
Rate theory of acceleration of defect annealing
driven by discrete breathers

Vladimir I. Dubinko, Juan F. R. Archilla, Sergey V. Dmitriev, and
Vladimir Hizhnyakov

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Discrete breathers in metals and semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 DB excitation under thermal equilibrium and external driving . . . . . . . . . . . . . . . . . . . 9
4 Amplification of Sb-vacancy annealing rate in germanium by DBs . . . . . . . . . . . . . . . 12
5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Abstract Novel mechanisms of defect annealing in solids are discussed, which are
based on the large amplitude anharmonic lattice vibrations, a.k.a. intrinsic localized
modes or discrete breathers (DBs). A model for amplification of defect annealing
rate in Ge by low energy plasma-generated DBs is proposed, in which, based on
recent atomistic modelling, it is assumed that DBs can excite atoms around defects
rather strongly, giving them energy ≫ kBT for ∼100 oscillation periods. This is
shown to result in the amplification of the annealing rates proportional to the DB
flux, i.e. to the flux of ions (or energetic atoms) impinging at the Ge surface from
inductively coupled plasma (ICP).
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1 Introduction

A defect lying in the band gap with energy > 0.1 eV from either band edge is
termed deep. As known from the studies of properties of defects in Ge [1,2,4,5,30],
Ar ions arriving at a semiconductor surface with very low energy (2 - 8 eV) are
annihilating defects deep inside the semiconductor. Several different defects were
removed or modified in Sb-doped germanium, of which the E-center has the high-
est concentration, as described in details in Ref. [1, 2]. Novel mechanisms of defect
annealing in solids are discussed in this work, which are based on the large ampli-
tude anharmonic lattice vibrations, a.k.a. intrinsic localized modes (ILMs) or dis-
crete breathers (DBs). The article is organized as follows. In Sect. 2, a short review
on DB properties in metals and semiconductors is presented based on the results of
molecular dynamics (MD) simulations using realistic many-body interatomic po-
tentials. In Sect. 3, a rate theory of DB excitation under thermal heating and under
non-equilibrium gas loading conditions is developed. In Sect. 4, a model for ampli-
fication of defect annealing rate in Ge by plasma-generated DBs is proposed and
compared with experimental data. The results are summarized in Sect. 5.

2 Discrete breathers in metals and semiconductors

DBs are spatially localized large-amplitude vibrational modes in lattices that exhibit
strong anharmonicity [14,20,33,35]. They have been identified as exact solutions to
a number of model nonlinear systems possessing translational symmetry [14] and
successfully observed experimentally in various physical systems [14,29]. Presently
the interest of researchers has shifted to the study of the role of DBs in solid state
physics and their impact on the physical properties of materials [9,10,12,13,29,36].
Until recently the evidence for the DB existence provided by direct atomistic sim-
ulations, e.g. MD, was restricted mainly to one and two-dimensional networks of
coupled nonlinear oscillators employing oversimplified pairwise inter-particle po-
tentials [14, 20, 33]. Studies of the DBs in three-dimensional systems by means of
MD simulations using realistic interatomic potentials include ionic crystals with
NaCl structure [21, 25], graphene [6, 23, 27], graphane [28], semiconductors [37],
pure metals [15, 18, 32, 36], and ordered alloys [31]. For the first time the density
functional theory (DFT) was applied to the study of DBs, using graphane as an
example [7].

DBs have very long lifetime because their frequencies lie outside the phonon
band. Monatomic crystals like pure metals and semiconductors such as Si and Ge
do not possess gaps in the phonon spectrum, while crystals with complex structure
often have such gaps, for example, diatomic alkali halide crystals and ordered alloys
with a large difference in the atomic mass of the components. For the crystals pos-
sessing a gap in the phonon spectrum the so-called gap DBs with frequencies within
the gap can be excited. This case will not be discussed here and in the following we
focus on the DBs having frequencies above the phonon band.



Rate theory of acceleration of defect annealing driven by discrete breathers 3

2.1 Metals

In the work by Kiselev et al. [24] it has been demonstrated that 1D chain of particles
interacting with the nearest neighbors via classical pairwise potentials such as Toda,
Lennadrd-Jones or Morse cannot support DBs with frequencies above the phonon
band. They were able to excite only gap DBs with frequencies lying within the gap
of the phonon spectrum by considering diatomic chains. In line with the results of
this work, it was accepted for a long time that the softening of atomic bonds with
increasing vibrational amplitude is a general property of crystals, which means that
the oscillation frequency decreases with increasing amplitude. Therefore DBs with
frequencies above the top phonon frequency were unexpected.

