
A Simulator for Confluent P Systems

Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez,
Agust́ın Riscos-Núñez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: {magutier,marper,ariscosn}@us.es

Summary. Software simulators for P system are nowadays the main tool to carry out
experiments in the field of Membrane Computing. Although the simulation of a P system
is a quite complex task, current simulators have been successfully used for pedagogical
purposes and also as assistant tools for researchers. Up to now, simulators have always
been designed to deal with a specific model of P systems. In this paper we present a new
simulator which is not oriented to only one model of systems, but it allows the researcher
to experiment with many existing models or even to create new ones.

1 Introduction

Since Gh. Păun initiated Membrane Computing [21] as a new branch of Natural
Computing, a large number of research lines have arisen in the field, both concern-
ing the syntax and the semantics of the model. For example, we can consider P
systems from a generative point of view, where starting from a fixed initial config-
uration, the system may generate nondeterministically a set of different outputs
(that can be strings over some alphabet or also natural numbers); we can also
choose an accepting approach, where the system accepts or not an input that is
introduced at the beginning of the computation (this input can be a number, a
word from a certain language, or an instance of a decision problem); furthermore,
we can interpret the evolution of the P system as a computing process where some
function is computed (given an input n, the output of the system will be f(n)); or
we can think of any other interpretation of the behavior of the P systems adequate
to our purposes.

Irrespectively of the selected approach, it is usually a complex task to predict
or to guess how a P system will behave. Moreover, as there do not exist, up to now,
implementations in laboratories (neither in vitro nor in vivo nor in any electronic
medium), it seems natural to look for software tools that can be used as assistants
that are able to simulate computations of P systems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51399521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

170 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez

In the literature, several simulators can be found, but all of them have been
designed to make experiments within a specific model of P systems, that is, both
the set of possible types of rules and the way such rules are applied are fixed. Thus,
it becomes a difficult task to compare several solutions to a problem designed in
different models, and these types of software cannot be used to investigate new
possibilities beyond the usual models.

In this paper we propose a new tool which is born with the hope of becoming
a tool for the creativity in Membrane Computing. It deals with several of the
current models for P systems, also allowing to mix them in order to explore new
possibilities. Indeed, its main feature is its modularity and the ability of embedding
new P system models in future releases with a minimal modification of the code.

For example, in the current version, we have not included rules of endocytosis
and exocytosis (mainly because, to the best of our knowledge, these have not been
used yet in the solution of problems). Nevertheless, these rules can be included in
future versions and coexist with the current ones. We will discuss more about the
modularity of our simulator in Section 3.

The paper is organized as follows. In the next section, an overview of the
current simulators is given. Section 3 presents the simulator for confluent P systems
(SCPS). Section 4 is devoted to discuss the improvements of this tool with respect
to other previous simulators and the paper ends with some final comments and
conclusions.

2 Other Software

The first simulators appeared in 2000, only two years after Păun’s foundational
paper [21] was presented. In a few years, more than ten software simulators have
been presented (see [16]), each one of them designed to simulate a specific model (or
a small number of variants). Their common purposes is the better understanding of
the computational process of P systems, pedagogical purposes, as well as assistant
for researchers.

Among the first simulators for transition P systems, we can find Maliţa’s sim-
ulator [19], written in LPA-Prolog or Suzuki-Tanaka’s one [27], written in Lisp.
In [3], the Natural Computing Group of the Technical University of Madrid [29],
presented a simulator for transition P systems written in Haskell, based on some
previous theoretical formalizations (see [1, 2, 4, 5, 6]). Other simulators for transi-
tion P systems were Balbont́ın-Pérez-Sancho’s simulator [7], written in MzScheme,
and Nepomuceno’s one [20].

Other remarkable software is Ciobanu-Wenyuan’s simulator [10], which is a par-
allel implementation of transition P systems, and Syropoulos-Mamatas-Allilomes-
Sotiriades’s one, presented in [28].

We would like also to mention the web-enabled simulator recently presented in
the Third Brainstorming Week on Membrane Computing by C. Izbasa, C. Bonchis,
C. Garboni and G. Ciobanu [17].

A Simulator for Confluent P Systems 171

Another group of software tools are devoted to simulate P systems with active
membranes (see [22, 23]). The main interesting point of these is that polynomial-
time cellular solutions to NP-complete problems can be reached trading time by
space. This is done by producing (via membrane division) an exponential amount
of membranes that can work in parallel.

Among the simulators which can handle P systems with active membranes, we
can consider Ciobanu-Paraschiv’s simulator [9] which provides a graphical simula-
tion for two variants of P systems, the initial version of catalytic hierarchical cell
systems and P systems with active membranes, or Pérez-Romero’s simulator [24],
written in CLIPS, which also deals with P systems with active membranes.

In [12] and [13], a new simulator written in Prolog was presented. It is pretty
different from Maliţa’s simulator ([19]) in the implementation and, besides, it
works with P systems with active membranes. This simulator has been success-
fully used as assistant in the design of recognizer P systems with active membranes
to solve NP-complete decision problems, for instance, SAT, VALIDITY, Subset
Sum, Knapsack and Partition problems (see [11, 12, 13, 15, 25, 26]).

