS

Abstract. Set theory deals with the most fundamental existence questions inmathematics–

questions which affect other areas of mathematics, from the real numbers to structures of all

kinds, but which are posed as dealing with the existence of sets. Especially noteworthy are

principles establishing the existence of some infinite sets, the so-called “arbitrary sets.” This

paper is devoted to an analysis of the motivating goal of studying arbitrary sets, usually

referred to under the labels of quasi-combinatorialism or combinatorial maximality. After

explaining what is meant by definability and by “arbitrariness,” a first historical part discusses

the strong motives why set theory was conceived as a theory of arbitrary sets, emphasizing

connections with analysis and particularly with the continuum of real numbers. Judged from

this perspective, the axiom of choice stands out as a most central and natural set-theoretic

principle (in the sense of quasi-combinatorialism). A second part starts by considering

the potential mismatch between the formal systems of mathematics and their motivating

conceptions, and proceeds to offer an elementary discussionof how far the Zermelo–Fraenkel

system goes in laying out principles that capture the idea of “arbitrary sets”. We argue that

the theory is rather poor in this respect.

The concept of set, the axiom system ZFC and its alleged intuitive under-
pinnings, the universe V of all sets—all are topics on which mathematicians
and philosophers offer many, contrasting opinions. Talk of the concept of
set as intuitive or commonsense has been widespread since the emergence
of set theory around 1870. However, the view that the concept of set builds
upon everyday notions is quite problematic: if we understand ‘collection’ in
anything close to its everyday sense, it is impossible to iterate the process
of formation of collections in the way needed for set theory, so as to build
‘collections’ like {{a}, {a, b}}. The intuitive image of a collection, whether
isolated or in combination with other intuitive notions, does not offer a
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solid basis for building the concept of a set.1 This task requires crucial
assumptions—beginning with the objecthood or elementhood of sets—that
cannot be justified by starting from everyday notions. Only through such
assumptions can one elaborate a concept of set worthy of that name.
Yet this is not to say that set theory was allowed many degrees of freedom
in its formative period. In this respect I disagree with the following sentences
of Kanamori:

unlike the emergence of mathematics from market-place arith-
metic and Greek geometry, sets and transfinite numbers were
neither laden nor buttressed with substantial antecedence. Like
strangers in a strange land stalwarts developed a familiarity with
them guided hand in hand by their axiomatic scaffolding.
(Kanamori [1996, p. 12].)

Such a depiction seems suitable for the metatheoretic period that set theory
as a field lived from about 1950, an era of metamathematical results that
explored the landscape of large cardinals, the technique of forcing, and the
world of models of ZFC, but not for the more properly theoretical and
axiomatic period that antedated 1940. It was in this period, 1904 to 1940,
that the core of an understanding was gained of set theory, its axiomatic
underpinnings, the universe V, and even ‘small’ large cardinals2—deficient
understanding, maybe, but not so much definitive progress has been made
since.3 And I would like to emphasize that such understanding indeed
had strong roots and substantial antecedence: basically it was a matter of
understanding and clarifying the concepts of number and function.
Zermelo himself reflected the situation clearly when he stated that set
theory is “the branch of mathematics whose task is to investigate mathe-
matically the fundamental notions ‘number’, ‘order’, and ‘function’, taking
them in their pristine, simple form” (Zermelo [1908, p. 200]; quite obviously,
he wrote those words with the problem of well-ordering in mind). But as
soon as we mention number and function as understood by 1900, ideas of
order, topology, and structure are by necessity implicated: total and partial
orders, rings and fields, topological completion, etc. As I emphasized in

1The concept is highly theoretical in nature, as I have argued elsewhere, e.g., in the Epilogue
to Ferreirós [2007].
2Interestingly, these elements basically agree with the limited amount of set theory that

Tait (2005, chap. 6) is able to develop “from below” in a way that largely follows Cantor
and Zermelo. As Martin (1998, p. 229) notes, this does not mean the evidence for ZFC and
weak large cardinals is purely “intrinsic” and of a different kind from the “extrinsic” evidence
for other assumptions. Already the evidence for an axiom like Infinity is largely extrinsic
(Maddy 1988 and 1997).
3By saying this I do not mean to deny, in any way, the enormous development of several

different researchprograms in set theory in recent decades; see above allKanamori&Foreman
[2010].
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Ferreirós [2007], the origins of set theory were linked with a vast territory of
the mathematics of 1900.
The main purpose of this paper will be to offer some reflections on (i) the
origins of the guiding principle of admitting arbitrary subsets, and (ii) the
way in which it is captured inside the formal axiomatic system ZF with
Choice, ZFC. In the first part I shall argue that the Axiom of Choice (AC)
is an absolutely natural assumption, lest set theory deviate strongly from
the work of Dedekind, Cantor, Zermelo, Hausdorff, and from the classical
understanding of the real numbers. Moreover, I shall argue that AC comes
closest to capturing (a bit of) the idea of arbitrary, non-definable sets—
also called “quasi-combinatorialism” or “combinatorial maximality.” The
second part is devoted to arguing that, all things considered, ZFC is a poor
system comparedwith itsmotivating goal of studying “all possible” arbitrary
subsets (which suggests deep reasons for the failure of this system and its
extensions to settle the truth or falsity of CH).

§1. Quasi-combinatorialism. From the beginning, the idea of admitting
arbitrary subsets was crucial motivation for the founding fathers—and here
I refer particularly to Cantor, Dedekind, Hilbert and Zermelo, as the sit-
uation with Frege and Russell may have been different. When we say that
there exists, in set theory, the set of all subsets ofN, this set ℘(N) is assumed
to have as elements all possible subsets of N, whether definable or not, be
they finite or infinite. Surprisingly, Cantor and Dedekind never made that
idea sufficiently explicit in their published attempts to formulate systematic
treatments of set theory—Dedekind [1888] dealing with finite and denumer-
able sets, and Cantor’s Beiträge [1895 & 1897] dealing with sets of the first
two transfinite cardinalities.4 However, the principle is clearly required by
their contributions to set theory and the foundations of mathematics, and
I believe it fair to say that it is distinctly characteristic of their approaches.
Until 1900 it remained something like a crucial but implicit guiding princi-
ple, and it also deviated from the views of many of their contemporaries,
including very important contributors to set theory such as Borel, Baire, and
Lebesgue.

1.1. The Dedekind–Cantor approach has been described as a quasi-
combinatorial conception, for reasons that we now review.5 A contrast
has to be made with constructivistic conceptions, but also with definabilist
views.

4Dedekind was careful to indicate that the restriction to countable sets was done for
practical purposes, “der Deutlichkeit und Einfachheit halber” (see 1888, p. 387, footnote).
Analogously, Cantor’s plan was to deal with arbitrary cardinals in a third part of his Beiträge
(see Ferreirós [2007], 291ff and Epilogue).
5See Maddy [1997] for a good philosophical analysis of the crucial role of quasi-

combinatorialism (or “combinatorial maximality,” as she tends to say) in set theory.
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Thebasic distinction (which is less clear thandesirable) is between definable
sets and arbitrary sets.6 The concept of definable set may seem clear enough:
consider the set of all even natural numbers {2, 4, 6, 8, . . . }, defined in the
obvious way, or the set {2, 3, 5, 7, 11, . . . } of prime numbers, definable as the
collection of all numbers n such that m/n implies m = n or m = 1. Even
the set {3, 14, 159, 2653, . . . }, formed by grouping ciphers in the decimal
expansion of ð, can be defined in terms of properties of the natural numbers,
finitarily in a language for the structure 〈N, 0,+, ·〉—despite the fact that ð
is a transcendental number.7

The matter, of course, is entirely different with arbitrary (non-definable)
subsets of N. Our previous example using the decimal expansion of ð may
suffice to convince the reader that it is impossible to offer a single specific
example of an “arbitrary set” of natural numbers. Concrete examples of
infinite sets of naturals that we can offer are ipso facto definable sets of
naturals (and this includes not only the sets studied in descriptive set theory,
but also, e.g., the case of 0# and other sharps, see section 6 below). The
more one reflects on this matter, themore obvious it becomes; eventually one
may come to think that the idea of a “concrete” example of an “arbitrary”
anything is an oxymoron. However, the point is not emphasized often, but
rather is commonly obscured, and so it seems important both to underscore
it and to fully absorb it.
Consider the light it throws on the postulation of powersets: although
anything we may be able to specify is definable sets, we still postulate the
existence of a totality of (definable and non-definable) sets of natural num-
bers, the elements of ℘(N). The requirement this imposes is totally different
from postulating a totality of natural numbers, N, in which case there is no
problem with exhibiting concrete instances.

