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Abstract. We study nonsymmetric collisions of moving breathers (MBs) in
the Peyrard-Bishop DNA model. In this paper we have considered the follow-
ing types of nonsymmetric collisions: head-on collisions of two breathers trav-
eling with different velocities; collisions of moving breathers with a stationary
trapped breather; and collisions of moving breathers traveling with the same di-
rection. The various main observed phenomena are: one moving breather gets
trapped at the collision region, and the other one is reflected; breather fusion
without trapping, with the appearance of a new moving breather; and breather
generation without trapping, with the appearance of new moving breathers
traveling either with the same or different directions. For comparison we have
included some results of a previous paper concerning to symmetric collisions,
where two identical moving breathers traveling with opposite velocities collide.
For symmetric collisions, the main observed phenomena are: breather gener-
ation with trapping, with the appearance of two new moving breathers with
opposite velocities and a stationary breather trapped at the collision region;
and breather generation without trapping, with the appearance of new moving
breathers with opposite velocities. A common feature for all types of collisions
is that the collision outcome depends on the internal structure of the mov-
ing breathers and the exact number of pair-bases that initially separates the
stationary breathers when they are perturbed. As some nonsymmetric colli-
sions result in the generation of a new stationary trapped breather of larger
energy, the trapping phenomenon could play an important part of the complex
mechanisms involved in the initiation of the DNA transcription processes.

1. Introduction. The DNA molecule is a discrete system consisting of many atoms
having a quasi-one-dimensional structure. It can be considered as a complex dy-
namical system, and, in order to investigate some aspects of the dynamics and the
thermodynamics of DNA, several mathematical models have been proposed.

Among them, it is worth remarking the Peyrard–Bishop model [27, 16] introduced
for the study of DNA thermal denaturation. In this model the DNA molecule is
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considered as a Klein-Gordon chain of oscillators, and have been used extensively
for the study of the dynamical properties.

The study of discrete breathers (DBs), in chains of oscillators, is an active re-
search field in nonlinear physics [3, 2, 1, 19]. These vibrational entities are rather
generic in models of Klein-Gordon and FPU lattices [23, 7, 30, 28].

Under certain conditions, DBs can be set in motion if they experience appropriate
perturbations [10, 8], and they are called moving breathers (MBs). There are no ex-
act solutions for MBs, but they can be obtained by means of numerical calculations.
The conditions for the existence of MBs in Klein-Gordon chains depend on the exact
details of both the on-site and the inter-site potentials. One of the most thoroughly
studied Klein-Gordon models where MBs appear is the Hamiltonian Klein-Gordon
chain with Morse on-site potential and harmonic coupling potential [11, 13, 14].

In the Peyrard–Bishop model, the existence of DBs has been demonstrated [16],
and DBs are thought to be the precursors of the bubbles that appear prior to
the transcription processes in which large fluctuations of energy have been experi-
mentally observed. Some studies about the existence and properties of MBs in the
Peyrard–Bishop model including dipole-dipole dispersive interaction are carried out
in [11] [4].

In a DNA molecule, MBs should appear at arbitrary positions, then, it is natural
to be interested in their collisions. The study of collisions of MBs in FPU chains
was initiated in [18]. However, in Klein-Gordon chains, the studies were initially
limited to the interaction of moving low-amplitude breathers with stationary high-
amplitude ones [15, 21, 20], or to the interaction between quasi-periodic moving
breathers in dissipative lattices [25]. More recently, some results have been obtained
considering symmetric head-on collisions in a Klein-Gordon chain with the Morse
potential and harmonic coupling potential [5, 6]. These results can be interpreted
in the context of DNA because the on-site potential of the Peyrad Bishop model is
a Morse potential.

The aim of this paper is to get some insight into the detailed mechanisms and
possible outcomes of nonsymmetric collisions in the Peyrard-Bishop model.

This article is organized as follows. Sec. 2 presents the Peyrard-Bishop model,
describes the technics for generating MBs and the different types of collisions. Sec. 3
presents the results corresponding to nonsymmetric collisions in the Peyrard-Bishop
model. Sec. 4 presents for comparison the results obtained for symmetric collisions
as applied to the Peyrard-Bishop model. Finally, the conclusions are presented in
Sec. 5.

