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Summary. There exist in nature examples of lattices of elements for which the
interaction is repulsive, the elements are kept in place because different reasons, as
border conditions, geometry (e.g., circular) and, certainly, the interaction with other
elements in the system, which provides an external potential. A primer example are
layered silicates as mica muscovite, where the potassium ions form a two dimensional
lattice between silicate layers. We propose an extremely simplified model of this
layer in order to isolate the properties of a repulsive lattice and study them. We
find that they are extremely well suited for the propagation of supersonic kinks
and multikinks. Theoretically, they may have as much energy and travel as fast as
desired. This striking results suggest that the properties of repulsive lattices may be
related with some yet not fully explained direct and indirect observations of lattice
excitations in muscovite.
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1 Introduction

Layered silicates are made up from two basic building blocks: a sheet of edge-
sharing [SiO4] units, the tetrahedral sheet, and another one of edge-sharing
[MO6] units, the octahedral sheet. Muscovite is a mica in which a charged
layer results from the isomorphic substitution of silicon by aluminium in the
tetrahedral sheet [1]. The structure of muscovite is depicted at the left of
Fig. 1. The figure at the right shows an illustration of the interlayer space of
muscovite. It can be observed that both surfaces of the upper and lower tetra-
hedral sheets are formed by the basal oxygen atoms from the [SiO4] tetrahedra,
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Fig. 1. Crystal unit cell of muscovite ICSD 34406. The circles represent the potas-
sium ions forming the interlayer sheet. (a = 5.19 Å; b = 9.02 Å; c = 20.0 Å;
β=95.7◦)

which form a rough hexagonal honeycomb structure. The interlayer balancing
sheet is therefore sandwiched in between, potassium occupying the dimples
left at the center of each pair of hexagonal cells. Each potassium ion is sur-
rounded by six other potassium ions in the interlayer sheet with a ditrigonal
symmetry.

Essentially, in both clay minerals and mica, [SiO4] tetrahedra are linked
into infinite two-dimensional networks by sharing three oxygens.

Mica muscovite has a very special characteristic, its recording capability.
Tracks from particles as muons can be distinguished in the complex dec-
oration, but the only explanation to most of the tracks is the presence of
localized excitations, called quodons [2]. They propagate in the cation layer
without mass transport along the lattice directions. Another interesting effect
probably related with the existence of fast travelling localized perturbations
was reported in Ref. [3]: experiments show that an alpha particle hitting one
boundary of a muscovite layer provokes the ejection of an atom at the other
side of the layer, several millimeters far from the excitation.

What makes the two dimensional, hexagonal lattice that form the cation
layer so special? Transversal breathers related with the kinetics [4, 5, 6] have
been found in the cation layer, they have small energies below a few eV, move
slowly and radiating, therefore they are not good candidates for quodons. We
advance the hypothesis that one reason could be that the ion lattice is made
out of repulsive cations, K+ ions in muscovite. As a first step to explore the
implications of the hypothesis we study a one-dimensional model of potas-
sium ions coupled through Coulomb potentials, and observe that supersonic
kinks [7] with a very different range of energies can propagate long distances
riding a sea of phonons and rebounding with others.
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It is certainly probable that a straightforward 2D generalization of the
one dimensional model will not support one dimensional kinks. On the other
hand, if the tracks in mica correspond to lattice excitations as we believe, they
are quasi one-dimensional. Why they do not spread laterally is a key question
that we are not prepared to answer at this stage but which is one of our most
important midterm objectives. For that we will most likely have to introduce
more characteristics of real mica and our goal is to find exactly which ones.
But we think that understanding first what is happening in one dimension is
a necessary first step as have been done so often and successfully in solid state
physics.