1.2. To avoid paradoxes such as Richard’s paradox,8 the notion of defin-
ability must be understood as relative to some specified formal system. Thus
definable sets will correspond to sentences in some (finitary or recursively
specifiable) formal language. One may consider expanding the language, or
using several formal languages together, but this does not alter the essential

6Although it is customary to use “arbitrary” for sets in general, whether definable or
not, here I shall tend to understand that word to mean non-definable in the context of a
specified theory. I believe the context suffices to dispel ambiguity, but on occasion I will use
“non-definable.”
7To be sure, the definition is prolix and involved. One can use, for instance, Leibniz’s

formula ð/4 = 1− 1/3+ 1/5− 1/7+ · · · as a basis for an explicit definition of the sequence
3, 14, 159, . . . in the language of arithmetic. I thank Juan Arias de Reyna for offering me
important clarifications on this point.
8The paradox is discussed in good treatises on logic and set theory; a detailed treatment

can be found in Fraenkel, Bar-Hillel, and Levy [1973]; see Richard’s original paper in
Heijenoort [1967], pp. 142–144. In this connection other important paradoxes are König’s
(of the least real r which is not in the sequence of finitely definable real numbers), and Berry’s.
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point: the system(s) under consideration must be fully specifiable, which
amounts to the requirement of strict formality, i.e., recursive specification.
Since definable sets correspond to sentences in a finitary or recursive for-
mal language, given a set C of any cardinality and a corresponding formal
language, there exist only countably many definable subsets of C . Cantor’s
Theorem guarantees that there are non-definable subsets of C . In the clear
case of the natural numbers, even if we allow (countably) many different for-
mal systems, there exist only countably many definable subsets ofN. Indeed
Cantorian set theory guarantees that there are continuum-many arbitrary
subsets ofN. Intuitively, then, a randomly chosen subset ofNwill be entirely
arbitrary, non-definable.
The importance of Cantor’s diagonal procedure is, precisely, that it consti-
tutes a method for transcending any given sequence of definable subsets of
N (analogously for other sets). In and of itself, however, Cantor’s diagonal
method does not lead to arbitrary sets. In fact, if a countable sequence of
definable sets of natural numbers is given explicitly, so that we can compute
whether n belongs to the nth set, the diagonal procedure yields a compu-
tation of the truth value of n ∈ B (where B refers to the new set defined
by Cantor’s method).9 This was the feature exploited in Richard’s Para-
dox, which in turn is solved by restricting definability to specified formal
languages.
Amore liberal notion is that of definabilitywith parameters, which amounts
to the same as relativized definability. The idea is the following. Even though
most real numbers are not definable from the natural number system, we can
assume that the set R is given and consider sets of real numbers definable
in a language for the structure 〈R, 0, 1,+, ·〉 with arbitrary parameters in R.
Notice that this requires us to adopt a form of methodological platonism; we
introduce an assumption that some system we cannot fully specify is given.10

Just like before, since the language must be formally specified, it follows that
only countably many subsets of R are definable, and (by Cantor’s Theorem)
that there are many more non-definable subsets.
When employing definability with parameters the domain of the parame-
ters must be fixed from the start. Richard’s Paradox exploited an ambiguity
here, for if we regard that domain as generated along the way, a contradiction
seems unavoidable. The contrast between the static conception of set theory
and generative or constructivistic conceptions of mathematical objects was

9Compare the case with algebraic numbers: one can define in the strict sense a transcen-
dental number by using Cantor’s diagonal argument applied to an explicit enumeration of
the set of algebraic numbers. The idea is to combine theorem 1 of Cantor [1874] with the
diagonal procedure in Cantor [1892]. See, e.g., R. Gray, Georg Cantor and Transcendental
numbers, The American Mathematical Monthly, vol. 101 (1994), pp. 819–832.
10I rely here on the distinction between methodological platonism and (philosophical or

ontological) realism. This is a common point among philosophers of set theory, see for
instance Shapiro [1997], p. 38.
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not sufficiently clear around 1900. Sometimes this contrast is obscured, even
today, by careless expositors of set theory.

1.3. The reason for calling the classical standpoint of Dedekind and Can-
tor quasi-combinatorial is the following. In traditional combinatorics we
are given a finite number of elements, and all their possible combinations
are then regarded as given. When the number of elements is very large,

say 1010
10
, it may be unfeasible to actually produce all of their combinations,

but if we disregard limitations due to time and speed of operation, they may
be conceived as reachable—and this is the traditional standpoint. What
about combinations of infinitely many elements? Here we have two possible
answers, which characterize the standpoints of set theory vs. constructive
approaches to mathematics.11 Constructivists will insist that the infinitary
case is essentially different from the finite one, so that both cannot be put on
a par.
Set theory and modern mathematics, following the lead of Cantor and
Dedekind, insist on considering the infinitary case on a par with the finitary.
Hence the name “quasi-combinatorial” to emphasize the fact that a strong
analogy is drawn with the finitary, combinatorial case. That name was
coined and the conception explained by Bernays [1935] in words that deserve
quotation:

But analysis is not content with this modest variety of platonism
[to take the collection of all natural numbers as given]; it reflects
it to a stronger degree with respect to the following notions: set of
numbers, sequence of numbers, and function. It abstracts from the
possibility of giving definitions of sets, sequences, and functions.
These notions are used in a “quasi-combinatorial” sense, by which
I mean: in the sense of an analogy of the infinite to the finite.
Consider, for example, the different functions which assign to
each member of the finite series 1, 2, . . . , n a number of the same
series. There are nn functions of this sort, and each of them is
obtained by n independent determinations. Passing to the infinite
case, we imagine functions engendered by an infinity of indepen-
dent determinations which assign to each integer an integer, and
we reason about the totality of these functions.
In the same way, one views a set of integers as the result of in-
finitely many independent acts deciding for each number whether
it should be included or excluded. We add to this the idea of the
totality of these sets. Sequences of real numbers and sets of real
numbers are envisaged in an analogous manner. From this point
of view, constructive definitions of specific functions, sequences,

11The issue of intuitionism is too specific and delicate for us to consider here. Thus
when I speak of constructivism I shall mean restrictions of classical mathematics and not
intuitionism (especially not the introduction of free choice sequences).
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and sets are only ways to pick out an object which exists indepen-
dently of, and prior to, the construction.
The axiom of choice is an immediate application of the quasi-
combinatorial concepts in question. . . . (Bernays [1935, pp. 259–
260].)

Bernays’ neat explanation of the intuitive idea of set would have been im-
possible without the contrast with constructivistic approaches to mathemat-
ics.12 In this and some other ways, constructivistic critics have contributed
centrally to laying out the foundations of modern mathematics.
Notice also how Bernays begins with an explanation for functions and
immediately moves on to sets. The essential equivalence between ‘set’ and
‘function’ in a modern set-theoretic setting was obvious for members of his
generation. It wasmade clear in the 1920swith the full reduction of functions
to sets in ZFC, but also with the fact that von Neumann’s original system
employed argument and function (what he called I-objects and II-objects)
as primitive notions (not set-membership); see Heijenoort [1967, p. 399].
That essential equivalence is a crucial realization with respect to sets. Once
it is understood, I believe, the temptation of thinking naively that sets are a
matter of common sense vanishes.

1.4. I said above that the situation with contemporaries like Frege, Peano,
and the young Russell may have been different because one may interpret
that, for them, sets are and can only be definable. Frege started with con-
cepts,13 a set being the extension of a concept, and thus for a set to be given,
a conceptmust be available. Under which conditions a concept is “available”
was an unresolved matter. At that time they hoped to develop a symbolic
calculus which could completely mirror the realm of arithmetic truths, and
implicitly this included the hope that the realm of definable subsets of N
might reach all sets of natural numbers.
Concepts may be available in at least two ways, as abstractly given, or by
means of a linguistic specification; since by 1890 and even as late as 1910 no-
tions were still unclear and in flux, Frege and others (including the French
analysts Borel, Baire, Lebesgue) could hope that both avenues for “avail-
ability” might coincide. After the limiting results concerning formal sys-
tems, we know that Frege and the young Russell would have needed some
kind of “quasi-combinatorial concepts,” which is almost a contradiction in
terms (since one must abstract from the possibility of giving definitions, i.e.,

12Consider, e.g., the difference between a strict understanding of functional law vs. the
modern ideaofmapping (see section2.1below), adifference that seems tohave goneunnoticed
in the early period of development of set theory, and was brought to the fore by the criticisms
of constructivistically inclined mathematicians.
13The full story is, of course, that Frege regarded concepts as particular cases of function

(with co-domain the truth values V,F); but for our present purposes we can simplify in exactly
the same way he did in Grundlagen der Arithmetik.
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conceptual determinations, of such “concepts”). But the need for that as-
sumption, and its implications, were still very far from clear as of 1900. This
explains why Frege and contemporaries could still make their definabilist
tendencies seem compatible with adherence to classical analysis.14

If one wishes to avoid the metaphysics of concept-platonism and the
unclarities remaining in the early views, a concept should be seen as the
counterpart, the ‘phantom’ or ‘shadow’ of a linguistic expression of a cer-
tain kind, e.g., twin primes or perfect Polish spaces.15 Modern logical theory
recommends to identify the vague notion of a “concept” with the crisp con-
cept16 of open sentence in a given formal language. Let us, for the sake of
brevity and precision, call this a formal predicate.
This makes it possible to mathematise and extensionalise the notion of a
definable set, saying that a set C is definable over a structure M when and
only when there is a formal predicate in one free variable (in the language
LM) such that members of C satisfy the formal predicate. Using ϕ(x) as
a schematic representation of the formal predicate in language LM, this is
nothing but the very familiar C = {x : ϕ(x)}. C is formed by all objects
(in a certain domain) that fall under the formally specified concept, to use
Frege’s phraseology.

1.5. Naturally, the idea of a definable set is then relative to the formal
language(s) under consideration; when we deal with definability with pa-
rameters, the domain of interpretation of the language(s) also becomes
crucial. This creates the need for some care in the handling of set theories,
since reliance on different formal systems might entail significant differences
in the definable sets. Anyhow, with the move we have discussed one has
obtained a clear, mechanisable characterisation of the definable sets.17

All the rest is arbitrary sets, non-definable sets, and as you know, ℘(N) con-
tains only denumerably many definable sets, continuum-many non-definable

sets; similarly, ℘(R) contains 22
ℵ0 non-definable sets, and so on.