2. Moving breathers in the Peyrad-Bishop model. The Peyrard-Bishop DNA
model corresponds to the Hamiltonian:

H =
N∑

n=1

[
1
2
mu̇2

n + D(e−bun − 1)2 +
1
2
ε0(un+1 − un)2

]
, (1)

the term 1
2mu̇2

n represents the kinetic energy of the nucleotide of mass m at the
nth site of the chain, and un is the variable representing the transverse stretching
of the hydrogen bond connecting the base at the nth site. The Morse potential, i.e.,
D(e−bun − 1)2, represents the interaction energy due to the hydrogen bonds within
the base pairs, D being the well depth, which corresponds to the dissociation energy
of a base pair, and b−1 is related to the width of the well. The stacking energy is
1
2ε0(un+1 − un)2, where ε0 is the stacking coupling constant.
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In scaled variables this Hamiltonian can be written as:

H =
∑

n

[
1
2
u̇2

n + V (un) +
1
2
ε(un − un+1)2

]
, (2)

where un represents the displacement of the nth pair-base from the equilibrium
position, ε is the coupling parameter and V (un) is:

V (un) =
1
2

(exp(−un)− 1)2 . (3)

Time-reversible, stationary breathers can be obtained using methods based on the
anti-continuous limit [24]. Initially, u̇n = 0, ∀n, and the displacements of a station-
ary breather centered at n0 are denoted by {uSB,n}. A moving breather {uMB,n}
can be obtained with an appropriate perturbation of the stationary breather. One
possibility consists in modifying its initial conditions as follows:

u0
MB,n = uSB,n cos(α(n− n0))

u̇0
MB,n = ±uSB,n sin(α(n− n0)) . (4)

The plus-sign gives rise to breathers traveling towards the positive direction, and
the minus-sign towards the opposite one. This procedure, taken from the DNLS
context [26, 12], works as well as the marginal-mode method [10, 8] and gives good
mobility for a large range of ε values. We take Eqs. (4) as the initial conditions
for integrating the dynamical equations using a symplectic algorithm [29], and take
periodic boundary conditions.

The characteristics and internal structure of a MB depend on the potentials
V (un), also on the specific form of the perturbation given to the stationary breather.
In our case, the parameter α is involved in this perturbation, it represents the
difference of phase between two neighboring oscillators (pair-bases) and we will
refer to it as the wave number. We have shown that the translational velocity and
the translational kinetic energy of the MB increase with α.

Moving breathers are not so well characterized as solitons, as they are obtained
numerically by a perturbation and slowly decay and change in time. However, we
still speak loosely of the internal structure of moving breathers to indicate that they
have been obtained with different parameters ωb and α. Also this internal structure
changes with time which leads to different outcomes of the collisions by simply
changing the distance or time traveled until a collision. This lack of characterization
will make difficult to understand the mechanisms for the different collisions.

We call Nc the number of pair-bases separating initially the centers of the two
DBs, and we distinguish two types of collisions: a) on-site collisions (OS), if Nc is an
odd number, that is, the middle of the initial separation coincides with a pair-base;
and b) inter-site collisions (IS), if Nc is even.

3. Nonsymmetric collision simulations. The study begins generating two sta-
tionary breathers, with the same frequency, separated by a given number of pair-
bases between their centers. To obtain MBs, each breather should be perturbed
using the initial conditions given by Eqs. (4). To obtain nonsymmetric collisions
each perturbation must be different. Hereafter, the MBs are called MB1 and MB2,
and they are perturbed with the α values denoted by α1 and α2, respectively. In this
section we consider three different types of nonsymmetric collisions: a) collisions of
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two moving breathers traveling with different velocities and different directions: α1

and α2 have different modulus but the sign applied to the perturbation is different;
b) collisions of moving breathers with a stationary breather: α1 6= 0 and α2 = 0;
and c) collisions of moving breathers traveling with different velocities and the same
direction: α1 and α2 have different modulus and the sign of the perturbation is the
same. The calculations have been tested using different system sizes, to make sure
that the results are not modified by boundary effects (most of the simulations have
been done with N > 400). In this paper we have taken Nc = 50, but we have
observed that the outcomes have a great sensitivity with respect to this number.

The breather frequency ωb is below the phonon band because the Morse on-site
potential is soft.

The lowest frequency of the phonon band corresponds to the phonon where all
the oscillators vibrate in phase with small amplitude. Its frequency is equal to the
linear frequency of an isolated oscillator given by ω0 = V ′′(0)1/2.