Certainly, repulsive Coulomb lattices are not limited to the potassium
sheet in mica. Electrons form a Wigner crystal [8] which have been extensively
studied in several dimensions. See for example Ref. [9] on one dimensional
crystal and Ref [10] for the first experimental 2D realization on a liquid-
helium surface. Macroscopic repulsive Coulomb systems can be constructed
in one dimension with magnets located with opposite poles in front of each
other, although in this case friction is also present. This system has already
been constructed by the authors and research on it is planned.

The outline of this article is as follows. In section 2 we describe the model
and its justification, in section 3 we obtain the dispersion curves for the lin-
earized system and compare them with the data for mica muscovite. Section 4
describes the tail analysis and their implication for possible travelling localized
solutions. In section 5 the velocities of the kinks are obtained theoretically,
while section 6 describes the results of numerical simulations and compare
with the theory. After some comments about the effect of long range interac-
tion the article finishes with the conclusions.

2 Model equations

We simplify the model of the potassium ions inside the layer of muscovite
making the following assumptions: a) We consider the motions only along a
lattice direction where the K+ ions have the shortest distance a = 5.19 Å,
which becomes the lattice unit; b) We substitute the electric field created by
the silicate layers by a uniform field, which is taken into account only con-
ceptually; c) We consider only Coulomb interaction and only between nearest
neighbors. This is justified because the negative charge above and below the
K+ ions is rapidly screened by the surrounding negative charge. d) The ef-
fect of the surrounding negative charge is to keep the ions in place. This is
incorporated into the system through fixed particles at the ends, so as the
interatomic distance is the one observed in real muscovite. In Fig. 2 we show
a sketch of the model.

Note, that however important the periodic potential in real mica might
be, the existence of a the two-dimensional K+ does not need it. It comes
about for the need to compensate the excess negative charge of the silicate
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layers. The latter determines also the surface charge density of the K+ layer,
and, thus, the interatomic spacing. Repulsion of the ions determines a closed
packed hexagonal structure.

With these assumptions the equation of motion of a K+ ion is given by:

mẍn = − Kce2

(xn+1 − xn)2
+

KCe2

(xn − xn−1)2
. (1)

These coupled equations can be made dimensionless, by choosing the unit
of distance, a = 5.19 Å, time, τ =

√
mKa3/KCe3 = 0.1989 ps ' 0.2 ps,

mass, mK+ = 39.1 amu, and also defining the displacement with respect to
the equilibrium position un, measured in lattice units as xn = an + aun. We
get:

ün = − 1
(1 + un+1 − un)2

+
1

(1 + un − un−1)2
. (2)

The system of N atoms is kept in place (the chain is stable at equilibrium)
by setting two extra fixed particles at positions n=0 and n=N+1. Therefore,
x0 and xN+1 are always zero. The equations for the particles n=1 and n=N,
become

ü1 = − 1
(1 + u2 − u1)2

+
1

(1 + u1)2

üN = − 1
(1− uN )2

+
1

(1 + uN − uN−1)2
(3)

These boundary conditions have been chosen for convenience, because with
periodic boundary conditions two kinks are produced travelling with opposite
directions and eventually colliding. In this article we are not trying to model
border effects and far away from the borders the properties of phonons and
kinks with different boundary condition are virtually identical in the simu-
lations. As our physical model consists of a large number of atoms, periodic
conditions are more convenient for the theory, but fixed ends are preferably
for the numerical calculations. Somehow, fixed end are more realistic to model
the interaction of a swift particle with the lattice border, but certainly the
boundary potential has to be carefully chosen, which is also one midterm
objective of the authors’ research.