14Frege and Russell avoided constructivism because they left the idea of a concept or a
function—more precisely, the extent of the realm of concepts and functions—unspecified.
A clear discussion of this point can be found in Weyl [1944]. Also relevant is the fact that
Frege allowed impredicative methods, so that his requirement of definability did not exclude
impredicative definitions.
15Although in elementary cases concepts are the linguistic expression of certain cognitive

representations; consider, e.g., the notorious concept of chair.
16Pun is intended, obviously. The need for restriction to open sentences in a (first order)

formal language was urged by Skolem and Weyl in the context of the 1920s, and it was
then a very radical move; see Ferreirós [2007], chap. X, especially pp. 357ff. But I take this
formalistic tendency to be the most defining trait of 20th-century logic, hence the unhistorical
phraseology that I have employed above.
17Anatural refinement of the dichotomy definable vs. arbitrary is the following trichotomy:

predicatively definable sets, impredicatively definable sets, arbitrary sets. But just like before,
the arbitrary sets are simply “all the rest;” maybe only the first two classes allow for precise
specification. Gödel’s constructible sets are somehow transversal: his constructible hierarchy
L takes the first notion but combines it with the assumption of all transfinite ordinals.
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The intuitive idea behind arbitrary sets is that of “an infinity of indepen-
dent determinations,” to use Bernays’ words, which assign each integer to
the set or not in the case of ℘(N); or assign each real to the set or not in the
case of ℘(R), etc. Gödel presented this notion in the language of a “random
set” of numbers, to emphasize that those independent determinations are to
be regarded as random—not determined by formal predicates or the like.18

Terms like ‘random’ or ‘arbitrary’ are inevitable if we aim to pinpoint the
notion we are talking about. (Other options, such as talk of ‘free choice,’
are less satisfactory insofar as their anthropomorphic suggestions conflict
with the static, platonistic orientation of set theory. In fact, they invite us to
constructivism.)
We allow ourselves to reason about the totality of such arbitrary or ran-
dom sets, considering them as given in the same sense that we regard N as
given. But notice that one might wish to establish differences between ℘(N)
and ℘(R), insofar as single elements of N are fully specifiable while those
of R are not—that is, insofar as the reals raise definability issues that do
not appear for the naturals. This means that the iterability of the powerset
operation is not obvious. But the distinctive standpoint of set theory, in the
Cantor–Dedekind tradition, is to disregard such distinctions.
The crucial question is, do we have mathematical control of that “rest,”
the arbitrary subsets? And, how much of the idea is taken care of by ZFC?
What set-theoretic axioms play a role in making more precise the notion
of an arbitrary set? But, before going into those issues, let us consider the
historical origins in more detail.

Part 1. Arbitrary sets behind ZFC

§2. Functions, real numbers, and arbitrary sets. Two main lines in the de-
velopment of analysis converged in promoting the admission of arbitrary
sets, namely, ideas concerning decimal expansions of real numbers and the
(Dirichlet–Riemann) notion of so-called arbitrary functions. The second
line was more consciously explicit in the period 1870–1930, and its impor-
tance is well known.

2.1. The attempt to make precise Dirichlet’s approach to functions was
one of the crucial driving forces in the emergence of set theory. Gustav
Lejeune–Dirichlet presented in 1837 a “purely conceptual” idea of function
as any (many-to-one) correspondence of numerical values—regardless of
whether the correlation can be determined by a formula or not. This was
part of his attempt to build mathematics upon the basis of general concepts,
not formulas or analytic expressions. He referred to such as “arbitrary”
functions, and in the 19th century it was customary to speak of “Dirichlet’s
concept” of arbitrary function. Notice that Dirichlet’s approach, because

18Feferman [1990], p. 259, footnote 14.
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it relegated explicit analytic formulas to a secondary role, forced mathe-
maticians into specific consideration of the domain and co-domain of their
functional correspondences, the arbitrary functions.
Thirty years later, the study of discontinuous functions started in earnest,
due to Riemann’s new definition of the integral, and this again induced
mathematicians to set-theoretic considerations. Such studies, including at-
tempts at extending Dirichlet’s work on Fourier series, led mathematicians
like Hankel, du Bois–Reymond, and Cantor to analyse properties of the
sets of points at which a given function is discontinuous (or where the series
representation fails, in the case of Cantor), the so-called sets of uniqueness.
The study concerned definable subsets ofR, now in the sense of descriptive
set theory (which in essence amounts to definability with parameters in
R), but research was guided by the idea that arbitrary subsets had to be
admitted. An arbitrary infinite point-set P ⊆ R was assumed to be given,
and one proceeded to its study, e.g., through properties of the set of its limit
points. The infinite point-set is entirely arbitrary, but one concentrates on
certain classes of such sets according to specified properties (e.g., that after
countably many iterations the operation derived set leads to an empty set).
Cantor and others introduced complex examples of point-sets in the course
of their studies, most famously Cantor’s ternary set. More generally, one
studies sets obtained fromopen (closed) sets by complementation, countable
union, projection, iterated countably many times, which leads into the Borel
sets, analytic sets, projective sets.19 It is well known that the main questions
in this field are settled by Projective Determinacy and large cardinal axioms
(see Maddy [1997]).20

Dedekind, too, was strongly motivated by the ideas of Dirichlet and Rie-
mann on arbitrary functions. This led him to introduce arbitrary mappings,
as an explicit concept in set theory, in his work of 1888. (They were already
present in his algebraic and number-theoretic research since 1871, together
with the notions of homomorphism and isomorphism.) But the intended
arbitrariness was still quite obscure, and as late as 1888 he spoke of the map-
ping ϕ of a set S as being determined by “a law” (Dedekind [1888, p. 799]).
From our standpoint (sect. 1.2) the notion of an “arbitrary law” makes no
sense, or else it is just a reduplication of the set-theoretic problem at the
level of intensional objects (as would be the case with “quasi-combinatorial
concepts”, see 1.2 above). But it is abundantly clear that Dedekind was a
partisan of Dirichlet’s concept of arbitrary function.21

19For details about the history of descriptive set theory, seeCooke [1993],Kanamori [1995].
20The difference between definable-in-real-parameters and non-definable-in-real-

parameters marks the distinction between descriptive set theory and general topology of R,
and themain questions of this latter domain remain open (I owe this observation to a referee).
When this distinction became clear to mathematicians is an interesting historical question
that deserves closer study.
21Hence the only reasonable interpretation of Dedekind’s ‘definition’ is that by referring

to “a law” he aimed (i) to capture the idea that a mapping must be fully specified for each
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In connection with section 1, one should notice the strict analogy between
functions given by formulas vs. functions in general, and definable sets vs.
arbitrary sets. This is a crucial point, but I must refrain from entering into
more historical detail in the interest of space.22

2.2. Renewed study of the concept of real number was motivated by
the beginnings of studies of point-sets, just mentioned (Cantor, du Bois–
Reymond), and more generally by the contemporaneous rigorisation of
analysis (Dedekind, Weierstrass, etc.). The very influential approach of
arithmetisation, and associated ideas about pure mathematics, established a
new methodological framework that led to significant novelties in the treat-
ment of the real numbers.23

The resulting drive to develop the real number system out of the set Q of
rational numbers led Cantor and Dedekind to introduce in practice (though
not clearly enough at the level of theory) two core assumptions of set theory:
the axiomsof Infinity andPowerset; thiswas accompaniedby the assumption
that arbitrary subsets of Q had to be admitted. That step was taken in 1872
by both Dedekind and Cantor, but only implicitly; as a matter of fact, their
reasonings posited simultaneously infinite sets, their power domains, and
quasi-combinatorial subsets.24

Retrospectively, the roots of these assumptions can be found in tradi-
tional views about decimal expansions. After the introduction of decimal
expansions, eventually it became clear that all the different lengths within an
interval of unit length can be associated with all possible decimal expansions
after the colon, i.e., all possible assignments of ciphers to the finite ordinal
numbers.
I have expressed myself with some care, writing ‘associated’ intentionally,
to avoid the modern idea of an identification of real numbers with infinite
decimal expansions. Fromamethodological standpoint, this is an important
distinction. Notice the following: it is one thing to admit that, given a point
on a line, an infinite decimal expansion (possibly non-periodic) is determined

element of the domain, ϕ(s) univocally determined for each s ; and at the same time (ii) to
abstract from the possibility of giving an actual definition of ϕ by means of a formula.
In fact, this reading emerges simply from applying to mappings, mutatis mutandi, what he
had just emphasized for sets: “In what manner this determination is brought about, and
whether we know a way of deciding upon it, is a matter of indifference for all that follows”
(Dedekind [1888], p. 797, footnote).
22See, e.g., classical expositions of the history of set theory by Jourdain [1906–1914] or

Cavaillès [1938], more recent ones by Dauben or Moore [1982], my Ferreirós [2007], or
philosophically oriented books like Maddy [1997], Lavine [1994].
23See the chapters by Ferreirós (p. 235) and Schappacher & Petri (p. 343) in Goldstein et

al. [2007], and also Ferreirós [2007], chap. IV.
24Jané [2005a] has written that the positing of power domains was, historically and con-

ceptually, the first act of set theory. (The terminology of “first” and “second act” comes from
Brouwer.)
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or can be produced—and quite another thing, to define the real numbers in
the interval (0, 1) as all the possible infinite decimal expansions

0, c1c2c3 . . . ci . . . ,

where the ci are ciphers in decimal notation. The first principle was tradi-
tional, admitted since (at least) about 1600,25 but the second approach is
typically modern. Within the first approach, questions of existence in math-
ematics can still be conceived in agreement with Euclid’s Elements (points
are given by explicit diagrammatic constructions), and decimal expansions
can be regarded as numerical approximations to such entities.
The second viewpoint is detached from such constructive and/or intu-
itive geometric underpinnings, necessitating the introduction of an infinitary
standpoint and abstract principles of existence. Thismodern approach stems
from about 1850–70; it emerged within the context of the newmethodologies
of pure mathematics, modern analysis and algebra, and arithmetisation.
Let us now employ the Dirichlet notion of arbitrary functions to make
more explicit and clear this modern conception of the connection between
real numbers and decimal expansions. The real numbers in a unit interval
can be understood in terms of sequences of the ten ciphers, and thus in terms
of all arbitrary functions

f: N→ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.26

This standpoint suggests that the secret of the continuum will be found in
arbitrary functions, in the arbitrary sequences of ciphers, in the idea of all
possible assignments.
Of course, instead of the ten digits of decimal notation one can just as
well employ any finite number of digits—in particular, ternary or binary
expansions. And if instead of f: N→ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} we consider
the binary notation,

f: N→ {0, 1},

it becomes obvious that one can study the continuum via two-valued func-
tions on N. These functions in turn can be seen to code subsets of N. Thus
the “secret” of the continuum is nothing but the secret of the powerset ℘(N).