For breathers with small amplitude the system is close to the linear limit, and
their frequency is close to ω0. Therefore, |ω0 − ωb| is a measure of how far the
system is from the linear regime. In this paper we consider the frequency ωb = 0.8
which represents an intermediate degree of nonlinearity. For the coupling constant
ε we have taken a range of values consistents with real DNA [11].

3.1. Head-on collisions of moving breathers with different velocities. For
these collisions MB1 and MB2 travel with opposite directions. We have observed
three main scenarios that correspond two different perturbations.

1. Breather fusion with the generation of a new moving breather:
Fig. 1 shows an example of this type of head-on collisions, corresponding

to α1 = 0.048 and α2 = 0.046.
2. Generation of two new breathers traveling in the same direction:

An example, corresponding to α1 = 0.042 and α2 = 0.061, is shown in
Fig. 2.

3. One breather gets trapped and the other one is reflected:
Fig. 3 shows an example corresponding to α1 = 0.042 and α2 = 0.131.

We have observed a great sensitivity with respect to the α1 and α2 values, that is,
the outcome can be different with these values varying by a small amount.

Note that the fusion of two breathers is only one of the possible outcomes. This
is a different from the results obtained in Ref. [15], where fusion is the generic
outcome. The differences may be due to a different on-site potential and to the fact
that they always collide small amplitude breathers, close to the linear regime, while
ours at ωb = 0.8 are quite far from it.

3.2. Collisions of a moving breather with a static stationary breather. In
this case one of the stationary breathers is not perturbed and there is only a MB
that collides with the static one. We have observed three basic scenarios:

1. One breather gets trapped and the other one is reflected:
Fig. 4(a) shows an example of these type of collisions with α = 0.078,

ωb = 0.8 and ε = 0.25.
2. Generation of two new breathers traveling with different directions:

The collision produces two new emerging MBs traveling in opposite direc-
tions. Fig. 4(b) corresponds to α = 0.084, ωb = 0.8 and ε = 0.25.

3. Generation of two new breathers traveling with the same direction:
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Figure 1. An example of a head-on collision with ε = 0.14 and
ωb = 0.8. Displacement from the n-th equilibrium position versus
time corresponding to α1 = 0.048 and α2 = 0.046.
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Figure 2. An example of a head-on collision with ε = 0.15 and
ωb = 0.8. Displacement from the n-th equilibrium position versus
time corresponding to α1 = 0.042 and α2 = 0.061.

An example of this collision with α = 0.174, ωb = 0.8 and ε = 0.25 is shown
in Fig. 4(c).

For a given value of ε, the outcome changes among the three above mentioned
structures as the parameter α takes different values within the interval [0.03,0.2]. If
the coupling constant ε is changed, for example ε = 0.13 the scenario (2) is obtained
for α = 0.06 and the scenario (3) for both α = 0.084 and α = 0.174.
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Figure 3. An example of a head-on collision with ε = 0.15 and
ωb = 0.8. Displacement from the n-th equilibrium position versus
time corresponding to α1 = 0.042 and α2 = 0.131.
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Figure 4. An example of the three basic scenarios with ωb = 0.8
and ε = 0.25. Displacement from the n-th equilibrium position
versus time for three different values of the translational kinetic
energy, corresponding to: (a) α = 0.078; (b) α = 0.084; (c) α =
0.174.

3.3. Collision between two moving breathers traveling with the same di-
rection. These type of collisions appear when two MBs are launched with the
same direction and different velocities. We have observed also three different basic
scenarios, they are similar to those shown in Fig. 4. The simulations have been
done with α1 = 0.2 and α2 ∈ [0.03, 0.15]. The system changes among them as the
parameter α2 takes different values. An example of this type of collision is shown
in Fig. 5 with ε = 0.18, ωb = 0.8, α1 = 0.2 and three values of α2. Fig. 5(a) with
α2 = 0.032; Fig. 5(b) with α2 = 0.034 and Fig. 5(c) with α2 = 0.042. The out-
come corresponding to the generation of a stationary trapped breather disappears
for high enough values of ε. As in the other types of collisions, the system is quite
sensitive to the α values and to Nc.
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Figure 5. An example of the three basic scenarios with ωb = 0.8,
ε = 0.18 and α1 = 0.2. Displacement from the n-th equilibrium
position versus time for three different values of the translational
kinetic energy of the MB2 corresponding to: (a) α2 = 0.032; (b)
α2 = 0.034; (c) α2 = 0.042.
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Figure 6. Displacement from the n-th equilibrium position versus
time for ωb = 0.95, ε = 0.18, α1 = 0.2 and α2 = 0.054.