However, in 2011, Haas et al. [15] have demonstrated by MD simulations us-
ing realistic many-body interatomic potentials that DBs with frequencies above the
phonon spectrum can be excited in fcc Ni as well as in bcc Nb and Fe [15, 18].
Similar results were obtained for bcc Fe, V, and W [32].

The point is that the realistic interatomic potentials, including Lennard-Jones
and Morse, have an inflection point meaning that they are composed of the hard
core and the soft tail. This is typical for interatomic bonds of any complexity, in-
cluding many-body potentials. Physically the soft tail is due to the interaction of
the outer electron shells of the atoms, while the hard core originates from the strong
repulsive forces between nuclei and also from the Pauli exclusion principle for inner
electrons (fermions) that cannot occupy the same quantum state simultaneously. It
is thus important which part of the interatomic potential (hard or soft) contributes
more to the dynamics of the system. As it was shown in [24], the asymmetry of the
interatomic potentials results in the thermal expansion effect when larger vibrational
amplitudes, at zero pressure, cause the larger equilibrium interatomic distance and
hence, a larger contribution from the soft tail. If thermal expansion is suppressed
somehow, then the hard core manifests itself. To demonstrate this let us consider the
Morse chain of unit mass particles whose dynamics is described by the following
equations of motion

ün =U ′(h+un+1 −un)−U ′(h+un −un−1) , (1)

where un(t) is the displacement of the nth particle from the lattice position, h is the
lattice spacing,

U(r) = D(e−2α(r−rm)−2e−α(r−rm)) , (2)

is the Morse potential, where r is the distance between two atoms, D, α , rm are the
potential parameters. The function U(r) has a minimum at r = rm, the depth of the
potential (the binding energy) is equal to D and α defines the stiffness of the bond.
We take D = 1, rm = 1 and α = 5. For the considered case of the nearest-neighbor
interactions the equilibrium interatomic distance is h = rm = 1.

In frame of the model given in Eqs. (1), (2) we study the dynamics of the stag-
gered mode excited with the use of the following initial conditions

un(0) = Acos(πn) = (−1)nA , u̇n(0) = 0 , (3)
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in the chain of N particles (N is an even number) subjected to the periodic boundary
conditions, un(t) = un+N(t). Our aim is to find the frequency of the mode as the
function of the mode amplitude A for the two cases. Firstly the chain is allowed to
expand, and for given A > 0 the interatomic distance h > 1 is such that the pressure
p= 0. In the second case the thermal expansion is suppressed by fixing h= 1 for any
A. In this case, of course, for A > 0 one has p > 0. The results for the two cases are
shown in Fig. 1 (a) and (b), respectively. In (a) the frequency of the mode decreases
with A, while in (b) the opposite takes place.

In the numerical experiments by Haas et al. [15] is was found that the DBs in
pure metals are extended along a close-packed atomic row. The atoms surrounding
the atomic row where DB is excited create the effective periodic on-site potential
that suppresses the thermal expansion of the row and that is why the DB frequency
increases with increasing amplitude. The on-site potential was not introduced in the
1D model by Kiselev et al. [24] and, naturally, thermal expansion did not allow for
the existence of DBs with frequencies above the phonon band.

Notably, the excitation energy of DBs in metals can be relatively small (fractions
of eV) as compared to the formation energy of a stable Frenkel pair (several eV).
Moreover, it has been shown that DBs in pure metals are highly mobile and hence
they can efficiently transfer energy and momentum over large distances along close-
packed crystallographic directions [18, 32, 36]. Recently, a theoretical background
has been proposed to ascribe the interaction of moving DBs (a.k.a ’quodons’ - quasi-

Fig. 1 Solid lines show frequency of the staggered mode (left ordinate) as the function of amplitude
for the case of (a) p = 0 and (b) h = 1. Dashed lines show (a) h and (b) p (right ordinate) as the
functions of A. The results for the 1D Morse lattice (1), (2) with the initial conditions (3).
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particles propagating along close-packed crystallographic directions) with defects
in metals to explain the anomalously accelerated chemical reactions in metals sub-
jected to irradiation. Russell and Eilbeck [34] have presented experimental evidence
for the existence of quodons that propagate great distances in atomic-chain direc-
tions in crystals of muscovite, an insulating solid with a layered crystal structure.
Specifically, when a crystal of muscovite was bombarded with alpha-particles at a
given point at 300 K, atoms were ejected from remote points on another face of the
crystal, lying in atomic chain directions at more than 107 unit cells distance from
the site of bombardment. Irradiation may cause continuous generation of DBs in-
side materials due to external lattice excitation, thus ’pumping’ a material with DB
gas [10, 12].