25Historically, decimal expansions were used as early as the 10th century by al-Uqlidisi
(Kitab al-fusul fi al-hisab al-Hindi, part IV), and their use continued in the coming centuries,
e.g., with the Persian mathematician al-Kashi about 1400 (see A. S. Saidan, The arithmetic
of al-Uqlidisi, Dordrecht, Reidel, 1978). It is well known that Simon Stevin became influ-
ential when he employed them around 1600. A different question is, when we may assume
mathematicians to have understood the relation between infinitary combinations of the ten
ciphers, and the continuum.
26Obviously, one has to introduce a convention in order to exclude the possibility that two

different functions correspond to the same number (corresponding to what happens with
0.1000 . . . = 0.0999 . . . ). From amore abstract point of view, one may avoid this distinction,
leaving behind the topology of R, which leads to the fundamental Baire space of descriptive
set theory.
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Cantor saw clearly at least part of this assertion,27 and understood fully
clearly how to generalize it to any set S whatsoever simply by considering
f: S → {0, 1} (Cantor [1892]). The task was, then, to study “all possible”
subsets of N, or in general of S, however big the cardinality of S may be;
that is to say, the question is to understand arbitrary subsets.
A further historical annotation is in order. To rethink the real numbers by
means of Dirichletian arbitrary functions is not a rational reconstruction of
my own imagination. And not merely because the corresponding realisation
must have been lurking in the background, in particular among experts in
arithmetic methods such as Cantor and Weierstrass, well acquainted with
continued fractions, power series, and of course digital expansions (decimal,
binary, ternary). A well-known paper by Cantor [1892] and a manuscript of
Dedekind are witnesses that the founding fathers of set theory reconceived
the real number system exactly along these lines. Dedekind’s short piece,
dated 1891, is noteworthy because it introduces Baire space (in the sense of
descriptive set theory, not the more usual one of topology) eight years before
René Baire’s dissertation.28 Working directly upon the structure 〈N, 1, ó〉 of
natural numbers defined in Dedekind [1888], he considers the “continuous”
set of all mappings ϕ : N → N . That constitutes a substantial move of
liberation from traditional ideas about the number system and its so-called
“genetic construction,” towards a more purely set-theoretic approach to the
continuum.

2.3. Defining the real numbers on the basis of the ordered fieldQ, Cantor
relied on the totality of sequences of rational numbers, while Dedekind
relied on the totality of cuts on the rational numbers. In the first case one
needs to admit arbitrary (non-definable) sequences, in the second one needs
arbitrary (non-definable) cuts. But this postulation remained fuzzy in their
work of 1872, a matter of hypothesizing that “all possible” sequences of
rationals or subsets of Q be given, perhaps as elements of a new set.
It surely is relevant that neitherDedekind norCantor went on to formulate
explicitly the Powerset principle, at least in print. The idea was left somewhat
vague, in the form of a practically crucial but implicit guiding principle.
Cantor would make the principle explicit in a letter to Hilbert (formulated as
“Themultiplicity of all the subsets of an available set is an available set,” in an
obscure context however), but only to express doubts in the next letter.29 At

27His considerations were complicated by doubts about the acceptability of ℘(S) given S
(see below).
28See ‘Stetiges System aller Abbildungen der natürlichen Zahlenreihe N in sich selbst,’ in

Dedekind [1932], vol. 2, pp. 371–72. However, the piece is very short, one page only, and
merely introduces a total order of the set of all mappings ϕ : N → N ; it does not enter into
its promised topic, to investigate the “continuous” structure of that set.
29See Meschkowski and Nilson [1991], pp. 396–398 and Ferreirós [2007], pp. 447–448.

Especially noteworthy is the letter of 12.10.1898, where Cantor expressed a negative opinion
about the Powerset principle (he calls it “illusory”).
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any rate, their theories of the real numbers presupposed full powersets, and
the axiom’s necessity for understanding the continuum as a point-set offers
the strongest case in its favour. There are other points in the works of Cantor
and Dedekind that are related to Powerset or at least to arbitrary subsets:
Cantor’s studies of point-sets proceeded on the assumption of arbitrary sets
of reals, and the same applies to Dedekind’s work on ideals (infinite sets of
complex integers) where he routinely assumed all possible ideals on any ring
of integers to be given.30

As one can see, ideas about arbitrary functions, arbitrary real num-
bers, and arbitrary sets were a crucial background to the emergence of
set theory—from Dedekind and Cantor, to Lebesgue, Zermelo and beyond.
Under the influence of such ideas, the motivating principle of accepting
totalities of arbitrary subsets was put in place. This crucial principle be-
came the main bone of contention for critics of set theory in the decade
after 1900, despite the fact that it was not made explicit by either Dedekind
or Cantor. Only with the Axiom of Choice did the principle surface more
clearly.

§3. The principle of Choice. From the standpoint of a principled accep-
tance of arbitrary subsets, it is obvious that one should accept choice sets.
Just like one regards a set of integers as the “result” of infinitely many “in-
dependent acts” deciding for each number whether it should be included
or excluded, one views a choice set for a family F of nonvoid sets as the
result of transfinitely many “independent acts” assigning to each y ∈ F an
element x ∈ y. To use Gödel’s terminology of “random sets,” it is clear that
among the random subsets of F there are those that satisfy the condition
just enunciated. And set theory is guided by the idea that all such random
sets are to be regarded as given.
Perhaps the most characteristic trait of quasi-combinatorialism is a neg-
ative trait: one disregards completely issues of explicit definition (through
formal predicates in any given system) as irrelevant to the “givenness” of
infinite sets. From this point of view, explicit definitions of specific func-
tions, sequences, or sets are only “ways to pick out” an object which exists
independently of, and prior to, the construction or definition. Wholly inde-
pendently of the mathematician’s choices, moves, or constructions, choice
sets and choice functions are given. It is for these reasons that Bernays
remarked that AC is “an immediate application” of the quasi-combinatorial
viewpoint.

30Cantor’s work on ordinals and well-ordering seems also worth mentioning here, for
given any set Cantor regards as given all possible well-orderings on it. Finally, in the case of
Dedekind, some reconstructions of his celebrated categoricity argument of 1888 assume that
it relies on Powerset (see Reck and Awodey [2002]), although the matter is contentious (see,
e.g., Parsons [2008]).
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What caused trouble with the Axiom of Choice around 1905 is precisely
the insistence on definability, the idea that infinite sets should be determined
by a concept (section 1.2). It was because many mathematicians understood
sets as concept-extensions that they found it unacceptable to postulate the
“existence” of sets such as those guaranteed by Choice. (Similarly, many
thought that functions ought to be given by explicit formulas—a view that
was strongly promoted from Berlin, as early as 1870.31) To be more precise,
many mathematicians of the period were inclined towards a constructivist
notion of mathematical existence (for the real numbers) and showed defin-
abilist preferences concerning sets of reals, all of which caused them to object
to the Axiom of Choice.
All of this was particularly clear in the case that was of general concern
around 1905: the existence of a well-ordering for the set R of real numbers.
Zermelo’s proof that such a well-ordering exists was no proof for mathe-
maticians who thought of sets as determined by concepts. It was becoming
increasingly clear then, as it is clear today, that such a well-ordering is not
definable.
Notice that a concrete, definable well-ordering is what Hilbert asked for
in Problem 1 of the famous 1900 list:

It appears to me most desirable to obtain a direct proof of this
remarkable statement of Cantor’s, perhaps by actually giving an
arrangement of [the real] numbers such that in every partial set a
first number can be pointed out. (Hilbert [1900, p. 1104].)