For breather frequencies around the value ωb = 0.95, which is close to the fre-
quency of an isolated oscillator in the linear regime, we find only a single outcome
for each value of ε, varying α2: the collision produces two breathers moving in the
same direction and with almost the same velocities of the incident breathers. An
example is shown in Fig. 6 for ε = 0.18, α1 = 0.2 and α2 = 0.054.

4. A comparison with the results for symmetric collisions. In a recent
paper [6] we presented an extensive study of symmetric collisions in Klein-Gordon
chains. In this section we present a summary of those results in order to establish
a comparison with the results for nonsymmetric collisions.

For obtaining symmetric collisions it is necessary to generate two stationary
breathers, with the same frequency, separated by a given number of pair-bases
between their centers. Both breathers are in phase, that is, before the perturbation
each breather is always like the mirror image of the other one. The perturbation
should be given simultaneously to both breathers using the initial conditions given
by Eqs. (4), with the plus sign for one breather and the minus sign for the other



8 A. ALVAREZ, F. R. ROMERO, J. M. ROMERO AND J. F. R. ARCHILLA

one. In this way the MBs travel with the same modulus of velocity, but opposite
directions, and they are in phase.

We can consider different symmetric collisions varying the parameter α and main-
taining fixed the number Nc, in this way we can find the possible outcomes and test
the sensitivity with respect to α. Also, we can analyze different symmetric colli-
sions with a fixed value of α and different values of Nc, in this way we can test the
sensitivity with respect to Nc as the colliding MBs are always identical. When Nc

changes, the dynamical states of the MBs change when the collision begins. Thus,
this approach is complementary to the previous one.

We write

Nc = No + jj , (5)

where No is a fixed number to guarantee that the breathers are initially far
apart, and jj is a positive even number. Thus, for OS collisions No is odd, and for
IS collisions No is even.

Although the MBs are identical when jj varies, the time passed between the
initial perturbation and the initiation of the collision increases with jj . The possible
different outcomes should be due to the different internal states of motion of the
MBs when they collide.

Our results relative to OS symmetric collisions can be summarized as follow:

1. MB generation without trapping:
The collision produces only two new symmetric MBs, with almost the same
velocity as that of the colliding breathers. This is shown in Fig. 7(a) for
α = 0.32 and Nc = 41.

2. MB generation with trapping:
The collision produces new breathers, a trapped one located at the collision

region, and two new symmetric MBs, as Fig. 7(b) shows for α = 0.32 and
Nc = 43. The trapped breather contains most of the initial energy.

Varying the parameter jj , it is possible to obtain a noticeable attenuation
of the amplitude of the trapped breather as it is shown in Fig. 7(c) which
corresponds to Nc = 45. In this case the emerging MBs contain most of the
initial energy.

The total energy transported by the colliding MBs is distributed after the colli-
sion: some part corresponds to the energy of the trapped breather, another part to
the emerging MBs, and a small fraction of the energy is transferred to the lattice
in the form of phonon radiation. In order to illustrate this phenomenon, we have
studied the evolution of the “central energy, defined in our study as the energy
of eleven particles around the collision region. This number of particles has been
selected because it corresponds to the typical size of a discrete breather with the
parameters used. Fig. 8 shows the evolution of the central energy for the three cases
considered in Fig. 7.

Before the collision the central energy is zero; after the initiation of the collision
it increases quickly, up to a value very close to the sum of the incident MB energies;
the subsequent decrease of the central energy is caused by the appearance of new
emerging MBs (some of them of short life) and by the phonon radiation.

Fig. 8 shows the evolution of the trapped energy corresponding to three collisions
of Fig. 7. For the case with jj = 0 , the trapped energy is close to zero. whereas
for the cases with jj = 2 and jj = 4 , most of the energy remains trapped after the
collision.
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Figure 7. Displacements versus time for three OS symmetric
collisions corresponding to (a) jj = 0 ; (b) jj = 2 and (c) jj = 4
with the fixed value α = 0.138. Coupling parameter ε = 0.32 and
breather frequency ωb = 0.8.
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Figure 8. Trapped energy versus time corresponding, respec-
tively, to the three collisions of Fig. 7.