Fig. 2. Sketch of the Coulomb’s chain. The yellow spheres represent the K+ ions
surrounded by the negative charge of the silicate layers above and below.
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3 Phonons

For small amplitudes, the power-law potentials can be expanded in series,
using that 1/(1 + y)2 ' 1 − 2y + 3y2 − 4 y3 . . .. Retaining cubic terms and
smaller, Eq. (2) is reduced to

ün = 2(un+1 + un−1 − 2un)− 3(un+1 − un)2 + 3(un − un−1)2

+ 4(un+1 − un)3 − 4(un − un−1)3 + . . . . (4)

which is the α − β FPU equation. Neglecting nonlinear terms, it reduces to
the discrete linear wave equation,

ün = c2(un+1 + un−1 − 2un) (5)

where c =
√

2 will be shown to be the speed of sound. Note that, although it
can be scaled out, we keep here the value of c in the equations. This makes
easier the comparison with other results in the literature (different scalings are
often used), and mainly with the standard scaling corresponding to c = 1. Also
note that this linearized equation is attractive, i.e., if the distance un+1 − un

increases the force on the particle un is positive. The reason for it is the
decreasing nature of the Coulomb force: when the distance with the particle
in front increases the repulsion weakens and the repulsion from the particle
behind becomes larger pushing the particle n forward .

A phonon corresponds to small amplitude particle displacements of the
form un = exp(i(qn − ωt), with q and ω being the phonon wave number
and frequency, respectively. By substitution in Eq. (5) we obtain the phonon
dispersion equation:

ω = ωM sin(q/2) with ωM = 2c, and q =
2πm

N
, m = 0, 1, . . . N . (6)

ωM = 2c is the maximum frequency, corresponding to the mode q = π. The
phase velocity Vph = ω/q and the group velocity Vg = ∂ω/∂q are given by

Vph = c
sin(q/2)

q/2
, Vg = c cos(q/2) (7)

The speed of sound c is recovered in the long wavelength limit, i.e., limq→0 Vph =
limq→0 Vg = c, as anticipated. This is also the maximum of both the phase
and group velocities. The latter becomes zero for the boundary mode q = π.

The above are standard calculations, we include them for completeness
but specially to compare the phonon properties in our model with actual
experimental measurements in real samples. In Fig. 3 we plot the dispersion
curve as obtained for our model in physical units (left), and compare it with
data obtained from neutron spectroscopy and molecular dynamics in Ref. [11]
(right). We can see that there is a general agreement in the shape and values.
Similar curves have been also obtained in Refs. [13, 14].
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Fig. 3. Phonon dispersion curves obtained in the Coulomb’s chain (right) and re-
produced from Ref. [11] (left).
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Fig. 4. Phase and group velocities in the Coulomb’s chain, both give at q → 0 the
sound velocity, which can be compared with the values of 3.4-3.7 km/s obtained in
Ref. [12].

Figure 4 shows the phase and group velocities in physical units. Note that
the predicted speed of sound is similar to that found in Ref. [12] of 3.4-3.7
km/s.

Since we are using a very simplified model, it may result surprising that
it gives values similar to much more complex models and experimental data.
The reason is that in our systems there are many real things: the atomic
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mass, the Coulomb interaction, and some external potentials that keep the
chain at equilibrium at the real interatomic distance. This also supports our
assumption that at least for small perturbations the dominant interaction is
the Coulombian one.

4 Localized travelling solutions

In this section we consider different types of localized solutions supported by
the Coulomb lattice. Although these solutions are large enough to be intrinsi-
cally nonlinear, they also have tails of small amplitude which abide the linear
equation. Tails cannot exist by themselves but depends on the existence of
the nonlinear solution, however they also exist and its study gives information
about the parent excitation. We obtain first the tail properties and later we
consider the fully nonlinear solutions, kinks and solitons. Tails are obtained
with the linear system, therefore their properties are common to any system
with the same linearization. However, they only give the conditions that the
tails have to fulfill. The properties of existence of the nonlinear excitation, its
velocity, amplitude and other characteristics have to be worked out with the
whole nonlinear system.