In light of what was said above, Hilbert’s statement of the problem is vague,
since any precise formulation must refer to a formal system. In order to
make it fully precise, the most natural formulation is to ask whether a well-
ordering of R is ZFC-definable. This Hilbertian question was solved in the
negative by Solomon Feferman using forcing methods to prove that “it is
consistent with ZF, AC and GCH that there is no set-theoretically definable
well-ordering of the continuum” (Feferman [1965, p. 342]).
Reflecting on Zermelo’s proof of the Well-Ordering theorem, Émile Borel
offered in 1905 some very perceptive remarks. Zermelo had shown the
equivalence between two problems: the problem of well-ordering a certain
set S, and the problem of defining a choice function on the powerset ℘(S).
In Borel’s view, this second problemwas in noway to be regarded as solved in
general. He thus kept emphasizing the need for mathematicians to actually
specify the infinitaryobjects or processes they aim to study. He insistedon the
need to define infinite sets by concepts, while those who accepted AC were,
more or less consciously, emphasizing their view that definability is no central
matter, while arbitrary sets (resp. quasi-combinatorialism) are primary.
At this level, of course, the complexity of (often incompatible) viewpoints
in the early development of set theory becomes utterly clear. While Cantor,

31See Ferreirós [2007], pp. 183–186, and also chaps. I and V.
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Dedekind and Zermelo were the great champions of arbitrary sets, Peano
had considered the Axiom of Choice and rejected the idea, Russell remained
agnostic throughout the 1900s and in Principia Mathematica, the French
analysts Baire, Borel and Lebesgue rejected the principle they had previously
relied on . . . and so forth. (See Moore [1982] for a plethora of details.)
Some mathematicians went on to insist throughout their career that in-
finite sets can only be accepted provided that they are determined by an
explicit definition. Hermann Weyl provides us with the example of a very
consistent standpoint along these lines. He argued that, as inexhaustibility is
a characteristic trait of infinite sets, a quasi-combinatorial viewpoint simply
cannot be applied to them (Weyl [1918, pp. 13–15, 32–33]). It has been said
that Weyl never proved a result that depended on the Axiom of Choice and,
although I have not verified that this is so, it is clear that he did his best to
ensure the independence of his mathematical work from an assumption he
considered so questionable.
The reactions of Borel, Baire, Lebesgue, Weyl, and others to Zermelo’s
system, and their principled objections to AC, can be read conversely as
so many arguments for the inadequacy of the image of sets as concept-
extensions. Let me emphasize again that this is so as long as we refrain from
postulating the existence of a Logician’s Paradise in which all the required
“quasi-combinatorial” concepts are already given (section 1.2).
One aspect requires further clarification. The effects of Choice as a
principle of set existence are relative to assumptions concerning the back-
ground model. It is well known that under assumptions such as con-
structibility (V = L) the principle of Choice becomes a theorem; we shall
come back to this below. Postulating the existence of sets provided by
Choice becomes objectionable only because it is (tacitly or explicitly) as-
sumed that the background model does include arbitrary sets. This is
almost trivial in the context of R and its well-orderings, which we just
discussed, since the ‘classical’ notion of real number is intimately entan-
gled with the assumptions of actual infinity and of arbitrary subsets (sec-
tion 2.3).
Let me put this point differently. I shall argue below that AC is the
strongest embodiment of the ideal of quasi-combinatorialism inside ZFC,
but even this embodiment does not capture the idea of arbitrary set directly,
in some absolute sense—but only relatively and partially. After one further
century of developing set theory, one may suspect that the ultimate reason
why the founding fathers failed to make explicit their basic motivation of
fully admitting arbitrary sets was simply that the idea is impossible to pin
down completely—it cannot be made fully explicit.

§4. Interlude on constructibility. An important element in gauging the
import of quasi-combinatorialism has been the study of the constructible
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universe.32 This has helped make mathematically clearer what the quasi-
combinatorial (or full) universe is meant to be. So let us briefly consider the
axiom of Constructibility, usually presented by writing (in class notation)
V = L, which we shall also have to take into account in connection with AC
later.
Gödel’s idea of constructibility arose as a characteristic mix of modern
or ‘classical’ procedures and constructivistic restrictions. The main effect of
the constructibility requirement is to abolish impredicative definition of sets,
and to conceive sets as introduced step by step through explicit definition;
but on the other hand, transfinite iteration of the process is allowed, with
steps ù,ù + 1, . . . and in general a step α for each transfinite ordinal α. As
Gödel emphasized, this is an entirely nonconstructive element, and it coun-
terbalances the elimination of impredicative definitions (i.e., the universe
is generated over the class of ordinals as impredicatively given). Thus the
approach uses a transfinite iteration of predicative definability.
Gödel’s initial hope may have been that, doing so, one might capture a lot
of the impredicative and arbitrary sets. This at least could be the reason why
he wrote, in the last paragraph of his 1938 abstract on the consistency of AC
and GCH:

The proposition [V = L] added as a new axiom seems to give
a natural completion of the axioms of set theory, in so far as it
determines the vague notion of an arbitrary infinite set in a definite
way. (Feferman [1990, p. 27].)33

Later work suggests that it is not so, namely, that transfinite iteration of
predicative definability captures little (or even nothing?) of arbitrary sets,
as will become clearer in what follows. Moreover, the assumption V = L
seems to goagainst themotivating ideas behind set theory, specifically against
combinatorial maximality. But this was not clear from the beginning.
The constructibility requirement canmost simply be presented as a restric-
tion on the von Neumann hierarchy: while the usual cumulative hierarchy is
assumed to allow arbitrary sets when domain Vα+1 is defined as comprising
all the subsets ofVα ,

34 the constructible hierarchy introducesLα+1 as the set
of all predicatively defined subsets of Lα (with parameters inLα). But while
a strictly predicative approach would allow only finite levels, and thus would
be insufficient to introduce many ordinals, Gödel’s constructible hierarchy
has levels α for all ordinals.

32The main reference is Devlin [1984]. See also Maddy [1997].
33Notice, by the way, Gödel’s acknowledgement that the idea of an arbitrary infinite

set may be “vague,” which runs counter to the strong platonism of his post-war days. This
contrast has been remarked bymany authors, fromFeferman andM.Davis to several others;
see, e.g., Gödel’s Collected Works, vol. III, pp. 36–44 and 156–163.
34The von Neumann hierarchy inherits the same weaknesses we shall discuss (section 6)

apropos the Powerset axiom. Informal descriptions of the iterative conception are just
that—informal thoughts.
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The detailed work of Jack Silver, Robert Solovay, and others, leading to
the codification of 0# (zero sharp), strongly supports the view that Con-
structibility is not compatible with the maximality that set theory is meant
to incorporate. After a pathbreaking result of Dana Scott established that
the existence of a measurable cardinal entails V 6= L, in the sense that V
is strictly larger than L, some experts began to work on results about the
structure of L that could shed more light on this matter. For instance,
F. Rowbottom was guided by the insight that, under certain structural as-
sumptions, every ordinal definable in L is merely countable, hence so must
be ℘(ù), ℘ ℘(ù), etc.! In 1964 he established that a combinatorial (parti-
tion) property of measurable cardinals already implies that there are only
countably many reals in L. As a consequence, even the existence of a Ram-
sey cardinal implies that there are only countably many constructible sets of
integers.35

This line of work soon found a definitive formulation thanks to what has
been called the Silver–Solovay theory of indiscernibles for L. Scott’s line of
work led to the intrinsic characterization of measurable cardinals as critical
points of elementary embeddings j : V → M of the universe V into some
innermodelM . Combining this with the concept of indiscernibility that had
been developed in model theory by Ehrenfeucht and Mostowski, the path
was found to the distillation of 0#. If there exists a non-trivial elementary
embedding of L into itself, then there is a closed unbounded proper class of
ordinals that are indiscernible inL. 0# is defined as the set of natural numbers
that codes the Gödel numbers of the true formulas about the indiscernibles
in L.
Beyond coding the sentences true of indiscernibles inL, 0# is a “blueprint”
with complete genetic information for the uniform generation ofL, thus hav-
ing a crucial role in the structural theory of the constructible universe. Work
on the topic continued in the 1970s with R. Jensen’s fine structure theory
of the constructible universe, including his celebrated Covering Theorem
in 1974, a deep structural statement about the proximity of V to L, “easily
the most significant result of the 1970s in set theory.”36

All of these results are conditional, since it might be the case that there
are no measurable cardinals (indeed, Jensen’s work was partly guided by
the conviction that the postulation of measurables is inconsistent) or no

35For details on all these technical matters, see Kanamori [1994], section 8 and 9. This
work is noteworthy for the plethora of historical and technical information it contains, and
my exposition in this section merely follows Kanamori.
36Kanamori [1994], p. 111. The Covering Theorem establishes that, if 0♯ does not exist,

then for every uncountable setX of ordinals there is a constructibleY such thatX ⊂ Y andY
has the same cardinality as X . Furthermore, L is then the core model (see Jensen [1995]).
For further details on all these issues, see the newly published Handbook of Set Theory,
Foreman & Kanamori (2010), volume 3 (e.g., the chapter by William J. Mitchell, ‘Beginning
Inner Model Theory’).
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non-trivial elementary embeddings of L into itself. One might thus wonder
whether a set of integers with the properties of 0# does or does not exist.
This, however, is not likely: at worst, 0# is extracted from assumptions that
turn out to be inconsistent, in which case 0# would be the set of all Gödel
numbers of sentences in the language under consideration (no trouble as to
its definition and existence); and while it is in principle possible that there are
no ordinals indiscernible in L, this runs counter to the whole development
of set theory in the last half century,37 and against the guiding notion of
quasi-combinatorialism.
Despite not yielding absolute results—for, as we have seen, its results are
conditional on large cardinal assumptions—that whole sophisticated body
of theory has led most set theorists to the conviction that L is a very thin
subclass of the class V of all quasi-combinatorial sets. There is interesting
evidence that many uncountable cardinals in L are merely countable, and
most experts think that 0# is just another set of integers, its peculiarity
coming merely from its being defined metatheoretically. Thus, contrary
to what Gödel may have thought in 1938, it turns out that a predicative
restriction of ZF is not compensated by the trick of generating the universe
over the class of ordinals as impredicatively given (transfinite induction over
all ordinals).
We do not need to enter into further details concerning the ways in which
Constructibility runs against the ideal of quasi-combinatorialism, since there
is excellent work on this topic.38 In any event, such results as we have just
reviewed help make mathematically clearer what the quasi-combinatorial
universe V is meant to be. But such negative, partial characterizations are
not the same as a full, positive definition. And this brings us back to our
main topic.

Part 2. Arbitrary sets in ZFC

In this second part I shall offer some arguments aimed at establishing
the poverty of ZFC with respect to the guiding idea of arbitrary subsets.
While the axiom system is a series of formulae in a fully specified formal
language, quasi-combinatorialism has played the role of a guiding thought
that promoted the adoption of certain methods, codified in the axioms. But
there is no a priori warrant that the quasi-combinatorial ideal can be fully
captured by formal statements.