In order to understand better the structure and properties of standing and moving
DBs, consider the ways of their external excitation in Fe by MD simulations [36].
A standing DB can be excited by applying the initial displacements to the two adja-
cent atoms along the close-packed [111] direction with the opposite signs to initiate
their anti-phase oscillations, as shown in Fig. 2(a). The initial displacements ±d0
determine the DB amplitude, frequency and, ultimately, its lifetime. DBs can be
excited in a frequency band (1.0-1.4)×1013 Hz just above the Debye frequency of
bcc Fe, and DB frequency grows with increasing amplitude as expected for the hard
type anharmonicity due to the major contribution from the hard core of the inter-
atomic potential. Initial displacements larger than |d0|= 0.45 Å generate a chain of
focusons, while displacements smaller than |d0| = 0.27 Å do not provide enough
potential energy for the system to initiate a stable DB and the atomic oscillations
decay quickly by losing its energy to phonons. The most stable DBs can survive up
to 400 oscillations, as shown in Fig. 2(b), and ultimately decay in a stepwise quan-
tum nature by generating bursts of phonons, as has been predicted by Hizhnyakov
as early as in 1996 [17].

A moving DB can be excited by introducing certain asymmetry into the initial
conditions. Particularly, the translational kinetic energy Etr can be given to the two
central atoms of DB in the same direction along [111] atomic row. DB velocity
ranges from 0.1 to 0.5 of the velocity of sound, while travel distances range from
several dozens to several hundreds of the atomic spaces, depending on d0 and Etr
[32, 36]. Figure 3(a) shows a DB passing the two neighboring atoms with indices
3415 and 3416. In the moving DB the two central atoms pulsate not exactly in anti-
phase but with a phase shift. In about 1 ps (∼10 oscillations) the oscillations of these
two atoms cease but they are resumed at the subsequent atoms along [111] atomic
row. In this way, the DB moves at a speed of 2.14 km/s, i.e. about the half speed of
sound in bcc Fe. The translational kinetic energy of the DB is about 0.54 eV, which
is shared mainly among two core atoms, giving 0.27 eV per atom, which is close
to the initial kinetic energy of Etr = 0.3 eV given to the atoms to initiate the DB
translational motion. The deviation of the potential energy of the atoms from the
ground state during the passage of the DB is presented in Fig. 3(b). The maximal
deviation of energy is of the order of 1 eV. Thus, a moving DB can be viewed as
an atom-size localised excitation with local temperature above 1000 K propagating
along the crystal at a subsonic speed.
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Fig. 2 Oscillation of x coordinate of two neighbouring atoms, 2480 and 2479, in a [111] row in
Fe in a standing DB excited with d0 = 0.325 Å [36]. (a) Initial stage of DB evolution; (b) total
lifespan of DB showing a stepwise quantum nature of its decay

2.2 Semiconductors

Similar to metals, semiconductors possess no gap in phonon spectrum and thus DBs
may exist only if their frequency is positioned above the phonon spectrum [15, 37].
Such high-frequency DBs may be realized in semiconductors due to the screen-
ing of the short-range covalent interaction by the conducting electrons. Voulgar-
akis et al. [37] investigated numerically existence and dynamical properties of
DBs in crystalline silicon through the use of the Tersoff interatomic potential.
They found a band of DBs with lifetime of at least 60 ps in the spectral region
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Fig. 3 (a) Oscillation of x coordinate of two neighbouring atoms, 3415 and 3416 in a [111] row in
Fe during the passage of a moving DB (d0 = 0.4 Å, Etr = 0.3 eV); (b) deviation of the potential
energy of the atoms from the ground state during the passage of DB

(1.643− 1.733)× 1013 Hz, located just above the upper edge of the phonon band
calculated at 1.607× 1013 Hz. The localized modes extend to more than second
neighbors and involve pair central-atom compressions in the range from 6.1% to
8.6% of the covalent bond length per atom. Finite temperature simulations showed
that they remain robust to room temperatures or higher with a typical lifetime equal
to 6 ps. Figure 4 shows DB generated in silicon modeled by the Tersoff poten-
tial [37]. It can be seen that the DB is very persistent and localized: its vibrational
energy is mainly concentrated in the bond between two neighboring atoms oscillat-
ing in anti-phase mode.

