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1 Introduction

For representing recursively enumerable sets of (vectors of) natural numbers since
long time various models can be found in the literature, and many results are
folklore. On the other hand, it seems to us that a direct proof of the equivalence of
different models sometimes is missing or at least not present as a folklore result.

Just recently, new motivations came from the area of membrane computing,
where in various papers different models were used to establish the computational
power of the specific models of P systems under consideration; in many cases,
register machines (or counter automata) and matrix grammars with appearance
checking were frequently used (see [12]). Most recently, some new results on P
systems working in the sequential mode were elaborated, e.g., see [3], [5], and
[6], thereby establishing connections to vector addition systems, matrix grammars
without appearance checking, and partially blind counter automata, respectively.
Interpreting some results proved in [5] and [6] in a suitable way, it turns out that via
specific equivalent models of (tissue) P systems with antiport rules working in the
sequential mode the equivalence in the generative power of two old (non-universal)
models of computation was (re-)established, i.e., the Parikh sets of languages gen-
erated by matrix grammars without appearance checking coincide with the sets
of vectors of natural numbers generated (or accepted) by partially blind counter
automata (or partially blind register machines, respectively).

In view of this quite astonishing coincidence, we are going to give a direct
construction of a register machine simulating a matrix grammar and vice versa
in Section 3; moreover, as an immediate consequence of these constructions we
get a direct simulation of a partially blind register machine by a matrix grammar
without appearance checking and vice versa. In Section 4 we investigate the rela-
tion of vector addition systems and vector replacement systems with pure matrix
grammars and blind register machines.

2 Prerequisites

By N and Z we denote the set of natural numbers (non-negative integers) and the
set of integers, respectively. We refer to [14], [15], and [17] for the general elements
of formal language theory we use here. We only specify that, for a string x ∈ V ∗

and a symbol a ∈ V , by |x| we denote the length of x and by |x|a the number of
occurrences of the symbol a in the string x. For w ∈ V ∗ with V = {a1, . . . , an}, by
ΨV (w) we denote the Parikh vector of w, i.e., ΨV (w) = (|w|a1 , . . . , |w|an); this is
extended to languages in a natural way. For a family FL of languages, by NFL we
denote the family of length sets of language from FL and by PsFL the family of
Parikh sets of vectors associated with languages in FL. By CF and RE we denote
the families of context-free and of recursively enumerable languages, respectively.
Thus, NRE and PsRE are the families of sets of natural numbers and of sets
of vectors of natural numbers, respectively, which can be computed by Turing
machines.
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A matrix grammar (with appearance checking) is a construct

G = (N,T, S, M,F )

where N and T are disjoint alphabets of nonterminal and terminal symbols, S ∈ N
is the start symbol, M is a finite set of sequences of the form (A1 → x1, . . . , An →
xn), n ≥ 1, of context-free productions over N ∪ T (with Ai ∈ N, xi ∈ (N ∪ T )∗,
in all cases), and F is a subset of the set of productions occurring in the matrices
in M .

For w, z ∈ (N ∪ T )∗ we write w =⇒ z if there are a matrix (A1 → x1, . . . ,
An → xn) in M and strings wi ∈ (N ∪ T )∗, 1 ≤ i ≤ n + 1, such that w = w1,
z = wn+1, and, for all 1 ≤ i ≤ n, either

(1) wi = w′iAiw
′′
i , wi+1 = w′ixiw

′′
i , for some w′i, w

′′
i ∈ (N ∪ T )∗, or

(2) wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears in F .
The productions of a matrix are applied in the given order, possibly skipping

those in F if they cannot be applied – therefore we say that these productions are
applied in the appearance checking mode. (Note that this directly corresponds to
the checking for zero in subtract instructions of register machines.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w},
where =⇒∗ is the reflexive and transitive closure of the relation =⇒. The family
of languages of this form is denoted by MATac. If the set F is empty, then the
grammar is said to be without appearance checking; the corresponding family of
languages is denoted by MAT .

Already at the end of sixties, directly or through the equivalence with pro-
grammed grammars of [13], it was proved that CF ⊂ MAT ⊂ MATac = RE, but
the problem was formulated whether or not there are one-letter languages in the
family MAT which are not regular. The problem was solved only in 1994, in [8],
confirming a conjecture from [15] that such languages are regular (this situation
resembles the case of one-letter context-free languages, which are also regular).