The simulator that we present takes some ideas from this one, but its algorithm
and implementation are quite different (and more efficient).

3 Introducing the SCPS Simulator

As pointed out in [16], the design and development processes for a P system
simulator can be structured in several stages. Next we give a short overview of
the formal definition of the P systems that can be simulated by our software, we
comment the way in which the information is expressed and handled in Prolog
during the simulation, and we explain the functioning of the inference engine,
including some final comments and examples.

3.1 Formal definition of the model

First of all, one has to choose which variant of membrane systems to simulate,
stating precisely the syntax and semantics of the model to avoid ambiguous inter-
pretations that could produce an incorrect functioning of the software.

From a technical point of view, P system models can be classified into two
categories: the models of P systems where the number of membranes along the
computations is bounded by the number of membranes in the initial configuration
(i.e., it does not change along the computation or it decreases by dissolution of
membranes) and the models where the number of membranes can increase along
the computation, via membrane creation or division.

Up to now, the simulators only can deal with one or two variants of P systems.
One of the main features of the SCPS simulator is the ability of simulate a wide
range of models of P systems. In fact, it is able to develop simulations of new
models of P systems (for example, the model obtained by allowing both division

172 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez

and merging of membranes). This is possible due to its modularity in which the
simulator can handle several kinds of rules in any possible combination.

It is also able to handle electrical charges (usually 2 or 3 polarizations are used,
but the simulator can handle any number of polarizations, no polarizations, or even
the non-explored case in which some membranes can be electrically charged and
some other not). The simulator can also handle rules that change membrane labels,
or a combination of both, changing labels and polarizations.

More precisely, the simulator is able to work with any combination of the
following types of rules (where H is the set of labels and E is the set of electrical
charges):

(a) [x → u]αh , for h ∈ H, α ∈ E, x ∈ V , u ∈ V ∗ (Object evolution rule). This
is an internal rule, associated with a membrane labelled by h and depending
on the polarity of that membrane (if it exists), but not directly involving the
membrane.

(b) x[]α1
h1
→ [y]α2

h2
, for h1, h2 ∈ H, α1, α2 ∈ E, x, y ∈ V (Send-in communication

rule). An object from the region immediately outside a membrane labelled by h
is introduced in this membrane, possibly transformed into another object and,
simultaneously, the polarity and the label of the membrane can be changed.

(c) [x]α1
h1
→ []α2

h2
y, for h1, h2 ∈ H, α1, α2 ∈ E, x, y ∈ V (Send-out communication

rule). An object is sent out from a membrane labelled by h to the region imme-
diately outside, possibly transformed into another object and, simultaneously,
the polarity and the label of the membrane can be changed.

(d) [x]αh → y, for h ∈ H, α ∈ E, x, y ∈ V (Dissolution rule). A membrane labelled
by h is dissolved in reaction with an object. The skin is never dissolved.

(e) [x]α1
h1
→ [y]α2

h2
[z]α3

h3
, for h1, h2, h3 ∈ H, α1, α2, α3 ∈ E, x, y, z ∈ V (Division

rule). A membrane can be divided into two membranes with possibly different
labels and polarizations, simultaneously transforming some objects. The skin
cannot divide.

(f) [x → [u]α1
h1

]α2
h2

, for h1, h2 ∈ H, α1, α2 ∈ E, x ∈ V , u ∈ V ∗ (Creation rule).
A new elementary membrane can be created inside an existing one from an
object. In nature, this process is know as autopoiesis, see [18].

(g) [x]α1
h1

[y]α2
h2
→ [z]α3

h3
, for h1, h2, h3 ∈ H, α1, α2, α3 ∈ E, x, y, z ∈ V (Merging

rule). Two elementary membranes with the same father can be merged into a
new membrane and simultaneously transforming some objects.

For rules of type (b), (c) and (e), if h1 = h2 = h3, we have the usual communication
and division rules of the P system model with active membranes.

Note that, with the exception of the object evolution rules, all the remaining
types or rules are coupled: Send-in with Send out, Division with Merging and
Dissolution with Creation.

These rules do not use cooperation or priorities. Due to the modularity of the
simulator, these features can be easily added in new versions according with the
idea of making a general simulator for all kinds of confluent P systems.

The rules are applied according to the following principles:

A Simulator for Confluent P Systems 173

• The rules are used as customary in the framework of membrane computing,
that is, in a maximally parallel way. In one step, each object in a membrane
can only be used for one rule (non-deterministically chosen in case there are
several possibilities), but any object which can evolve by a rule of any type
should evolve.

• If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external membrane (more precisely, of the closest
predecessor which is not dissolved).

• All elements which are not specified in any of the operations to apply remain
unchanged.

• A division rule can be applied to a membrane and, at the same time, some
evolution rules can be applied to some objects inside that membrane. In this
case, we can suppose that “first” the evolution rules are used, changing the
objects, and “after that” the division takes place, introducing copies of the
results of the evolutions in the two newly generated membranes (but keeping
in mind that all these processes take place in the same step of computation).