Similar to silicon, germanium has a diamond crystal structure and readily pro-
duces DBs [19], as demonstrated in Fig. 5. As in Si, the DB’s energy in Ge is con-
centrated in the central bond between two atoms oscillating in anti-phase mode.
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Fig. 4 (a) DB generation in silicon modeled by Tersoff potentials. The DB frequency is 1.733×
1013 Hz, while vectors (magnified for visualization purposes) denote atomic displacements from
equilibrium; only first (gray, red online) and second (white) neighbors to the central (black, blue
online) two breather atoms are included. The displacement of the two central breather atoms is
0.18 Å. (b) Time evolution of the silicon DB after 998 breather periods. The absolute value of
the displacements from equilibrium along the direction of motion of each atom is plotted. The
coordinated oscillations of central (solid), first (dotted), and second (dashed) neighbor atoms are
indicated. Reproduced with permission from Voulgarakis, N., Hadjisavvas, G., Kelires, P., Tsironis,
G.: Computational investigation of intrinsic localization in crystalline Si. Phys. Rev. B 69, 113,201
(2004). Copyright (2004) American Physical Society

This means that potential barriers for chemical reactions in the vicinity of an DB
may be subjected to persistent periodic oscillations, which has been shown to result
in a strong amplification of the reaction rates [13]. In the next section we consider
the ways of DB excitation in thermal equilibrium and under external driving.
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Fig. 5 DB generated in germanium modeled by the Tersoff potential. Displacement of one of the
two central atoms is shown with a solid line and of the first neighbor by dashed (along [111] axis)
and dotted (perpendicular to [111] axis) lines. See Ref. [19]

Fig. 6 (a) Sketch of the double-well potential landscape with minima located at ±xm. These are
stable states before and after reaction, separated by a potential ”barrier” with the height chang-
ing periodically or stochastically within the V band. (b) Amplification factor, I0(V/kBT ), for the
average escape rate of a thermalized Brownian particle from a periodically modulated potential
barrier at different temperatures and modulation amplitudes V . Reproduced with permission from
V.I. Dubinko, P.A. Selyshchev and J.F.R. Archilla: Reaction-rate theory with account of the crystal
anharmonicity Phys. Rev. E 83 041124 (2011). Copyright (2011) American Physical Society.

3 DB excitation under thermal equilibrium and external driving

In this section, for the convenience of the reader, we repeat the main points of the
chemical reaction rate theory that takes into account the effect of DBs, following
the earlier works [3, 11, 13].

The rate equation for the concentration of DBs with energy E, CDB(E, t) can be
written as follows [13]
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∂CDB(E, t)
∂ t

= KDB(E)−
CDB(E, t)
τDB(E)

, (4)

where KDB(E) is the rate of creation of DBs with energy E > Emin and τDB(E) is
the DB lifetime. It has an obvious steady-state solution (∂CDB(E, t)/∂ t = 0):

CDB(E) = KDB(E)τDB(E). (5)

In the following sections we will consider the breather formation by thermal activa-
tion and then extend the model to non-equilibrium systems with external driving.

3.1 Thermal activation

The exponential dependence of the concentration of high-energy light atoms on
temperature in the MD simulations [22] gives evidence in favor of their thermal
activation at a rate given by a typical Arrhenius law [33]

KDB(E,T ) = ωDB exp
(
− E

kBT

)
, (6)

where ωDB is the attempt frequency that should be close to the DB frequency. The
breather lifetime has been proposed in [33] to be determined by a phenomenological
law based on fairly general principles: (i) DBs in two and three dimensions have
a minimum energy Emin, (ii) The lifetime of a breather grows with its energy as
τDB = τ0

DB(E/Emin − 1)z, with z and τ0
DB being constants, whence it follows that

under thermal equilibrium, the DB energy distribution function CDB(E,T ) and the
mean number of breathers per site nDB(T ) are given by