In our proof given in the next section we will use a well-known normal form
for matrix grammars: a matrix grammar G = (N,T, S, M, F ) is said to be in the
binary normal form if N = N1 ∪ N2 ∪ {S, #}, with these three sets mutually
disjoint, and the matrices in M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y, A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2,
3. (X → Y, A → #), with X, Y ∈ N1, A ∈ N2,
4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why we usually write
it in the form (S → X0A0), in order to fix the symbols X,A present in it), and
F consists exactly of all rules A → # appearing in matrices of type 3; # is a
trap-symbol, because once introduced, it is never removed. A matrix of type 4 is
used only once, in the last step of a derivation.

For each matrix grammar there is an equivalent matrix grammar in the binary
normal form. Details can be found in [4] and in [15]. The result holds true both for
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grammars with appearance checking and without appearance checking – in this
latter case we no longer have matrices of type 3.

In fact, in the next section we shall use a slightly modified version of this binary
normal form called f-binary normal form in [5], i.e., instead of the final matrices
of type 4 there is only one single final matrix of the form (f → λ), for some special
symbol f ∈ N1.

In general, a grammar is called pure if it does not distinguish between terminal
and nonterminal symbols. Thus, a pure matrix grammar (without appearance
checking) is a triple G = (V, w, M), where V is an alphabet, w ∈ V ∗ is the axiom
(starting string), and M is a finite set of matrices of the form (a1 → u1, . . . , an →
un), where n ≥ 1 and ai ∈ V, ui ∈ V ∗ for all 1 ≤ i ≤ n. The language generated
by G is L(G) = {z ∈ V ∗ | w =⇒∗ z}, with the derivation relation =⇒ defined as
in a non-pure matrix grammar. The family of languages of this form is denoted by
pMAT . It is known (e.g., see [4]) that pMAT is incomparable with CF and that
pMAT ⊂ MAT .

We now introduce register machines, in the generative (non-deterministic) ver-
sion. Informally speaking, such a device consists of a specified number of counters
which can hold any natural number, and which are handled according to a pro-
gram consisting of labelled instructions. A counter can be increased or decreased
by 1 – the decreasing being possible only if the counter holds a number greater
than or equal to 1 (we say that it is non-empty) – and it can be checked whether
it is empty.

Formally, a (non-deterministic) register machine is a device

R = (m,B, l0, lh, P )

where m ≥ 1 is the number of counters, B is the (finite) set of instruction labels,
l0 is the initial label, lh is the halting label, and P is the finite set of instruc-
tions labelled (hence uniquely identified) by elements from B (P is also called the
program of the machine). The labelled instructions are of the following forms:

– l1 : (ADD(r), l2, l3), 1 ≤ r ≤ m (add 1 to counter r and non-deterministically
go to one of the instructions with labels l2, l3),

– l1 : (SUB(r), l2, l3), 1 ≤ r ≤ m (if counter r is not empty, then subtract 1 from
it and go to the instruction with label l2, otherwise go to the instruction with
label l3),

– lh : HALT (the halt instruction, which can only have the label lh).

A register machine generates a k-dimensional vector of natural numbers in
the following way: we distinguish k counters as output counters (without loss of
generality, these can be the first k counters), and we start computing with all
m counters being empty, from the instruction labelled by l0; if the computation
reaches the instruction lh : HALT (we say that it halts), with all counters k+1, . . . , m
being empty, then the values of counters 1, 2, . . . , k form the vector generated by
this computation. The set of all vectors from Nk generated in this way by R is
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denoted by Ps(R). If we want to generate only numbers (1-dimensional vectors),
then we have the result of a computation in counter 1, and the set of numbers
computed by R in this way is denoted by N(R).

By NRM and PsRM we denote the families of sets of natural numbers and of
sets of vectors of natural numbers, respectively, generated by register machines. It
is known (e.g., see [11], [17]) that PsRE = PsRM and NRE = NRM (actually,
three counters suffice in order to generate any set from the family NRE, but this
detail is not of special interest for what follows).

In the case when a register machine cannot check whether a counter is empty
we say that it is partially blind : the counters are increased and decreased by one
as usual, but if the machine tries to subtract from an empty counter, then the
computation aborts without producing any result (that is to say that the subtract
instructions are of the form l1 : (SUB(r), l2, abort)). Note that there is an implicit
test for zero, at the end of a (successful) computation, where all counters k + 1,
. . . , m should be empty, that is why we say that the device is partially blind. It is
known (e.g., see [7]) that partially blind register machines (counter automata) are
strictly less powerful than general register machines (hence than Turing machines).
By NPBRM and PsPBRM we denote the families of sets of natural numbers
and of sets of vectors of natural numbers, respectively, computed by partially blind
register machines.