• The rules associated with a label h are used for all membranes with this label.
At one step, different rules can be applied to different membranes with the
same label, but one membrane can only be the subject of at most one rule of
types (b), (c), (d), (e) and (g).

The modularity of the simulator also affects the semantics. In the present
version, communication rules of types (b) and (c) (send-in and send-out rules,
respectively) can only be applied sequentially, in the same way as in P systems
with active membranes. This means that only one object can cross each membrane
in each step of the computation.

We have chosen this option because the model of P systems with active mem-
branes is the main variant for which we are interested in running simulations (as
there exist in the literature many cellular solutions to hard problems in this model).
Nevertheless, this can be easily modified by the user, or even several types of rules
can coexist, by simply specifying a flag in the syntax of the system.

3.2 Implementing P systems in Prolog

Each programming language has its own advantages and disadvantages and, up to
now, there is no objective criterion to decide which is the more suitable one for
simulating the evolution of a membrane system. We decided to use Prolog1 because
of two main features: it is expressive enough to handle symbolic knowledge in a
natural way, and it has the ability of evolving the different configurations following
a set of rules.

On one hand, the tree-based data structure and the use of infix operators
defined ad hoc by the programmer allow us to simulate the natural language,
and the user can follow the evolution of the system without any knowledge of
1 A good starting point for Prolog can be [8] or [30].

174 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez

Prolog. On the other hand, Prolog programs are sets of facts and rules, and basic
mechanisms of Prolog are pattern matching and automatic backtracking, so the
design of the inference engine to perform the evolutions has a natural treatment
from a programmer point of view.

In a similar line to other simulators, the present simulator stores and handles
the information related to the P system and tries to show the process to the user
in a friendly way. One of the main features of this simulator is that both tasks
(computation and relation with the user) are made in the same language. For that,
this simulator exploits the ability of Prolog to define ad hoc symbols in order to
imitate natural language.

Finally, the main advantage of using Prolog for this simulator is its modularity.
Our simulator has been thought as the starting point of an open project in which
new models of P systems (with new rules and probably new semantics) can be
studied. This lead us to consider a programming language which allows to easily
add new features to the existing ones with a minimum number of changes.

Another important issue is the choice of a suitable data structure. This is a
key problem in all fields of Computer Science (in particular, when dealing with the
simulation of P systems). This decision is of course related with the programming
language that is used, as specific techniques related with it have to be applied. A
good representation allows a quick transition between configurations and therefore
speeds up the simulation.

In order to express in Prolog the basic information of a P system (membrane
structure, contents of the regions, and rules), the following formal representation
is considered. A given membrane structure is expressed by means of a labelled
tree, where:

1. < > is the position to denote the root of the tree and it is associated to the
skin;

2. if < i1, . . . , in > is the position of a membrane h, then < i, i1, . . . , in > denotes
the position of the i-th inner membrane to h.

Note that different membranes with the same label are individualized using
their positions.

The configuration in one step of the evolution is represented as a set of one-
literal clauses, each of them representing a membrane. Hence, in this representation
each clause shows the position, identificator2, multiset of objects and current step
of the computation, as well as the P system this membrane belongs to. In this way,
the set of clauses gives information about the contents of the membranes and the
membrane structure (by means of the position of each one).

More precisely, to denote that in the t-th step of its evolution the P system,
P , has a membrane at position [pos] with identificator Id and m as multiset, we
write

P :: Id at [pos] with m at time t

2 The identificator is the label plus the polarity, if it exists.

A Simulator for Confluent P Systems 175

Note that we use the user-friendly representation of a Prolog literal, instead of the
functional representation.

By means of some new function symbols, the rules are also represented as
literals, in the following way3:

(a) [x → u]αh ; [x → u]h
P rule x evolves to u in h ec α
P rule x evolves to u in h

(b) x[]α1
h1
→ [y]α2

h2
; x[]h1 → [y]h2

P rule x out of h1 ec α1 sends in y of h2 ec α2

P rule x out of h1 sends in y of h2

(c) [x]α1
h1
→ []α2

h2
y ; [x]h1 → []h2y

P rule x inside of h1 ec α1 sends out y of h2 ec α2

P rule x inside of h1 sends out y of h2

(d) [x]αh → y ; [x]h → y

P rule x inside of h ec α dissolves and sends out y
P rule x inside of h dissolves and sends out y

(e) [x]α1
h1
→ [y]α2

h2
[z]α3

h3
; [x]h1 → [y]h2 [z]h3

P rule x inside of h1 ec α1 divides into y inside of h2 ec α2

and z inside of h3 ec α3

P rule x inside of h1 divides into y inside of h2

and z inside of h3

(f) [x → [u]α1
h1

]α2
h2

; [x → [u]h1]h2

P rule x inside of h2 ec α2 creates u inside of h1 ec α1

P rule x inside of h2 creates u inside of h1

(g) [x]α1
h1

[y]α2
h2
→ [z]α3

h3
; [x]h1 [y]h2 → [z]h3

P rule x inside of h1 ec α1 and y inside of h2 ec α2

merge into z inside of h3 ec α3

P rule x inside of h1 and y inside of h2

merge into z inside of h3

3.3 Design of an inference engine to carry out the computation

There exists a basic difficulty intrinsic to the simulation of a P system in a con-
ventional computer: the main power of P systems, concerning the execution of
computations, is their massive parallelism. Furthermore, there are two levels of
parallelism: all objects inside a membrane can be transformed simultaneously, and
this process occurs in all membranes at the same time. Therefore, in one time unit
3 If the membrane has h as label and α as polarity, we will write the identificator as h
ec α.