4.1 Tail analysis

Consider a nonlinear localized moving excitation, travelling with velocity V .
We also assume that its amplitude decays exponentially far away enough from
the center. Tails are well described by the expression

un = exp(−ξ(n− V t)) exp(i(qn− ωt)) , (8)

which is valid for n > V t if ξ > 0 corresponding to the front tail of the
structure and for n < V t if ξ < 0 corresponding to the back tail. We call |ξ|
the localization parameter and its inverse Λ = 1/|ξ| the decay length. The
limit case ξ = 0 corresponds to extended phonons. Since the tail amplitude is
by definition small, it satisfies the linear equation Eq. (5). Using that un+1 =
exp(−ξ + iq)un, un−1 = exp(ξ − iq)un and u̇n = (ξv − iω)un, substitution
of un yields the following two equations for the real and imaginary part of
Eq. (5):

ξ2V 2 − ω2 = 2c2(cosh(ξ) cos(q)− 1) ; ξV ω = c2 sinh(ξ) sin(q) . (9)

As there are two equation with four unknowns, we can express two of them
as ω and V as functions of the other two ξ and q. First, the frequency ω is
given by:

ω = cosh(ξ/2)ωM sin(q/2) = cosh(ξ/2)ωphonons , (10)



8 JFR Archilla et al.

with ωM = 2c. Note that Eq. (10) reduces to the phonon dispersion equation
when there is no localization, i.e. ξ → 0.

The velocity of the tail is given by:

V =
sinh(ξ/2)

ξ/2
c cos(q/2) =

sinh(ξ/2)
ξ/2

Vg,phonons . (11)

Note that both sinh(ξ/2)/(ξ/2) and cosh(ξ/2) are larger than the unity and
also monotonically increasing functions in |ξ|, which means that the tails
oscillate and move faster than the phonons. Except for the degenerate case
ξ = 0, which corresponds to no localization and no tail, i.e., to phonons.

4.2 Oscillating tails

Breathers are localized oscillating solutions with a frequency outside the
phonon band, but there are neither stationary nor moving breathers in this
system, a fact known for repulsive FPU systems [15]. However, the tail analy-
sis can be applied to oscillating tails following or preceding a soliton or kink,
which do exist in this system.

Travelling tails correspond to localized, vibrating, travelling excitations,
that is ξ, V and ω are all different from zero. From Eq. (10) we conclude
that the tail frequency ω increases with the localization ξ . However, being
inside the phonon band, i.e., 0 < ω < ωM = 2c, the interaction with the
phonons would produce the tail instability. The mode q = π would be the
most stable, as its frequency is always larger than ωM , but its velocity is zero.
However, increasing the localization ξ we can increase both the frequency
and the velocity. However, values of ξ larger than a few units are not realistic,
neither values of the frequency of many times the maximum phonon frequency.
So a kind of balance is needed. One notable particular case, introduced in
Ref. [7], allows analytical estimations (see next section). It corresponds to
solutions with q = 2π/3, known as the magic number. For this case we obtain

ω =
√

3c cosh(ξ/2) ; V =
c sinh(ξ/2)

ξ
. (12)

Some estimations can be done. If ω > 2c then ξ > ξ0 = 1.0986, for ξ = ξ0

each atom amplitude is exactly a third smaller than the previous one. For
ξ = ξ0, the oscillating tail velocity is V ≈ c/3 or one third of the sound veloc-
ity. We need values of about ξ = 6.5 to approach the sound velocity, but at
such strong localization value the frequency is 11 times the maximum phonon
frequency and a particle has an amplitude one thousand smaller than the pre-
vious one. Since such conditions are unrealistic, we can, in principle, consider
that oscillating tails are subsonic. As we will see below, our simulations show
that the most common behavior is an oscillating tail that is left behind the
supersonic soliton bringing about a kink.
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4.3 Supersonic solitons and kinks

Solitons are localized, travelling non oscillatory excitations, that is with V 6= 0
and ω = 0. From Eq. (10) it follows that sin(q/2) = 0 or q = 0 (solitons are
in-phase modes). Substituting into Eq. (11) we obtain the soliton velocity as
a function of the localization ξ :

Vsol =
sinh(ξ/2)

ξ/2
c . (13)

Two important conclusions arise: a) Solitons do not have an internal structure,
as they come from the mode q = 0 all the atoms are in–phase, and, the
minimum value of the velocity of a soliton is c the sound velocity, which is
also the maximum phonon velocity. Therefore, the solitons, differently from
oscillating tails, are supersonic.