The qualitative results are similar for other values of (ε, α). For a given value of
the coupling parameter ε, MB generation without trapping begins to appear for α
over a certain value. This value increases when the coupling parameter ε decreases
and with a small value of ε, for example with ε = 0.15, there is always trapping
with MB generation.

We have observed that there are no significant qualitative differences between
the outcomes of OS and IS collisions.

We can see now that the scenarios for symmetric and nonsymmetric collisions
are quite different. For symmetric collisions, symmetry is always maintained and a
trapped breather can appear or not. For nonsymmetric collisions there are a variety
of possible outcomes, some of which are very interesting. It is possible a fusion of
two MBs given rise to a new MB as in Fig. 1; two new MBs traveling as a bond state
as in Fig. 2; a stationary trapped breather can appears accompanied by a new MB
as in Fig. 3 or Fig. 5(a); maintenance of a static breather as in Fig. 4(a); generation
of new MBs traveling with the same direction as in Fig. 4(c) or Fig. 5(b).

Generally, the simulations show that the outcome is strongly sensitive to the
exact dynamical states of the MBs just before the collision. Fixing the values of the
parameters α and varying Nc, the only difference between two collisions is the time
passed between the initial perturbation and the initiation of the collision. There
exists a great sensitivity with respect to Nc as can be seen, for example, in Fig. 7
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for the case of symmetric collisions. This sensitivity exists also for nonsymmetric
collisions.

The outcome is strongly sensitive to the internal structure of the MBs, which
change as α change. Thus, fixing the value of Nc, the outcome is very sensitive
with respect to the α values.

5. Conclusions. In this paper, we have studied, by means of numerical simula-
tions, the nonsymmetric collisions of moving discrete breathers in the the Peyrad-
Bishop DNA model. We have taken as varying parameters the stacking coupling
constant, the common breather frequency, the velocities of the moving breathers,
and the number of pair-bases that initially separates the moving breathers when
they are set in motion. For the comparison, we have presented a summary of the
results for symmetric collisions which were published in our recent paper [6].

We have considered the following types of nonsymmetric collisions: head-on colli-
sions of two moving breathers traveling with different velocities; collisions of moving
breathers with a stationary trapped breather; and collisions of moving breathers
traveling with the same direction.

The main observed scenarios for nonsymmetric collisions are: trapping of one of
the moving breather at the collision region, and reflection of the other one; breather
fusion without trapping, with the appearance of a new moving breather; two new
MBs traveling as a bond state; breather generation without trapping, with the
appearance of new moving breathers traveling either with the same or different
directions.

The main observed scenarios for symmetric collisions are: breather generation
with trapping, with the appearance of two new moving breathers with opposite
velocities and a stationary breather trapped at the collision region; breather gener-
ation without trapping, with the appearance of new moving breathers with opposite
velocities. As can be observed the variety of qualitatively different collisions out-
comes is wider for nonsymmetric collisions in comparison to symmetric ones.

This could be explained considering that the symmetry of conditions sets a con-
straint on the energy and momentum exchange between the colliding DBs.

We emphasize an important difference between these two scenarios: breather
fusion is impossible for symmetric collisions, whereas for nonsymmetric collisions a
new MB can appear with larger energy. This phenomenon could play an important
part of the complex mechanisms involved in the initiation of the DNA transcription
processes.

An important conclusion is that the types of outcomes depend very sensitively
on the initial separation between the breathers, that is, the number of pair-bases
that separates the stationary breathers when they are set in motion. Also, with
respect to their velocities, which are related to the magnitude of the perturbation
given to set them in motion.

The consequence for a physical system is that all the possible outcomes will
happen with different probabilities. It makes also difficult to produce a determined
outcome for a single event.

The exact mechanisms of energy and momentum exchange between colliding
breathers are still unknown, they constitute a challenge for future research. In
the study of solitary wave collisions in non-integrable models, at least two generic
mechanisms of energy exchange between colliding solitons have been reported. The
first one operates through the excitation of the soliton’s internal modes, as appears
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in the case of kink-antikin interactions in φ4 theory [9]. The second mechanism,
recently discovered studying three soliton collisions [17], is the radiationless energy
exchange between the colliding solitons in weakly perturbed integrable systems.
It takes place in near-separatrix of the multisoliton solutions of the corresponding
integrable equations. An advance in the understanding of these difficult issues is
needed. Some research relative to the mechanisms for the trapping phenomena after
breather collisions are underway, the base is our study relative to breather collisions
in three different Klein-Gordon chains [5, 6].
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