If a partially blind register machine accepts the value of all counters 1, 2, . . . ,m,
then this register machine is said to be blind (no counter is checked for zero during
the computations or when reaching the final label lh). By NBRM and PsBRM
we denote the families of sets of natural numbers and of sets of vectors of natural
numbers, respectively, generated by blind register machines.

A technical detail:
In the proofs of Theorems 1 and 2, we will construct register machines of a

slightly more relaxed form than defined above, i.e., the same label l1 ∈ B will be
allowed to be assigned to several instructions; when such a label is introduced by
another instruction, then in the next step any of the instructions labelled by l1 can
be executed, non-deterministically chosen. However, it is easy to pass from such
a “super-non-deterministic” register machine to a usual non-deterministic register
machine: For instance, assume that there are two instructions

• l1 : (op′(r′), l′2, l
′
3) and

l1 : (op′′(r′′), l′′2 , l′′3 )
with the same label l1 (op′ and op′′ are any operations ADD or SUB). We can
replace these instructions by the following ones:

• l1 : (ADD(1), l′1, l
′′
1 ),

l′1 : (SUB(1), l′′′1 , l′′′1 ),
l′′1 : (SUB(1), liv1 , liv1 ),
l′′′1 : (op′(r′), l′2, l

′
3), and

liv1 : (op′′(r′′), l′′2 , l′′3 ),
where l′1, l

′′
1 , l′′′1 , liv1 are new labels.
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In this way, the number of instructions labelled with l1 has been decreased
by one and no new pair of instructions having the same label was introduced.
Continuing this way, we can eliminate all duplicate labelling.

A k×m vector replacement system (VRS), see [10], is a triple (w0, U,W ), where
w0 ∈ Nk (start vector), U ∈ Nk×m (check matrix), and W ∈ Zk×m (addition
matrix) such that, for any i, j with 1 ≤ i ≤ k and 1 ≤ j ≤ m, we have Ui(j) +
Wi(j) ≥ 0. A vector Wi ∈ W is said to be enabled in a vector x ∈ Nk if and
only if x ≥ Ui; as Ui + Wi ≥ 0, adding Wi to x yields x + Wi ∈ Nk. For a VRS
γ = (w0, U,W ), Ps(γ) denotes the sets of vectors from Nk that can be reached
from w0 by iteratively adding vectors from W enabled in the vector computed
so far. By V RS we denote the family of all sets of vectors of natural numbers
generated by vector replacement systems in that way.

A vector addition system (VAS) is a pair (w0,W ), where w0 ∈ Nk (start vector)
and W ∈ Zk×m (addition matrix); for a vector addition system γ = (w0,W ), by
Ps(γ) we denote the set of vectors reachable in γ from w0 by iteratively adding
vectors from W in such a way that the resulting vectors always are in Nk. The
family of all sets of vectors of natural numbers generated in that way by vector
addition systems is denoted by V AS. From [9] it is known that the sets of vectors
form V AS generated by vector addition systems of dimension k ≤ 5 are semilinear,
while vector addition systems of dimension six can already produce non-semilinear
sets of vectors. Some counterparts of these results for pure matrix languages will
be given in Section 4.

3 The Equivalence of Register Machines and Matrix
Grammars

We now elaborate direct constructions for showing the equivalence of register ma-
chines and matrix grammars as already mentioned in the Introduction, in its gen-
eral form.

Theorem 1. PsRM = PsMATac.

Proof. Inclusion PsRM ⊆ PsMATac:
Let us consider a register machine R = (m,B, l0, lh, P ) with m counters, meant

to generate a set Ps(R) ⊆ Nk, for some k with 1 ≤ k ≤ m. We construct the matrix
grammar G = (N, T, S, M, F ) where

N = {Ai | 1 ≤ i ≤ m} ∪B ∪ {#},
T = {ai | 1 ≤ i ≤ k},
S = l0,

M = {(l1 → Arl2),
(l1 → Arl3) | l1 : (ADD(r), l2, l3) ∈ P}
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∪ {(l1 → l2, Ar → λ),
(l1 → l3, Ar → #) | l1 : (SUB(r), l2, l3) ∈ P}

∪ {(lh → lh, Ai → ai) | 1 ≤ i ≤ k}
∪ {(lh → λ)},

and the set F consists of all productions of the form Ar → #, 1 ≤ r ≤ m, from
the matrices of M .