As commented above it is possible to have different tail solutions for the
front and back. For example, in principle, it is possible a front soliton, followed
by a simple translation xn = a, that would be a kink which leaves behind the
atoms displaced one lattice unit, or the back tail may be an oscillatory tail,
travelling at subsonic speed, being left behind by the supersonic soliton at the
front as shown in Fig. 5. The front tail needs to be so steep to move in front
of the soliton that it in practice means that the front of the soliton finishes
abruptly, and the soliton becomes a kink. Of course, if these properties hold
requires the study of the full system with the full potentials, which will be
done in the next sections, but it is also essential to know the behavior of
the system at low amplitudes, because part of the system correspond to that
description when there is a localized nonlinear solution.
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Fig. 5. Profile of the transitory state of a soliton, the subsonic oscillatory back tail
will be left behind the supersonic soliton. The front tail becomes so steep that, in
practice, it becomes an abrupt end of the perturbation. Therefore, the soliton will
transform to a kink and the back tail without the support of the soliton will be
dispersed in phonons. Dimensionless units.
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5 Kink characteristics within the rotating wave
approximation. Magic wave number.

The previous tail analysis was derived from the linear equation (5). Is thus
generic for many systems of coupled oscillators, although the specific values
in physical units are specific for our system, as the phonon frequencies and
speeds. We can obtain properties of the full nonlinear system using the Ro-
tating Wave Approximation (RWA) [16], which consists in an approximation
of the Fourier series up to the first harmonic.

It is convenient to define a new variable, the relative displacement or strain
of the chain, as vn = un − un−1. From Eq. (3), we can easily obtain the
evolution equation for the strain as

v̈n = 2Fn − Fn+1 − Fn−1; with Fn =
1

(1 + vn)2
. (14)

Kinks are characterized by a very steep profile, with only a few particles
moving at a given time. A solution presenting this behavior is given (in the
strain representation) by a half-wavelength structure with the magic wave
number q = 2π/3. Following Ref. [7], we propose the following ansatz, de-
scribing a kink travelling to the right

vn = −A

2
(1 + cos(qn− ωt)) if − π < qn− ωt < π (15)

and vn = 0 otherwise. Eq. (15) represents a solution where 3 particles (the
kink core) are in motion, while the others remain at rest. Note that this
ansatz is only an approximation, although very good for intermediate to large
amplitudes as it will be shown below.

When we substitute (15) in the equation of motion (14), nonlinearity gen-
erates multiple frequencies. The RWA approximation states that nonlinear
contributions higher than second harmonics can be neglected. This implies
that the force terms can be approximated by their first-order Fourier expan-
sions, as Fn = a0 + a1 cos(qn − ωt). On the other hand, the left high side of
Eq. (14) gives, after substitution of Eq. (15), v̈n = (A/2)ω2 cos(qn−ωt) which
is equal to the first harmonic term of the right hand side. The zero-harmonic
cancels out due to the dependency of the rhs on Fn. The first harmonic of Fn

is given by:

a1 =
1
π

∫ π

−π

cos(θ)dθ

(1− A
2 − A

2 cos(θ))2
. (16)

For A < 1 we obtain
a1 =

A

(1−A)3/2
. (17)

Therefore, substituting v̈n and Fn = a0+a1 cos(qn−ωt) in Eq. (14), is straight-
forward to obtain the frequency and velocity, as functions of the amplitude
A
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ω =
1

(1−A)3/4
ωM sin(q/2); V =

ω

q
=

1
(1−A)3/4

c
sin(q/2)

q/2
(18)

These magnitudes are equal to the corresponding ones for phonons, multiplied
by a factor 1/(1− A)3/4, which of course tend to the unity when A is small,
but that diverges when A approaches to unity. We can see the kink velocities
in Fig. 6.
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Fig. 6. Comparison of the numerical (dashed line) and theoretical (continuous line)
velocities of kinks within the RWA, for the magic wave number q = 2π/3. Dimen-
sionless units.