176 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez

(cellular step), many atomic transformations can be carried out. However, sequen-
tial conventional computers have only one processor. This means that, regardless
of the programming language and the design chosen for the simulator, only one
atomic transformation can be performed in each time unit (processor step).

The second feature which makes hard the design of a simulator is the intrin-
sic non-determinism of P systems. If there is a large number of branches in the
computation tree, the storage of the information can exceed the capacity of the
computer and therefore, from a practical point of view, the simulation in this case
is not feasible.

Keeping in mind these two difficulties, that is, since current computers are not
able to deal with all the information related to the maximal parallelism and the
non-determinism of (relatively large) P systems, different authors have imposed
several restrictions to their simulators. These constraints can be to bound the num-
ber of membranes or the cardinality of the multisets, to develop the computation
tree until a prefixed depth, or to follow only one branch in the computation tree.

In this simulator we have tried to minimize these constraints, with the hope
of covering a broad range of models of P systems. The limits on the number
of membranes, the cardinality of the multisets or the number of computation
steps are only imposed by the resources of the computer where the simulator
is running, but not by the simulator itself. The only restriction imposed to the
simulations is that, in case of non-determinism, the simulator only follows one of
the possible computations4. This constraint gives name to the simulator (SCPS,
Simulator for Confluent P Systems), since the simulator is thought for performing
the simulation of confluent P systems (that is, systems where, for a given input,
all the computations produce the same output). Let us remark that all recognizer
P systems are confluent, regardless the P system model, so our simulator can be
considered a powerful tool for studying cellular solutions of decision problems, in
spite of this restriction.

In the same line of the first generation of simulators reported in [16], the
purpose of designing this simulator is to get information about the evolution of
the system that is simulated and, therefore, we are interested in describing the
intermediate steps and configurations.

The simulator behaves as follows. The input of the program is the initial con-
figuration of the system (which is represented as a set of literals with predicate
symbol ::, all of them at time 0) and a set of rules. The Prolog algorithm to
carry out the evolution of a P system works in a natural way, as it is explained
below.

• Step 1: Initialization. At the beginning of each computation step, all the
membranes are set to applicable and their objects are split into three multisets:
one usable multiset, containing all the objects of the initial membrane and two
empty multisets: the tried multiset and the used multiset.

4 Current studies are looking for heuristics to decide which is a “good branch” to follow
in the computation tree; see, for example [14].

A Simulator for Confluent P Systems 177

• Step 2: For each applicable membrane we perform the following steps:
– (2.a) Evolution: For each object a in the usable multiset, we look for an

evolution rule which can be triggered by a. If the rule exists, all the copies
of the object are deleted from the usable multiset and the objects obtained
by the application of the rule are added to the used multiset. If that rule
does not exist, all the copies of a are added to the tried multiset. After
this step, the membrane remains applicable, i.e., new rules can be applied
to this membrane. If several evolution rules can be triggered by the same
object, the simulator only considers the first rule found.

– (2.b) Creation: The process is similar to that from step 2.a. For each
object a in the usable multiset, we look for a creation rule which can be
triggered by a. If the rule exists, all the copies of the object are deleted from
the usable multiset and the new membranes are placed in the used multi-
sets of the corresponding regions. If such rules do not exist, all the copies of
a are added to tried multiset. After this step, the membrane remains ap-
plicable, i.e., new rules can be applied on this membrane. If several creation
rules can be triggered by the same object, the simulator only considers the
first rule found.

– (2.c) Send-in: In the current version of the simulator, the semantics of this
rule is quite different from the evolution and creation rules (steps 2.a and
2.b) since only one object is allowed to cross out the membrane. In this step
we look for a send-in rule applicable to the membrane. If that rule exists,
the object which triggers the rule is deleted from the father membrane, the
new object is added to the used multiset, and the membrane turns into
no-applicable mode. If such rules do not exist, we follow with step 2.d.

– (2.d) Dissolution, Send-out and Division rules: In spite of these three
rules are pretty different, they have common features and can be grouped
in the algorithm: all of them can be applied only once, the multiset of the
father membrane is not involved in the application (in the opposite way of
the send-in rule), and they all turn the membrane into no-applicable mode.
In this case we look for (a) a dissolution rule, (b) a send-out rule, and (c)
a division rule, in that order. If a rule of such kind is found, a copy of the
object which triggers the rule is removed from the usable multiset, the rule
is applied (i.e., the membrane is dissolved, a new object is sent to the father
membrane, or the membrane is divided) and the membrane (or membranes,
if division) turns into no-applicable mode.