The equality Ps(R) = ΨT (L(G)) is obvious: a computation in R halts correctly
only after reaching the instruction lh : HALT, with all registers k + 1, . . . , m being
empty, and this corresponds to the fact that a derivation in G reaches a terminal
string only after introducing the nonterminal symbol lh, in the presence of which
the nonterminal symbols Ai are transformed into the terminal symbols ai, 1 ≤ i ≤
k (if any nonterminal symbol Aj , j > k, is still present, then it cannot be removed,
hence, the sentential form cannot be turned into a terminal one).

Inclusion PsRM ⊇ PsMATac:
Now consider a matrix grammar G = (N, T, S, M, F ) in the f-binary normal

form, i.e., with N = N1 ∪ N2 ∪ {S, #}, and the matrices only being of the four
forms specified in the previous section.

Without any loss of generality (because we are interested in the Parikh image
of the language L(G) only), we can assume that T = {a1, . . . , ak} and N2 =
{Ak+1, . . . , As}, for some k, s with 1 ≤ k < s. Hence, by αj , 1 ≤ j ≤ s, we denote
a symbol from T ∪ N2 with the understanding that αi = ai for 1 ≤ i ≤ k and
αi = Ai for k + 1 ≤ i ≤ s. Let us suppose all matrices of types 2 from M to be
labelled in a one-to-one manner by m1, . . . ,mn.

We then construct the register machine R = (s,B, l0, lh, P ) where

B = {S, #} ∪N1

∪ {〈mi, 1〉 | mi : (X → β,A → x) ∈ M, β ∈ N1 ∪ {λ}, 1 ≤ i ≤ n,

with |x| = 1}
∪ {〈mi, 1〉, 〈mi, 2〉 | mi : (X → β,A → x) ∈ M, β ∈ N1 ∪ {λ}, 1 ≤ i ≤ n,

with |x| = 2},
l0 = S,

P = {S : (ADD(r), X, X) | (S → XAr) ∈ M, for some k + 1 ≤ r ≤ s}
∪ {X : (SUB(r), Y, #) | (X → Y, Ar → λ) ∈ M, for some k + 1 ≤ r ≤ s}
∪ {X : (SUB(r), 〈mi, 1〉, #),

〈mi, 1〉 : (ADD(j), Y, Y ) | mi : (X → Y, Ar → αj) ∈ M

for some k + 1 ≤ r ≤ s and 1 ≤ j ≤ s}
∪ {X : (SUB(r), 〈mi, 1〉, #),

〈mi, 1〉 : (ADD(j1), 〈mi, 2〉, 〈mi, 2〉),
〈mi, 2〉 : (ADD(j2), Y, Y ) | mi : (X → Y,Ar → αj1αj2) ∈ M,
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for some k + 1 ≤ r ≤ s and 1 ≤ j1, j2 ≤ s}
∪ {X : (SUB(r), #, Y ) | (X → Y, Ar → #) ∈ M, for some k + 1 ≤ r ≤ s}
∪ {f : HALT}
∪ {# : (ADD(s),#, #)}.

The matrices of G are simulated by the register machine R as follows: the
nonterminal symbols from N1 are labels of instructions. A rule Ar → αj1αj2 is
simulated by first subtracting one from register r and then adding one to each
of the registers j1, j2 (with the cases when one or two of the symbols αj1 , αj2 is
missing being still simpler); these steps are controlled by the labels 〈mi, 1〉, 〈mi, 2〉,
and they start in the presence of label X and end with introducing the label Y ,
thus completing the simulation of the matrix mi : (X → Y, Ar → αj1αj2).

The matrices (X → Y,A → #) of type 3 are directly simulated by a subtract
instruction X : (SUB(r), #, Y ). Entering label # (the “trap”) leads to an infinite
loop with # : (ADD(s),#, #).

The simulation of the terminal matrix (f → λ) introduces the label f of the
halt instruction. If the derivation in G has been a terminal one, then all registers
k+1, . . . , s are empty at that moment, hence, the computation in R ends correctly.
Thus, the equality ΨT (L(G)) = Ps(R) follows, and observing the technical detail
from the previous section concerning the elimination of duplicate labels concludes
the proof. 2

If we start from a partially blind register machine, then the matrices of the form
(l1 → l3, Ar → #) can be omitted in the construction of the matrix grammar from
the first part of the previous proof, hence, we obtain a matrix grammar without
appearance checking.