37If 0♯ does not exist, then the hierarchy of large cardinals would stop around the level of
weakly compact cardinals, and certainly below measurable cardinals and Ramsey cardinals,
which would also be non-existent. ZFC+“0♯ does not exist” is a consistent theory, but it is
also widely believed that ZFC+“0♯ exists” is consistent.
38Readers who wish to see an in-depth study, from a philosophical point of view, are

referred to Maddy [1997].
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Some axioms of the ZFC system can hardly contribute anything to it,
as is clearly the case with Extensionality, Pairing, Regularity, Infinity, even
Union.39 We shall consider the remaining three axioms, namely the axiom
of Separation, the axiom of Choice, and the axiom of Powersets. These are
the postulates that have to do with the matter of which subsets of a given set
S exist. (Separation is a consequence of Replacement but not vice versa, so
it might seem necessary to discuss the latter; but the logical features of both
axioms are similar with respect to any of the issues we shall be discussing,
hence we can limit our discussion to Separation without loss.) In all of these
cases, what we shall say in section 5 about the potential mismatch between
conception (understanding, thought) and formal axioms is relevant.
The standpoint fromwhichwe shall revisit those three axioms is to consider
(i) the extent to which the idea of arbitrary set is necessary to motivate them
intuitively, and (ii) the requirement each one of them imposes on models
of axiomatic set theory, or to put it differently, what these axioms enforce
upon set-theoretic domains. Well known results in the metatheory of ZFC,
beginning with Skolem’s result that it admits countable models, already
indicate that the axioms do not enforce very much. But I believe that an
elementary discussion of the matter should be welcome, and this is what I
shall offer.
Naturally, it will be necessary to keep in mind that an axiomatic require-
ment is modified in the presence of other axioms: if it is the case that one
of the axioms does the job of providing arbitrary subsets, all of the other
axioms will do so secondarily.

§5. Complementarity in mathematics, and powersets. In this section we
introduce a short digression that is relevant to all that follows, although this
cannot be the place to enter into a fully detailed discussion of the standpoint
presented and my reasons for it.40

5.1. In the development of mathematics, we find noteworthy instances of
two contrary tendencies. One has been the drift towards reducing math-
ematics to a purely symbolic system; notable examples are found in 20th
century strict formalism,41 but also in Lagrange, Peano, and so on. The

39It has been brought to my notice that Regularity is like Choice in that it postulates the
existence of an object x that is not concretely specified (for any nonvoid set S there is an
element x of S such that x ∩ S = ∅). However, the axiom is not relevant for mainstream
mathematics, and it does not affect the question of which subsets of a given set do exist,
which is why I shall not deal with it here.
40An important part of my forthcoming bookMathematical Knowledge and the Interplay

of Practices is devoted to such a discussion.
41A colorful quotation was provided by Wittgenstein in 1939: “The only meaning they

have in mathematics is what the calculation gives them . . . if you think you’re seeing into un-
known depths—that comes from a wrong imagery.” (Wittgenstein [1976], p. 254). Whether
Wittgenstein was a formalist during this intermediate period is a question I must leave to



ON ARBITRARY SETS AND ZFC 381

other has been the attempt to reduce mathematics to a purely conceptual
system; noteworthy instances can be found in the 19th century trend that
was labeled “the conceptual approach” (e.g., Dedekind) but also in some
20th century proponents of category theory.42 The impression one gets
from studying these developments is that none of them has been successful
(in their ultimate reductionistic goal; they have led to advances and partial
successes).
For a long time, mathematicians and philosophers have entertained the
hope that a symbolic system could be developed which would mirror per-
fectly the thought-processes in the mind of the mathematician. Leibniz’s
ideal of a mathesis universalis was inspired by this hope, and his views influ-
enced many later authors, including Boole, Grassmann, Frege, and Hilbert.
(In previous work, referring to efforts to submit logical inference to algo-
rithmic mathematical treatment, I called this “the principle of the calculus”
(Ferreirós [2001, sec. 3.2]).) Obviously such a goal has been of great conse-
quence for the development of modern mathematical logic and foundational
studies, and, obviously too, Gödel’s incompleteness theorems established
crucial limitations it faces. On the other hand, the 19th century “concep-
tual” trend reconceived all of mathematics by means of sets and structures,
but the paradoxes of set theory forced it to find a safe haven in the highly
formalized axiomatic systems of Zermelo and others. In general, mathe-
maticians sometimes manage to avoid symbolic systems of a certain kind,
but only to develop some new systems.
In my view, the failure of both radical tendencies is of the essence. The
standpoint I adopt emphasizes the need to consider the meaning or thought
that accompanies formulae and calculations. (This is no doubt shared by
many other philosophers, but the question is how to proceed.) Mathematical
symbolism cannot be mastered without immersion in a practice, and by
learning the practice we learn to associate representations and meaning to
the formulae. Normal (so-called informal) symbolic systems and theories
cannot be made to stand alone outside of practice; and when systems and
theories are formalized and made to stand alone, the phenomenon of non-
standard interpretations arises in a natural way.
Indeed, I defend the complementarity of symbolic means and thought in
mathematics—each one joined by the other, none of them reducible to the
other. For obvious reasons, it is more difficult to deny the role and impor-
tance of the symbolic component in mathematics, but substantial arguments
can be given for a similar conclusion concerning the conceptual component.

experts in the topic, but other authors (like H. B. Curry) offer straightforward examples of
a formalistic standpoint.
42I have discussed the 19th century conceptual approach in Ferreirós [2007]. As for

category theory, see, e.g., W. Lawvere & Stephen H. Schanuel, Conceptual Mathematics: A
First Introduction to Categories (Cambridge University Press, 2005) and Krömer [2007].
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For my purposes here, I shall be content with the modest claim that, in light
of developments inmathematics and its foundations during the 20th century,
such a standpoint deserves to be seriously considered as an option.
The complementarity of symbolicmeans and thought explains the distance
between formulae, say formal axioms, and conceptual understanding. A
really trivial example is the following:

2 + 2 = 5 is obviously correct,

provided ‘5’ is the cipher associated with number four. The Axiom of
Powersets provides a non-trivial example (where the discussion of quasi-
combinatorialism vs. definable subsets is relevant, see section 1).

5.2. Intuitively, by ℘(C) we mean the set whose elements are all subsets
of C—really all, we might say in a useless effort to emphasize the point. But
the usual formal axiom inZFC only ensures that, in a domain ∆ that models
the formal system, there is an object that bears the ε-relation to all objects
in ∆ that are subsets of C, i.e., that ‘act’ as subsets of C in the domain. By
itself, the effect of postulating ℘(S) is to “collect” into a set all of the subsets
of S that are given in a domain.
This example is linked with the well-known phenomenon of Skolem’s
paradox, the fact that there are non-standard models of first-order ZFC,
sometimes called ‘non-intended’ models.43 By the Löwenheim–SkolemThe-
orem we get Skolem’s paradox: first-order ZFC has denumerable models;
in those models there is both ù and the power-set ℘(ù), but ℘(ù), being
part of a countable model, is itself denumerable. As you know, there is no
contradiction here, just a paradox: in the model there is no one-to-one cor-
respondence between ℘(ù) and ù, but ‘from the outside’ (in a wider model)
one may recognize the existence of such a correspondence.44

The paradoxical in Skolem’s paradox comes from the distance between the
formal axioms and our conceptual understanding. We may be inclined to
say that, in a non-intended Skolem model, the formally-given ℘(C) “cannot
really have” all subsets. By doing so we manifest our impression (our
thought) that the formal system does not capture what we meant. The
complementarity phenomenon that I described above is thus emphasized.
Notice that recourse to second-order logic is of no help here. A second-
order version of ZFC can only exclude non-intended models provided that

43The “intention” here is given by what we mean or think; from a strict formalist stand-
point, talk of ‘intended’ models is nonsense.
44On Skolem’s paradox see Jané [2001]. Of course the phenomenon is not particularly

linked with powersets. Similar thoughts apply to almost all other formal systems, e.g., to the
Dedekind–Peano axioms for arithmetic, or to Hilbert’s axioms for the real number system.
Consider for instance the Axiom of Induction in first-order PA, where instead of considering
all arbitrary subsets ofN (or perhaps all number-theoretic properties, but see section 1.2) we
restrict our attention to well-formed formulae Φ(x) in the formal language. Similarly with
the Completeness Axiom in Hilbert’s system.
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the second-order quantifiers are given a special meaning. This difficult
problem is usually trivialized by saying that this special meaning is “the
standard semantics” of second-order logic. The rhetorical effect is clear,
but not so the theoretical rationale: if we make a second-order system
stand alone, Henkin semantics is just as natural as the preferred one, or
even more natural. The “standard” semantics is preferred just because it
agrees with our preferred set-theoretic standpoint, that is to say, with quasi-
combinatorialism. But the formal system per se is unable to do the job. And
if our solution is to have recourse to meaning, we might as well read the
intended meanings into the first-order axiom system.45

In the move of adopting a second-order version of ZFC, formal systems
and thoughts become entangled in an unclear way. Strictly speaking, that
move does not respect the rules of the game of formalization, leading us
beyond formal logic. This may be admissible in normal mathematical work,
where one presupposes a “standard” set theory anyway, but not in the context
of studying the foundations of set theory.46 Powerset in a first-order version
is too schematic to do the work, and the “standard” second-order version
begs the question, for it presupposes that the conception of arbitrary sets is
definite, transparent.
It is the business of set theory tomake explicit the principles of set existence,
especially those principles having to do with existence of infinite sets. This
includes of course the principles of existence for arbitrary subsets of infinite
sets. To relegate some of these to an underlying logic and its supposedly
“standard” semantics is merely to obscure that key goal of set theory.47