• Step 3: (Merging rules) When all the membranes have been examined, some of
them may remain in the applicable mode (if no rule have been applied or only
evolution or creation ones). Then, for each merging rule we look for membranes
in applicable mode that can be merged. If such membranes are found, they will
be merged. After this step, all the membranes, merged or not, turn into no-
applicable mode.

• Step 4: After step 3, a cellular step is completed. The simulator takes all the
membranes and store them as a new configuration (with at time incremented

178 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez

by 1). At this point, the P system is ready for a new evolution step, so we go
again to step 1 and start a new cellular step.

• End of computation. If there are no rules to be applied to any membrane of
a configuration, then the evolution finishes (the P system halts).

This is the basic algorithm. Obviously, the simulator has other technical fea-
tures oriented to speed up the computation, but we will not get into details about
the code here. We also provide different levels of verbosity with respect to the
information supplied to the user, that are illustrated in the next subsection.

3.4 Interacting with the simulator

In order to launch the simulator, we open a Prolog interpreter and we load the
main file scps.pl. Then, we have to load the information describing the P system
that we want to simulate (set of rules and initial configuration, including input
multiset if it is the case). This information is provided to the system in a text
file containing the corresponding Prolog literals. Users can easily create such files
following the guidelines hinted in Subsection 3.2, but the simulator also includes
a tool that is able to generate automatically the files containing the set of rules
and the initial configuration of recognizer P systems with active membranes which
solve several NP-complete problems (in the current distribution, the available
options are Subset Sum, Knapsack and Partition).

It is important to note that the generation process can be skipped if we perform
further simulations of the same instances, it suffices then to load the corresponding
initial files. Also, if we are interested in running a simulation for a different instance
with the same size, the file containing the set of rules can be used again, and we
only need to generate the initial configuration for the new input multiset via the
instruction generate initial.

Once the P system is loaded, we can choose between several possible commands
that provide information about the evolution of the system. For example, we can
let the simulator run internally, getting only information about the number of
cellular steps of the computation and the output of the P system. This is done
using the command go.

?- go(p1).
The P system p1 stops after the step 56 and returns no.

Also, one can ask the simulator to show the configurations step-by-step un-
til a given instant of the computation. If we already went until the configu-
ration at time t, the Prolog instruction that shows the next configuration is
evolve(p1,t), where p1 is the name of the P system.

Using this instruction, the simulator only stores in memory the last config-
uration, for the sake of efficiency. There are two variants of this instruction:
secure evolve stores all the configurations already simulated, and evolve stat
includes in the output that is displayed not only the configuration but also the

A Simulator for Confluent P Systems 179

number of membranes and information related to the used rules. Besides, the sim-
ulator informs if any objects have been sent out to the environment.

?- evolve_stat(p2,10).

p2 :: e ec-1 at [5] with [p-12, a-24, q0-1] at_time 10
p2 :: e ec-1 at [6] with [p-14, a-22, q0-1] at_time 10
p2 :: e ec-1 at [3] with [p-20, a-14, q0-1] at_time 10
p2 :: e ec-1 at [2] with [p-26, a-6, q0-1] at_time 10
p2 :: e ec 0 at [4] with [a-16, p-19, q1-1] at_time 10
p2 :: e ec 0 at [7] with [a-29, p-8, q1-1] at_time 10
p2 :: e ec 0 at [8] with [a-31, p-6, q1-1] at_time 10
p2 :: e ec 0 at [10] with [a-39, q0-1] at_time 10
p2 :: r ec-1 at [1] with [b-1, h0-1, d0-1] at_time 10
p2 :: s ec 1 at [] with [# -370, g0-8] at_time 10

The P-system has sent out d1 at step 10

- The P system has 10 membranes at time 10
- Used rules in the step 10:
* The rule 25 has been used 3 times
* The rule 26 has been used 4 times
* The rule 27 has been used 3 times
* The rule 28 has been used 5 times
* The rule 60 has been used only once
* The rule 61 has been used only once

4 Comparing the Simulators

In this section, we shall compare the different performances obtained when simu-
lating cellular solutions to hard problems using either the SCPS simulator that we
are introducing in this paper, the previous Prolog simulator presented in [13], or
the CLIPS simulator presented in [24]. Note that the statistics that will be shown
only intend to illustrate some differences between the three simulators concerning
their speed, but there are many other parameters that should be taken into account
for a better comparison.

In order to get a battery of examples we have used a family of recognizer P
systems solving the Partition problem (see [15, 26] for details about the design of
the cellular solution that will be simulated).

The Partition problem is known to be NP–complete, but it is possible to find
cellular solutions (i.e., solutions by means of families of P systems) that run in
polynomial time (i.e., that perform a polynomial number of cellular steps).

The underlying idea is to use membrane division to generate in a polynomial
time an exponential number of membranes that are able to work in parallel. Of

180 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez

course, when we try to simulate such solutions on a sequential computer we lose
the massive parallelism and therefore the time (number of sequential steps) is
not polynomial anymore. However, we have chosen to simulate such families of
P systems because there are huge amounts of information to be handled during
the simulation (exponentially many objects evolving in an exponential number of
membranes), and in this way we can really take the simulators to the limit of their
capability.