Conversely, if we start the second part of the proof from a matrix grammar
without appearance checking, then the register machine we obtain will be partially
blind: the only subtract instructions l1 : (SUB(r), l2, l3) having the label l3 different
from the trap # are those corresponding to matrices of type 3 – which now are
missing.

Consequently, from the proof of Theorem 1 we immediately infer the following
result:

Corollary 1. PsMAT = PsPBRM and NMAT = NPBRM.

4 Pure Matrix Grammars and Vector Addition Systems

The proof of Theorem 1 cannot be repeated for pure matrix grammars, because
we cannot use any auxiliary symbol, but some counterparts of it can be obtained
in this case, too.

Since a (pure) matrix grammar with λ as the starting string can only generate
the language {λ}, in our subsequent discussion we assume that the VAS under
consideration starts with a non-zero initial vector. More about this will be said
later.
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Theorem 2. V AS ⊂ PspMAT ⊆ PsBRM .

Proof. (Sketch) Given a vector addition system (with vectors of dimension k ≥ 1)
γ = (w0,W ), we construct a pure matrix grammar G = (V, w,M) with V =
{a1, . . . , ak}, ΨV (w) = w0, and with the matrices in M associated with vectors
Wi ∈ W constructed as follows: for a vector Wi, we consider the set of matrices
obtained by examining each component Wi(j) of the vector and proceeding as
follows: if Wi(j) is positive, then we take a rule aq → aqa

Wi(j)
j , for some 1 ≤ q ≤ k,

otherwise we have to take Wi(j) rules of the form aj → λ. Thus, for the same vector
Wi we get a set of matrices, obtained by combining all possibilities to take the
rules aq → aqa

Wi(j)
j for those components Wi(j) which are positive. The idea is

that we have to add Wi(j) occurrences of aj , and to this aim we need a rewriting
rule aq → u for some symbol aq which is already present in the string.

As an important additional constraint, we can suppose that we always have at
least one symbol in the string – except when generating the empty string. More
precisely, in the vector addition system γ we may suppose that each “computa-
tion” to a vector v different from (0, 0, . . . , 0) never passes through the vector
(0, 0, . . . , 0). Indeed, if to a vector v′ we add a vector Wi, 1 ≤ i ≤ t, such that
v′+Wi = (0, 0, . . . , 0), and then we add Wj , we immediately infer that all compo-
nents of (the non-zero vector) Wj must be non-negative, hence, we can commute
Wi and Wj , thus computing (v′ + Wj) + Wi = Wj instead of (v′ + Wi) + Wj ;
in that way, (0, 0, . . . , 0) can be avoided avoided as an immediate result. Hence,
to the matrices constructed so far, we have to add all matrices associated (in the
sense of the preceding arguments) with vectors Wj + Wi where Wj is a positive
vector.

In this way, using one of the matrices associated as above with a vector Wi or
Wj + Wi exactly corresponds to the addition of the associated vector in the VAS.
Thus, Ps(γ) = ΨV (L(G)); hence, we have proved the inclusion V AS ⊆ PspMAT .

Now we show the strictness of this inclusion, i.e., V AS 6= PspMAT : Consider
the following pure matrix grammar G1 = (V, aab,M) where

V = {a, b},
M = {(a → λ, a → a, b → λ), (a → λ, a → a)}.

Clearly ΨV (L(G1)) = {(|w|a , |w|b) | aab =⇒∗ w} = {(2, 1), (1, 0), (1, 1)}. We now
show that no VAS can have this set as its reachability set. Assume, on the contrary,
that there were a VAS γ = (v0, V ) with Ps(γ)={(2, 1), (1, 0), (1, 1)}. First note that
v0 6= (1, 0) and v0 6= (1, 1), because otherwise, (1, 0) =⇒∗ (2, 1) or (1, 0) =⇒∗ (1, 1),
respectively, thus yielding infinite reachability sets. As a consequence, v0 = (2, 1).
Consider two cases:

1. Case 1: (2, 1) =⇒ (1, 0). Then (−1,−1) ∈ X and therefore (1, 1) + (−1,−1) ∈
Ps(γ) – a contradiction.

2. Case 2: (2, 1) → (1, 1). Then (−1, 0) ∈ X and therefore (1, 0)+(−1, 0) ∈ Ps(γ)
– a contradiction.
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Hence, we have proved V AS 6= PspMAT .