Combinatorial maximality is a clear motivation for set theory, but if we
secure it by brute force, that amounts to renouncing the goal of a full
axiomatic analysis.
I guess belief in the primitive nature and the “logical transparency” of
the idea of all subsets of any given domain is widely held, but it does not
go beyond the general thought of combinatorial maximality. A second-
order theory of sets does not make the nature of powersets clearer, but

45For further arguments concerning this controversial matter, see among others Shapiro
[1991], Ferreirós [2001], Väänänen [2001], Jané [2005b]. While preparing the final version
of this paper, a referee’s comment led me to Weston [1976], a paper that criticizes Georg
Kreisel’s views about the second-order decidability of CH, and which offers a long, detailed
presentation of exactly the same line of argument as I have just given (see especially the first
half, sections I–IV; I cannot agree with several of the ideas presented in the rest).
46The illegitimate move is exactly what Shapiro [1991] avoids by renouncing

foundationalism.
47From this standpoint, the idea that there is “a more primitive, logical notion of set”

which is formalized in second-order logic and can be used as a basis for building up set
theory (Tait [2005], p. 134) becomes hardly tenable. There exist other approaches to second-
order logic which avoid the pitfalls of the one discussed above, such as those employed in
proof theory, where comprehension principles explicitly regulate the existence of sets (see,
e.g., Simpson [1999]).
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merely assumes the question has already been solved. By taking this idea
for granted, and treating the special “standard” meaning of second-order
quantifiers as a logical primitive, we may simply be obscuring the “nebulous
character,” the “inherent vagueness” of the notions of arbitrary subset and
powerset.48 At any rate, it should be clear that the advantage of first-order set
theory is that it forces the experts to confront explicitly the task of clarifying
those notions.
To sum up, the axiom of Powersets postulates a somehow maximal set of
subsets of any given S, with the maximality remaining fuzzy—or perhaps
better, with it remaining an ideal horizon that might even be impossible to
make fully concrete in mathematical terms. The requirement is clear mostly
in the negative: if it were the case that a subset T of S can be shown to exist,
then (by maximality of the powerset) T must be an element of ℘(S). We
want ℘(ù) to be combinatorially maximal, but in order to make this precise
one should spell out what it is to mean, offering a full axiomatic analysis.
Which sets must be given in the domain will depend on the remaining ax-
ioms, perhaps in combination with Powersets itself (a proviso that is made
particularly necessary by the impredicativity of the ZFC system).

§6. On arbitrary sets in ZFC: Subsets by Separation. The axiom of Sep-
aration could also be called the axiom of Definable Subsets. A subset T of
S is given by Separation iff there is a formal predicate ϕ(x) in the language
of ZFC that characterizes the elements of S belonging to T. Because of
this strict correspondence between subsets given by Separation and formal
predicates ϕ(x), the axiomwe are considering seems to fall short of the more
arbitrary range of quasi-combinatorialism entirely.
Nevertheless, it is instructive to consider what a constructivist may find
objectionable in the postulate. This of course is the impredicativity of Sepa-
ration: the axiom canbe used to specify a certain subset ofS, say by reference
to the powerset ℘(S), that we may be unable to characterize otherwise. This
method is unacceptable for a predicativist and from the viewpoint of stricter
constructivist positions.
It is not clear to what extent the impredicativity of Separation may capture
some of the quasi-combinatorial idea. The language of first-order logic, by
virtue of its richness of expression and in particular its use of multiple
quantifiers, can represent very subtle interrelations between elements of the
domain. Consider a first-order sentence of the kind: ∀x ∃y Φ(x, y), which
may express the existence of a unique y for every x in the domain.49 In such
cases, first-order logic is powerful enough to define a functional relation
between elements of the domain. This and impredicativity may well make
Separation capture a bit of the idea of arbitrary sets.50

48Quotations come from Weyl [1918], p. 15 and Feferman [1998], p. 73.
49I mean a sentence like: ∀x ∃y [Φ(x, y) ∧ ∀u ∀v (Φ(x, u) ∧Φ(x, v)→ u = v)].
50I thank John Steel for pointing me to this possibility (personal communication).
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However, given the way in which we have framed the notion of “definable
set” in section 1, that much has been included in the definable portion. As
we pointed out there (section 1.2, footnote), a natural refinement of the
dichotomy definable vs. arbitrary is a trichotomy: predicatively definable
sets, impredicatively definable sets, arbitrary sets. I must leave open the
question whether this trichotomy is helpful for a more detailed analysis of
the topic.
The arbitrary sets are simply “all the rest”. That this rest is non-void is
warranted by the fact that we have only denumerably many formal predicates
in the languages under consideration—and this is independent of the impred-
icativity issue. Thus Separation can only provide us with denumerably many
subsets of N, and Cantor’s Theorem establishes the existence of subsets not
given by Separation. Here the fact that Cantor’s Theorem is an indirect result
is essential: my claim is not contradicted by the fact that the ‘diagonal set’
employed in the proof is introduced by appeal to the axiom of Separation.
Notice that this use of Separation is dependent on the initial assumption
that we are given an α-sequence of sets, with α some ordinal (justù above).
Notice also that we read into the proof the quasi-combinatorial idea, by
assuming the possibility that elements of this α-sequence be arbitrary sets.
In the practice of proving, the interaction between thought and formulae
becomes particularly delicate—and this is not captured by purely formal
systems.

§7. On arbitrary sets in ZFC: Subsets by Choice. Readers who have ac-
cepted the view that both Separation and Powerset fall short of incorporat-
ing the quasi-combinatorial ideal should be inclined to think that the axiom
of Choice plays a central role in its incorporation. We have emphasized
that trouble with AC arose, around 1905, from the idea that infinite sets
should and can only be determined by a concept, i.e., from resistance to
quasi-combinatorialism, and Bernays remarked that Choice is “an immedi-
ate application” of the quasi-combinatorial idea.

7.1. It has long been established that AC is indispensable in certain con-
texts. Well-Ordering is equivalent to AC in the axiom system ZF, and so
are Zorn’s Lemma, or within topology Tychonoff’s Theorem. An early mile-
stone in studies of axiomatic dependences involving AC was the work of
Sierpinski, who devoted a lengthy paper in 1918 to spell out how deeply
entrenched the axiom is in analysis.51 It was indeed usual in analysis to
extract, from a sequence of (countably many) nested domains converging to
a point, a sequence of points; AC is just a generalization of this procedure.
An interesting but little known fact is that AC did not originate with Zer-
melo himself, but was suggested to him by Erhard Schmidt, a specialist in

51For a recent discussion of this topic, see E. Schechter, Handbook of Analysis and its
Foundations, San Diego, Academic Press, 1997.
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functional analysis.52 It is telling that the axiom originated in analysis and
not pure set theory.
Indispensable uses of AC occur precisely in cases where infinitely many
sets are assumed to be given, with possibly arbitrary sets among them, and
a set of corresponding elements is needed. Russell’s famous exemplification
of the axiom with infinite sets of socks, vs. shoes, is aimed precisely at
underscoring thatAC is unnecessarywhena formal predicate can be specified
that “does the choosing”. When the axiom is used indispensably, it offers
the best currently available examples of quasi-combinatorialism at work (see
section 3).53

The development of mathematical theories is usually opaque to mathe-
maticians when things are in the making—at least when the theory is of
a certain degree of complexity. It might have turned out that the adop-
tion of AC suffices to capture axiomatically the full idea of combinatorial
maximality (this would have been a lucky accident, but past examples of
such things can probably be found). On reflection and with hindsight it
appears that the situation is the opposite, and one wonders whether quasi-
combinatorialism will ever be captured by a formal system.

7.2. Contrary to the analysis of AC I have just given, onemight reply that,
since the axiom is valid in the constructible universe, it captures nothing of
the idea of arbitrary set.54 However, the validity ofAC under the assumption
of Constructibility (V = L) does not constitute an argument against AC
capturing some of combinatorial maximality. The fact that AC is true in
the constructible universe is a product of the strong restriction imposed on
set-formation by Constructibility (evidence for the thinness of L has been
reviewed in section 4) and AC is true of L because the whole constructible
universe can be well-ordered—as a result of its sets being ordinal-definable
by predicative sentences. Constructibility is strictly stronger than the Axiom
of Choice, in the axiom system ZF; we have just noticed that it implies
Global Choice.
The thesis I want to defend is the following. AC is the axiom that comes
closest to capturing the idea of arbitrary set, but it does not capture the
full idea, and it does so merely relatively. It is only relative to the implicit
assumption that some arbitrary sets are given in the universe that AC specifies