Before going on, let us recall that the Partition problem is the following one:
Consider a set S with N elements. The weight of each element s in S is a non-
negative integer w(s), where the weight function, w, is additive. Determine if S
can be split into two subsets S1 and S2 such that the sum of the weights of their
elements is the same.

Please note that the important parameters for each instance are the constant
N , that determines the size of the instance, and the list of weights, that will
indicate the number of objects of the initial multiset (numbers are encoded in a
1-ary way). Actually, all the instances of the same size are processed by the same P
system (fixed set of rules and membrane structure), although the input multisets
that encode the specific list of weights are different for each instance.

The procedure that we have followed is to take an instance P system and run
the corresponding three simulations, asking the simulators to go through all the
computation and to show only the final output. Then, we record the time spent
by each simulation5 and we pass to another P system.

It is worth mentioning that, in order to interpret the following statistics, one has
to take into account that we are comparing the results of running one instruction
(macro) that tells the simulator to go through all the computation, giving as result
of its application the output of the corresponding P system. Moreover, we would
like to remark that there are many things that influence the resources (time, space)
needed by the simulator to run that instruction, mainly:

• Representation of the knowledge.
• Implementation of the application of one evolution rule.
• Management of stored information of previous computation steps

(keep everything vs. keep only the last configuration).

Indeed, we believe that one of the most important differences between the
SCPS simulator and the other ones that we are considering lies in the internal
representation of the knowledge. More precisely, the fact that in the first case we
do not represent the multisets as lists of symbols, but we use instead a list of pairs
(object, multiplicity) will show to be of high relevance in what concerns the size of
the instances that can be handled by the simulator. Figure 1 shows the statistics.

The number of membranes that will be generated during the computation only
depends on N , but the number (multiplicity) of objects that will be present in the
system, evolving during the computation, depends on w(S), as well as the number
of cellular steps that have to be simulated (for a given instance, its associated P

5 We use always the same machine, a Pentium(R) 4 at 2.8GHz, 504 MB of RAM.

A Simulator for Confluent P Systems 181

system will halt in at most 2N + w(S) + 11 steps, sending to the environment
either yes or no).

It can be observed how the time (and the number of inferences on the Prolog
simulators) increases as we consider larger weights for instances with the same
size.

5 Final Comments

In spite of their limitations, the success of the first generation of simulators of P
systems is beyond any doubt. They are a useful tool for teachers and researchers.
On the one hand, one of the main utilities of this software is its use for a better
understanding of membrane computing, so it is a pedagogical tool of first line.
On the other hand, it has proved to be a useful assistant tool for the design
and formal verification of complex P systems which solve problems, saving the
researchers heavy hand-made calculations.

In this paper we go beyond the usual targets in the design of P system simu-
lators. We are not thinking in the particular framework of a specific model of P
systems, but having in mind a broad range of such models, even in a non-explored
combination of existing ones. For that, we use a language (Prolog) which is able
to simulate natural language and, therefore, a user without knowledge of Prolog
is able to follow the simulation.

As pointed in [16], one of the common features of the first generation of simula-
tors was the lack of efficiency in favor of the expressivity. In this simulator we keep
a high grade of expressivity, but we have tried to make more efficient algorithms
and implementations. As the statistics show, the result has been a simulator much
faster than the comparable simulators.

As a drawback of the simulator, we can remark that the time of execution (and
the number of inferences on the Prolog simulators) increases as we consider larger
weights for instances with the same size, but the main constraint is intrinsic to
the target of the simulator.

This software is thought to deal with many different kinds of rules and in each
step the simulator looks for rules of any possible type. If the number of types of
rules increase, the time required for performing each cellular step also increases.

A natural way to avoid this drawback is to ask the user at the beginning of
the simulation which are the type of rules of the model and ignore the rest. This
question should be revisited in forthcoming releases of the simulator.

Acknowledgement

The support for this research through the project TIC2002-04220-C03-01 of the
Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER funds, is grate-
fully acknowledged.

182 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez

In
st

a
n
ce

s
C

L
IP

S
p
re

v
io

u
s

P
ro

lo
g

S
C

P
S

N
=

4
,

w
=

[1
0
,7

,9
,1

4
]

3
0
6
9

ru
le

s
fi
re

d
/

1
.2

2
se

c
2
,3

1
6
,4

2
4

in
fe

re
n
ce

s
/

1
.8

9
+

2
.0

1
=

3
.9

0
se

c
3
0
,7

9
9

in
fe

re
n
ce

s
/

0
.0

8
se

c

N
=

4
,

w
=

[1
8
,2

7
,5

0
,3

5
]

8
5
2
3

ru
le

s
fi
re

d
/

1
0
.8

1
se

c
O

u
t

o
f
g
lo

b
a
l
st

a
ck

(s
te

p
7
)

7
5
,4

1
8

in
fe

re
n
ce

s
/

0
.1

4
se

c

N
=

4
,

w
=

[1
3
5
,2

1
5
,5

0
0
,1

5
0
]

ca
n
n
o
t

g
en

er
a
te

th
e

in
i-

ti
a
l
co

n
fi
g
u
ra

ti
o
n

O
u
t

o
f
g
lo

b
a
l
st

a
ck

(s
te

p
2
)

5
2
3
,1

6
7

in
fe

re
n
ce

s
/

1
.0

5
se

c

N
=

4
,

w
=

[2
3
4
5
,7

5
0
0
,1

9
1
6
,6

0
0
6
]

id
.