6 Numerical results

We have done a systematic numerical study to determine the kink properties.
The method to excite kinks is described in Ref. [7]. It consists in perturbing
sinusoidally the first particle in the chain during half a period, with an am-
plitude A0, so that the initial and final positions are both zero. Increasing
the amplitude of the perturbation A0 the velocity of the kink increases, and
eventually, two, three, and any number of kinks are produced, travelling one
after the other. The dependency of the velocity and number of kinks with the
initial amplitude is shown in Fig. 7.

Fig. 8 shows the profile and the evolution of a single kink with a velocity
twice the velocity of sound. Fig. 9 shows two kinks with velocities about three
and five times the velocity of sound.
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Fig. 7. Velocity and number of kinks as a function of the initial excitation amplitude
A0. Dimensionless units.

The kinks rebound at the borders and when they encounter each other.
They are composed of particles moving in the direction of the kink and par-
ticles travelling in opposite directions cannot cross because that would need
an infinite potential energy.

The velocity of the kinks V increases with their amplitude A, tending to
infinity with an asymptote at A = 1. Note that A = 1 would mean that the
distance between particles dn = 1 + vn → 0 which means an infinite energy.
We have already commented the good agreement with the numerical results
with the theory shown in Fig. 6.

The relationship between the kink velocity with the decay length Λ = 1/ξ
given in Eq. (11) is shown in Fig. 10 compared with the numerical results,
showing a perfect agreement.

In physical units, kinks can have any velocity and energy, for example we
have found velocities up to 27 km/s or eight times the sound velocity and
energies from a few eV to hundreds of them. Whether these kinks exist and
with which energies in mica muscovite remains and open question, but they
seem a very good candidate.

7 Effect of the interaction with several neighbors

It is well know that for long-range interaction with a 1/r potential the speed
of sound diverges for a large system and therefore supersonic kinks cannot
exist. Sound propagation is restored due to the screening of Coulomb’s law
by the electrons in a solid. It is not clear how many neighbors is reasonable
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Fig. 8. Top: Profile and evolution of a single kink for A0 = 1.05. Bottom: Detail of
the displacements at t = 200.

to take into account and we have made simulations in order to find out if
kinks survive when longer range interaction is considered. We have found
that when we increase the number of neighbors the kinks velocity diminishes
and they become wider, with more than 3 particles forming them. For more
than 10 neighbors we have not been able to produce kinks. When the study
is completed, detailed results will be published elsewhere.

8 Conclusions

In minerals like mica muscovite there exist layers of repulsive ions all with
the same charge sign forming a two-dimensional lattice. Muscovite shows the
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Fig. 9. (Top: excitation of multikinks for A0 = 2.5. Bottom: Detail of the displace-
ments at t = 200 where two kinks are observed.

striking property of having been able to record the tracks of energetic particles
as positrons and muons, but also shows tracks of what seem lattice localized
excitations called quodons. Also an experiment seems not to have any other
explanation. Motivated by the fact that an essential, but disregarded, char-
acteristic of the K+ lattice is that all the particles repel each other, we study
a minimal system made out of repulsive particles. We have found both the-
oretically and numerically that solitons in a transitory state and supersonic
kinks and multikinks can travel very fast and thus are an efficient means of
transporting localized energy along the lattice. The study of more realistic
extensions of this model are underway and will be reported elsewhere.
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Fig. 10. Comparison of the numerical (dashed line) and theoretical (continuous
line) decay lengths as a function of the velocity.
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