52Zermelo acknowledged this in the paper containing his first proof of Well-Ordering,
which took the form of a letter to Hilbert: “I owe to Herr Erhard Schmidt the idea that, by
invoking this principle [the “logical principle” of Choice], we can take an arbitrary [choice
function] ã as a basis for well-ordering” (Van Heijenoort 1967, p. 141). Schmidt is remem-
bered from the Gram–Schmidt orthonormalization process; he was a student of Hilbert,
taking his Ph.D. in 1905 with a dissertation on integral equations and Hilbert space.
53Russell’s agnosticism with regards to AC, or the “multiplicative axiom”, is telling; see

section 1.3 and Russell [1910] or [1919], chap. XII.
54This replywas actuallyoffered tomebyonememberof the audience during apresentation

of my ideas at the Berkeley Logic Colloquium in December 2006.
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a condition which enforces quasi-combinatorialism to some extent. The
reader will quickly concede that it is only relative to such an assumption that
AC becomes questionable. Given a family of sets F, the axiom gives us a
choice set C; for the axiom to be employed unavoidably, either some of the
sets S ∈ F are entirely arbitrary, hence defining conditions cannot be had;
or the set F itself collects the definable sets S in such an arbitrary way that
no uniform condition picking up the elements of S ∈ F that belong to C can
be had; or both at a time. Notice that the arbitrariness making the use of
AC unavoidable is presupposed; it must affect either the family F or (some
of) its elements S, or both.
What troubled critics of the axiom is that the choice set C would then have
been “determined arbitrarily,” which for them, since they were adopting
some form of definabilism (not quasi-combinatorialism), meant that C has
not been determined at all. Since they were mostly discussing the case of R,
thematter seemed clear, since the postulation thatR is given as awholemakes
the above assumption explicit. What troubled the critics is the conditional
arbitrariness introduced with the stipulation of AC, but notice that this is a
relative form of quasi-combinatorialism.
Once more, the fact that AC is true of L hardly counts, for in contract-
ing V to L we do eliminate that background assumption of arbitrariness.
(Remember that the existence of a Ramsey cardinal implies that L has only
countably many reals, and other similar results mentioned in section 4.) Let
me also suggest that, from the beginning, the fact that AC is theorematic
in L was evidence that the constructibility conjecture is too restrictive, for
the simple reason that AC had been shown indispensable in the context of
analysis. That is, it was indispensable under the assumption that the universe
does include some non-definable sets, such as non-definable reals (arbitrary
sets of natural numbers), sets of reals, and so on.
Under the assumption of quasi-combinatorialism, vague as it may be, the
universe of sets is richer than L and contains non-definable sets. In such a
richer universe, AC is used indispensably to workwith arbitrary sets. But the
point remains that this “greater richness” of the universe is not captured by
the axioms, above and beyond the conditional requirement that AC makes
explicit. We believe that Constructibility is not a natural axiom because it
contradicts the quasi-combinatorial ideal, and thus we aim to work with
richer universes, but we have been unable to formulate low-level axioms that
further specify that richness.

§8. Conclusion. Forty years ago, Mostowski suggested that the “intuitive
notion” of set is “too vague to allowus to decidewhether that axiomof choice
and the continuum hypothesis are true or false” (Mostowski [1967, p. 89]).
In this spirit, many logicians are willing to abandon AC, working with
assumptions that contradict it. I have argued, however, that the Axiom
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of Choice is a key ingredient of set theory, lest one abandon the focus on
arbitrary sets (quasi-combinatorialism). It follows that the status of AC is
quite different from that of the Continuum Hypothesis—that, of course, is
the situation in practice, but I have argued that it should be that way for
principled reasons. The notion of set is tight enough to provide a clear
motivation for AC, and at the same time, it is perhaps too vague to settle
CH. To eliminate AC in set theory means to go in a direction highly deviant
from set theory as inaugurated by Dedekind, Cantor, Zermelo.55

Even if the platonism of set theory and modern mathematics turns out to
be admissible conceptually and from amethodological point of view, as I am
inclined to think, it is a different matter whether and to what extent we can
hope to specify and bring under axiomatic control the postulation of totalities
of arbitrary sets. The above discussion provides strong reasons to believe
that ZFC is too poor an axiom system, vis-à-vis its motivation of laying out a
quasi-combinatorial theory of sets which allows for “all possible” arbitrary
subsets of any given set. And we have found reasons to suspect that the idea
of arbitrary sets is impossible to pin down.
If so, we should expect this guiding thought to play the role of a “regulatory
ideal,” but we should not expect to obtain a fully closed theoretical system by
its analysis. Some principles will turn out to be well grounded in the quasi-
combinatorial ideal, a case in point being AC. But we should be prepared
to find that there are questions we are not in a position to answer definitely.
This may well be the case with Cantor’s continuum problem, which, if so,
would be asking us to specify matters beyond the limits of our conceptual
possibilities. One has to insist that the continuum problem—which cardinal
ℵα measures the size of ℘(ù) and hence R—boils down to a most basic
question: is there an infinite subset of ℘(ù) which cannot be bijected with
ù nor with ℘(ù) itself ?
Mathematicians have been able to solve this question for an interesting
class of parameter-definable subsets of ℘(ù) such as the Borel sets and
the analytic sets (and even the whole hierarchy of projective sets under
the assumption of Projective Determinacy) with the answer No, which
of course is compatible with CH. But the problem is that, because of
quasi-combinatorialism, we assume the existence of further subsets of ℘(ù).
AC implies that there are sets of reals that do not have the perfect set prop-
erty.

55As one might expect, there exists also the opposite tendency, from Hilbert [1925] to
Hintikka [1999], to viewACas a logical principle. This is natural given the blurred boundaries
between logic and mathematics, which induce a certain ambiguity of the term ‘logic.’ First-
order logic already has the power to capture a weak notion of function, and if we strengthen
this feature we can obtain forms of AC (Hintikka employs a rule of functional instantiation
in IF-logic). However, because of the intimate link betweenAC and quasi-combinatorialism,
in my opinion it is more appropriate to avoid making such moves (see also Ferreirós [2001],
sec. 2.1 and 2.2).
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Generally speaking, the strategy of descriptive set theory seems very good
for enlarging the domain of sets for which CH has been established. It
seems that the most one could expect from this approach is eventually to
find a counterexample to Cantor’s hypothesis. But it does not constitute an
attempt to clarify and bring under mathematical control the postulation of
arbitrary sets.
If ZFC falls short of specifying what is meant by combinatorial maximal-
ity, it is no wonder that it leaves unsettled the truth or falsehood of CH. This
problem asks for exacting precision as to the reach or extent of the domain
of sets introduced via quasi-combinatorialism, in the simplest case of ℘(ù).
Cantor’s hypothesis (or any of the alternatives) can then be an essential addi-
tion by helping make much more concrete and precise the vague assumption
involved in the Powerset axiom. It should thus come as no surprise that CH
or alternatives (like 2ℵ0 = ℵ2 or, why not, 2

ℵ0 = ℵù+1)
56 do significant work

in further specifying the set-theoretic standpoint.
If the formal system ZFC did capture satisfactorily the idea of combi-
natorial maximality, one should expect it to settle the truth or falsehood
of CH. I do not mean to say that a formal system capturing the quasi-
combinatorial ideal should be complete.57 What I am trying to point out
here is quite independent of the phenomenon of formal incompleteness. It
is perfectly conceivable that a deep analysis of the quasi-combinatorial ideal
could lead to a formal theory that settles a question like CH, without vi-
olating incompleteness. I have in mind principles that would, so to speak,
‘fix’ that area of the theory which surrounds the proposition CH—an obvi-
ous candidate being CH itself as an axiom, but this would be a recourse to
brute force. We desire something subtler, conceptually more penetrating; in
particular we should aim to find principles that are strongly backed by the
quasi-combinatorial ideal (just like AC). This kind of ‘fixing’ has happened
in the past with many mathematical questions and results, and it is a natural
kind of fact in mathematical experience.
On the other hand, considerations offered by the experts that lead to
the suggestion that Cantor’s problem is unsolvable should count as so many
arguments for the impossibility of formally capturing the notion of arbitrary
subsets, the idea of combinatorial maximality.58 Which implies also, as we

562ℵ0 = ℵ2 is a consequenceofMartin’sMaximum, and it is also favouredbyWoodin [2001]
on the basis of his research on Ω-logic and the “Ω-conjecture” of its completeness; it was
favoured by Gödel in the past, and it is by other experts today, too, but by no means all of
them. The matter remains controversial, especially because some of the crucial assumptions
behind Woodin’s highly technical and difficult work are introduced on grounds of simplicity
and fertility, and are seemingly unrelated to the quasi-combinatorial ideal.
57That would give a trivial knock-down argument against ever being able to capture it via

a formal system.
58Compare the views of a notable critic of the meaningfulness of the continuum problem:

“The fact that it [CH] has not been settled by any remotely plausible assumption leads me,
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have spelled out above, the impossibility to capture formally the idea of real
number in its full intended generality. This of course should be striking for
any mathematician, given the central role that R plays alongside N as a core
object or structure of mathematics, pure and applied.
What can we suggest along more positive lines? The recommendation that
suggests itself naturally, as a result of our discussion, is to try tomove beyond
AC in the analysis of arbitrary sets, along lines which (it seems, given the
current state of thematter) ought to be orthogonal to the direction ofGödel’s
Program for large cardinals. Up to the present, large cardinal assumptions
have not enabled the experts to specify the “thickness” of the set-theoretic
universe, beyond the conflict of measurable cardinals with V = L, and so
it seems natural to look for principles of a different kind. Perhaps one has
to look at low levels of the cumulative hierarchy again. New principles
entailing a richer structure for ℘(N) are needed, or if you don’t like this way
of expression, we need new axioms—inspired in quasi-combinatorialism—
that capture more precisely the extraordinarily rich structure of ℘(N). We
have seen that merely postulating that ℘(N) is the set of “all” subsets of N
is no precise specification, as it relies on what the rest of the axiom system
specifies about this “all.”
I suppose many people must have been looking for such principles, and
failed. If the situation does not change, it will become natural to be sceptical
about the postulation of powersets and related issues, such as the possibility
of settlingCH. Itwould even become natural to emphasize thatR is a totality
of a different kind than N. Of course, set theorists have tried to develop
approaches leading to progress in determining the “thickness” of the universe
(e.g., forcing axioms). Imust leave it to the experts to determine how far such
assumptions go, and whether they constitute answers to the kind of question
I am proposing: formulate axioms inspired in quasi-combinatorialism that
further specify the “richness” or “thickness” of the universe of sets.
If ZFC is poor as I claim, it seems quite noteworthy that, here too, a little
bit goes a very long way (to borrow a favourite expression of Feferman’s).
For the poor expression of the quasi-combinatorial standpoint distilled in
ZFC is still powerful enough to allow for an interpretation of almost all
20th-century mathematics.
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