O
u
t

o
f
g
lo

b
a
l
st

a
ck

(fi
rs

t
st

ep
)

8
,8

4
2
,0

1
9

in
fs

.
/

1
7
.4

5
se

c

N
=

5
,

w
=

[9
,7

,4
,2

,8
]

4
3
2
9

ru
le

s
fi
re

d
/

2
.2

7
se

c
5
,6

1
0
,6

7
3

in
fe

re
n
ce

s
/

1
.5

8
+

3
.7

5
+

1
.7

2
=

7
.0

5
se

c
4
8
,3

2
9

in
fe

re
n
ce

s
/

0
.2

2
se

c

N
=

5
,

w
=

[6
,1

0
,1

1
,1

6
,2

5
]

8
9
4
3

ru
le

s
fi
re

d
/

8
.8

9
se

c
O

u
t

o
f
g
lo

b
a
l
st

a
ck

(s
te

p
9
)

8
3
,3

5
7

in
fe

re
n
ce

s
/

0
.3

8
se

c

N
=

6
,

w
=

[9
,2

,5
,7

,1
3
,6

]
1
0
7
0
4

ru
le

s
fi
re

d
/

1
3
.9

8
se

c
O

u
t

o
f
g
lo

b
a
l
st

a
ck

(s
te

p
1
0
)

1
1
2
,5

9
2

in
fe

re
n
ce

s
/

0
.2

3
se

c

N
=

1
0
,

w
=

[3
,5

,1
0
,7

,1
,2

,8
,1

,4
,2

]
7
1
8
1
.8

0
se

c
(≈

2
h
)

O
u
t

o
f
g
lo

b
a
l
st

a
ck

(s
te

p
1
3
)

3
,2

4
6
,3

2
3

in
fe

re
n
ce

s
/

1
0
.0

8
se

c

N
=

1
0
,

w
=

[3
4
0
,5

0
0
,1

0
7
,7

7
7
,2

2
1
,

1
9
2
,8

5
0
,1

9
9
,4

4
4
,2

5
0
]

O
u
t

o
f
g
lo

b
a
l
st

a
ck

(fi
rs

t
st

ep
)

1
0
9
,2

2
9
,8

9
7

in
fs

.
/

6
2
4
.4

5
se

c

F
ig

.
1
.

S
ta

ti
st

ic
s

o
f
th

e
co

m
p
a
ri

so
n
s

A Simulator for Confluent P Systems 183

References

1. F. Arroyo, A.V. Baranda, J. Castellanos, C. Luengo, L.F. de Mingo: A recursive
algorithm for describing evolution in transition P systems. In Pre-Proceedings of
Workshop on Membrane Computing (C. Mart́ın-Vide, Gh. Păun, eds.), Curtea de
Argeş, Romania, August 2001. Technical Report GRLMC 17/01, Rovira i Virgili
University, Tarragona, Spain (2001), 19–30.

2. F. Arroyo, A.V. Baranda, J. Castellanos, C. Luengo, L.F. de Mingo: Structures and
bio-language to simulate transition P systems on digital computers. In Multiset Pro-
cessing. Mathematical, Computer Science and Molecular Computing Points of View
(C.S. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 2235, Springer-
Verlag, Berlin, 2001, 1–16.

3. F. Arroyo, C. Luengo, A.V. Baranda, L.F. de Mingo: A software simulation of tran-
sition P systems in Haskell. In Membrane Computing WMC-CdeA 2002 (Gh. Păun,
G. Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer-Verlag, Berlin,
2003, 19–32.

4. A.V. Baranda, J. Castellanos, F. Arroyo, R. Gonzalo: Data structures for implement-
ing P systems in silico. In Pre-proceedings of Workshop on Multiset Processing (C.S.
Calude, M.J. Dinneen, Gh. Păun, eds.), Curtea de Argeş, Romania, CDMTCS TR
140, Univ. of Auckland, 2000, 21–34.

5. A.V. Baranda, J. Castellanos, R. Gonzalo, F. Arroyo, F. de Mingo: Data structures
for implementing transition P systems in silico. Romanian Journal of Information
Science and Technology, 4, 1-2 (2001), 21–32.

6. A.V. Baranda, J. Castellanos, F. Arroyo, R. Gonzalo: Towards an electronic imple-
mentation of membrane computing: A formal description of nondeterministic evolu-
tion in transition P systems. In DNA Computing DNA 7 (N. Jonoska, N.C. Seeman,
eds.), LNCS 2340, Springer-Verlag, Berlin, 2002, 350–359.