Starting from a pure matrix grammar G = (V,w, M) with V = {a1, . . . , ak},
we now construct a blind register machine R = (k, B, l0, lh, P ) as follows: for each
matrix (r1 : ai1 → x1, . . . , rn : ain

→ xn) from M , we simulate the use of the rules
r1, . . . , rn, in this order, under the control of suitable labels of instructions from
P ; then, each rule rj : aij → as1as2 . . . asqj

is simulated like in the second part
of the proof of Theorem 1, by first subtracting one from the register associated
with the symbol aij (aborting the computation if this is not possible) and then
adding one to all registers associated with the symbols as1as2 . . . asqj

. Again, the
control of the correct sequencing of these operations is ensured by the labels of the
instructions. After finishing the simulation of a matrix, we non-deterministically
pass to the simulation of any other matrix, or to the halting instruction (because
the grammar is pure, any sentential form is accepted). This construction clearly
produces a blind register machine which generates the Parikh set of the language
L(G).

As described before, the construction leads to a “super-non-deterministic” reg-
ister machine, but we can pass to a usual register machine as explained in Section
2. Consequently, we have proved the second inclusion from the theorem, too. 2

It should be noted that for V AS ⊆ PspMAT to hold, we must exclude those
VAS with (0, . . . , 0) as their initial vectors. To see this, consider the following VAS
A = {(0, 0), {(1, 1), (2, 3)}}. Clearly, the reachability set of A consists of those
vectors satisfying i ∗ (1, 1) + j ∗ (2, 3), i, j ≥ 0. Now suppose there is another VAS
B = (wB ,WB) with the same reachability set, i.e., Ps(B) = Ps(A), such that
wB 6= (0, 0). Suppose wB = s ∗ (1, 1) + t ∗ (2, 3) for some s, t ≥ 0. Consider the
following cases:

1. s = 0, t > 0: then t ∗ (2, 3) σ=⇒ (0, 0) for some sequence σ, because (0, 0) is in
the reachability set. Now consider the reachable vector 4∗(1, 1)+(t−1)∗(2, 3).
As 4 ∗ (1, 1) + (t − 1) ∗ (2, 3) = ((2, 1) + t ∗ (2, 3)) σ=⇒ (2, 1), (2, 1) is in the
reachability set – a contradiction.

2. t = 0, s > 0: then s ∗ (1, 1) σ=⇒ (0, 0) for some sequence σ, because (0, 0) is in
the reachability set. Now consider the reachable vector (s−1)∗(1, 1)+(2, 3). As
(s−1)∗(1, 1)+(2, 3) = (s∗(1, 1)+(1, 2)) σ=⇒ (1, 2), (1, 2) is in the reachability
set – a contradiction.

3. s > 0, t > 0: then s ∗ (1, 1) + t ∗ (2, 3) σ=⇒ (0, 0) for some sequence σ, because
(0, 0) is in the reachability set. Now consider the reachable vector (s−1)∗(1, 1)+
(t+1)∗(2, 3). As (s−1)∗(1, 1)+(t+1)∗(2, 3) = (s∗(1, 1)+t∗(2, 3)+(1, 2)) σ=⇒
(1, 2), (1, 2) is in the reachability set – a contradiction.

In view of the considerations above, no such B can exist. In a similar way, we
can prove that no pure matrix grammar with a non-λ initial string can generate
the reachability set Ps(A) of A.

Lemma 1. PspMAT = V RS.
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Proof. (Sketch) The proof of V RS ⊆ PspMAT is along a similar line as showing
V AS ⊆ PspMAT in Theorem 2, with the following modification: let (w0, U,W )
be a VRS; then, for each vector Ui ∈ U , the matrix simulating the addition of the
corresponding vector Wi ∈ W is of the form

(. . . , (ai → λ, )Ui(j)−1aj → (aj)Ui(j) . . . , simulation of Wi . . .).

Now we show PspMAT ⊆ V RS: for each matrix (a1 → x1, . . . , an → xn),
we let cj be the minimum number of symbols aj needed for the matrix to be
applicable, and we let dj be the net effect regarding aj when the matrix is applied.
From (a1 → x1, . . . , an → xn), cj and dj , 1 ≤ j ≤ n, can easily be computed. The
associated check vector Ui and addition vector Wi are obtained as Ui(j) = cj and
Wi(j) = dj , 1 ≤ j ≤ n. 2

Let us call a matrix (a1 → x1, . . . , an → xn), of a pure matrix grammar G,
separated if, for each 1 ≤ j ≤ n, aj does not appear in xj , and the rules use
mutually disjoint sets of symbols (formally, alph(ajxj) ∩ alph(akxk) = ∅ for all
1 ≤ j < k ≤ n). By SpMAT we then denote the family of languages generated by
separated pure matrix grammars.

Starting from a grammar G with all matrices being separated, it is obvious that
a vector addition system can be constructed which reaches the same vectors as the
Parikh images of strings in L(G) (for each rule aj → xj we have a component with
−1 corresponding to aj and corresponding positive components for the symbols
appearing in xj).

Conversely, consider the following VAS C = {(1), {1}}, whose reachability set is
N−{0}: as in a separated pure matrix grammar every a → x with a not occurring
in x must have x = λ, such a grammar clearly cannot generate the reachability
set of the VAS C.

As a consequence of these considerations, we have the following result:

Lemma 2. PsSpMAT ⊂ V AS.

As an immediate consequence of Theorem 2 as well as Lemmas 1 and 2, we
have the following corollary:

Corollary 2. PsSpMAT ⊂ V AS ⊂ PspMAT = V RS ⊆ PsBRM .

The corresponding result in [9] immediately yields the following:

Corollary 3. The separated pure matrix grammars with at most five symbols gen-
erate semilinear languages.

A natural question now arises concerning the semilinearity of languages gen-
erated by pure matrix grammars which are not separated. How many symbols do
they need in order to generate non-semilinear languages? We here give a partial
answer to this question by providing a pure matrix grammar with five symbols
that generates a non-semilinear language. The proof is based on an old example of
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a non-pure matrix grammar generating a non-semilinear language over an alpha-
bet with two letters, [16] (see also [4]). That language (whose non-semilinearity is
easy to prove) is

L = {anbm | 1 ≤ n < m ≤ 2n}.
Here consider the following pure matrix grammar:

G = (V, a0b,M), where
V = {a0, a1, a, b, b′},
M = {(a0 → a0, b → b′b′),

(a0 → aa1, b → b′b′),
(a1 → a1, b

′ → b),
(a1 → a0, b

′ → b),
(a1 → a)}.

Assume that we have a sentential form a0x, with x ∈ {b, b′}∗; initially, x = b.
In the presence of symbol a0, by using the matrix (b → b′b′), we can double any
number of occurrences of b (introducing primed versions of b). At least one b is
replaced by b′b′ when passing from a0 to a1 – at that time, also a copy of a is
introduced. In the presence of a1, we can remove the primes of symbols b; at some
step, the matrix (a1 → a0, b

′ → b) should be used, hence the doubling of the
number of occurrences of b can be repeated. Instead of this matrix we can also use
the matrix (a1 → λ), which closes the derivation, because all matrices need either
a0 or a1 in order to be applied.

Anyway, each cycle of doubling the number of occurrences of b corresponds to
introducing one copy of a; in each cycle we can double all occurrences of b, or less,
but at least one b is replaced by b′b′. Consequently,

ΨV (L(G)) ∩ {(0, 0, i, j, 0) | i, j ≥ 1} = {(0, 0, n, m, 0) | 1 ≤ n < m ≤ 2n},
which is not a semilinear set. As the family of semilinear sets of vectors is closed
under intersection, it follows that ΨV (L(G)) is not semilinear.

We now state this result as a theorem, too; moreover, we also pose as an open
problem whether this result is optimal, i.e., whether we really need five symbols
for generating a non-semilinear language by a pure matrix grammar:

Theorem 3. Pure matrix grammars with five symbols can generate non-semilinear
languages.

Note that the previous grammar is not separated, because of the rules a0 → a0

and a1 → a1, but we can easily construct an equivalent separated grammar: we
replace the matrix (a0 → a0, b → b′b′) by the two matrices (a0 → a′0, b → b′b′) and
(a′0 → a0) and the matrix (a1 → a1, b

′ → b) by the two matrices (a1 → a′1, b
′ →

b) and (a′1 → a1). In this way, we get a separated grammar which unfortunately
now has seven symbols, i.e., we need one symbol more than it was needed in the
non-semilinearity result from [9].
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