7. D. Balbont́ın-Noval, M.J. Pérez-Jiménez, F. Sancho-Caparrini: A MzScheme Imple-
mentation of Transition P Systems. In Membrane Computing 2002 (Gh. Păun, G.
Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer-Verlag, Berlin, 2003,
58–73.

8. I. Bratko: PROLOG Programming for Artificial Intelligence. Third edition. Addison-
Wesley, 2001.

9. G. Ciobanu, D. Paraschiv: P system software simulator. Fundamenta Informaticae,
49, 1-3 (2002), 61–66.

10. G. Ciobanu, G. Wenyuan: P systems running on a cluster of computers. In Membrane
Computing WMC 2003 (C. Mart́ın-Vide, Gh. Păun, G. Rozenberg, A. Salomaa, eds.),
LNCS 2933, Springer-Verlag, Berlin, 2004, 123–139.

11. A. Cordón-Franco, M.A. Gutiérrez Naranjo, M.J. Pérez Jiménez, A. Riscos Núñez,
Sancho-Caparrini: Implementing in Prolog an effective cellular solution to the Knap-
sack problem. In Membrane Computing WMC 2003 (C. Mart́ın-Vide, Gh. Păun, G.
Rozenberg, A. Salomaa, eds.), LNCS 2933, Springer-Verlag, Berlin, 2004, 140 – 152.

12. A. Cordón-Franco, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez,
F. Sancho-Caparrini: Cellular solutions of some numerical NP-complete problems:
A Prolog implementation. In Molecular Computational Models: Unconventional Ap-
proaches (M. Gheorghe, ed.), Idea Group, Inc., 2005.

13. A. Cordón-Franco, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F. Sancho-
Caparrini: A Prolog simulator for deterministic P systems with active membranes,
New Generation Computing, 22, 4 (2004), 349–364.

184 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez

14. A. Cordón-Franco, M.A. Gutiérrez Naranjo, M.J. Pérez Jiménez, A. Riscos Núñez:
Exploring computation trees associated with P systems. In Membrane Computing:
5th International Workshop, WMC 2004, Milan, Italy, June 14-16, 2004, Revised
Selected and Invited Papers (G. Mauri, Gh. Păun, M.J. Pérez Jiménez, G. Rozenberg,
A. Salomaa, eds.), LNCS 3365, Springer-Verlag, Berlin, 2005, 278 – 286.

15. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: A fast P system for
finding balanced 2-partition. Soft Computing, 9, 6 (2005).

16. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: Available membrane
computing software. In Applications of Membrane Computing (G. Ciobanu, Gh.
Păun, M.J. Pérez Jiménez, eds.), Springer-Verlag, Berlin, in press.

17. C. Izbaşa, C. Bonchiş, C. Garboni, G. Ciobanu: WebPS: A web-based P system
simulator with query facilities. In this volume.

18. P.L. Luisi.: The chemical implementation of autopoiesis. In Self-Production of
Supramolecular Structures (G.R. Fleishaker et al., eds.), Kluwer, Dordrecht, 1994.

19. M. Maliţa: Membrane computing in Prolog. In Pre-proceedings of the Workshop on
Multiset Processing (C.S. Calude, M.J. Dinneen, Gh. Păun, eds.), Curtea de Argeş,
Romania, CDMTCS TR 140, Univ. of Auckland, 2000, 159–175.

20. I.A. Nepomuceno-Chamorro: A Java simulator for basic transition P systems. In
Proceedings of the Second Brainstorming Week on Membrane Computing (Gh. Păun,
A. Riscos, A. Romero, F. Sancho, eds.), Report RGNC 01/04, 2004, 309–315.

21. Gh. Păun: Computing with membranes. Turku Centre for Computer Science, TUCS
Technical Report, N.208 (1998).

22. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

23. Gh. Păun: P systems with active membranes: Attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

24. M.J. Pérez-Jiménez, F.J. Romero-Campero: A CLIPS simulator for recognizer P
systems with active membranes. In Proceedings of the Second Brainstorming Week
on Membrane Computing (Gh. Păun, A. Riscos, A. Romero, F. Sancho, eds.), Report
RGNC 01/04, 2004, 387–413.

25. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini: Solving VALIDITY
problem by active membranes with input. In Proceedings of the Brainstorming Week
on Membrane Computing (M. Cavaliere, C. Mart́ın-Vide, Gh. Păun, eds.), Report
GRLMC 26/03, 2003, 279–290.

26. A. Riscos-Núñez: Cellular Programming: Efficient Resolution of Numerical NP-
complete Problems. Ph.D. Thesis, University of Seville, 2004.

27. Y. Suzuki, H. Tanaka: On a LISP implementation of a class of P systems. Romanian
Journal of Information Science and Technology, 3, 2 (2000), 173–186.

28. A. Syropoulos, E.G. Mamatas, P.C. Allilomes, K.T. Sotiriades: A distributed sim-
ulation of transition P systems. In Workshop on Membrane Computing 2003 (C.
Mart́ın-Vide, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 2933, Springer-
Verlag, Berlin, 2004, 357–368.

29. http://www.lpsi.eui.upm.es/nncg/

30. Logic Programming: http://www.afm.sbu.ac.uk/logic-prog/