CDB(E,T ) = ωDBτDB exp
(
− E

kBT

)
, (7)

nDB(T ) =
Emax∫

Emin

CDB(E,T )dE = ωDBτ0
DB

exp(−Emin/kBT )
(Emin/kBT )z+1

ymax∫
0

yz exp(−y)dy , (8)

with ymax = (Emax −Emin)/kBT . Noting that Γ (z+ 1,x) =
∫ x

0 yz exp(−y)dy is the
second incomplete gamma function, Eq. (8) can be written as [13]:

nDB(T ) = ωDBτ0
DB

exp(−Emin/kBT )
(Emin/kBT )z+1 Γ

(
z+1,

Emax −Emin

kBT

)
. (9)

It can be seen that the mean DB energy is higher than the averaged energy density
(or temperature):
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⟨EDB⟩=

Emax∫
Emin

CDB(E,T )EdE

Emax∫
Emin

CDB(E,T )dE

−−−−−→
Emax≫Emin

(
Emin

kBT
+ z+1

)
× kBT. (10)

Assuming, according to [22] that Emin/kBT ≈ 3 and ⟨EDB⟩ ≈ 5kBT , one obtains
an estimate for z ≈ 1, which corresponds to linear increase of the DB lifetime with
energy.

3.2 External driving

Fluctuation activated nature of DB creation can be described in the framework of
classical Kramers model, which is archetypal for investigations in reaction-rate the-
ory [16]. The model considers a Brownian particle moving in a symmetric double-
well potential U(x) (Fig. 6(a)). The particle is subject to fluctuational forces that
are, for example, induced by coupling to a heat bath The fluctuational forces cause
transitions between the neighboring potential wells with a rate given by the famous
Kramers rate:

ṘK(E0,T ) = ω0 exp(−E0/kBT ), (11)

where ω0 is the attempt frequency and E0 is the height of the potential barrier sep-
arating the two stable states, which, in the case of fluctuational DB creation, cor-
responds to the minimum energy that should be transferred to particular atoms in
order to initiate a stable DB. Thus, the DB creation rate (3) is given by the Kramers
rate: KDB(E,T ) = ṘK(E,T ).

In the presence of periodic modulation (driving) of the well depth (or the reac-
tion barrier height) such as U(x, t) =U(x)−V (x/xm)cos(Ω t), the reaction ṘK rate
averaged over times exceeding the modulation period has been shown to increase
according to the following equation [13]:

⟨Ṙ⟩m = ṘKI0

(
V

kBT

)
, (12)

where the amplification factor I0(x) is the zero order modified Bessel function of
the first kind. Note that the amplification factor is determined by the ratio of the
modulation amplitude V to temperature, and it does not depend on the modulation
frequency or the mean barrier height. Thus, although the periodic forcing may be
too weak to induce athermal reaction (if V <E0), it can amplify the average reaction
rate drastically if the ratio V/kBT is high enough, as it is demonstrated in Fig. 6(b).
Another mechanism of enhancing the DB creation rate is based on small stochastic
modulations of the DB activation barriers caused by external driving. Stochastic
driving has been shown to enhance the reaction rates via effective reduction of the
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Fig. 7 Illustration of moving DB (quodon) before ”collision” with a vacancy in 2D crystal (4 times
zoom of atomic displacements) [26]. 2Y is the distance between the atoms II and III. Reproduced
with permission from Kistanov, A., Dmitriev, S., Semenov, A.S., Dubinko, V., Terentyev, D.: Inter-
action of propagating discrete breathers with a vacancy in a two-dimensional crystal. Tech. Phys.
Lett. 40, 657661 (2014). Copyright (2014) Springer.

underlying reaction barriers [10, 12] as:

⟨Ṙ⟩= ω0 exp(−EDB
a /kBT ), EDB

a = E0 −
⟨V ⟩2

SD
2kBT

, if ⟨V ⟩SD ≪ kBT, (13)

where ⟨V ⟩SD is the standard deviation of the potential energy of atoms surrounding
the activation site.

In the present view, the DB creation is seen as a chemical reaction activated by
thermally or externally induced fluctuations. In the following section we consider
the reaction of annealing of defects in crystals, such as the deep traps for elec-
trons/holes, within the similar framework. I simplified model can be seen in Ref. [8]

4 Amplification of Sb-vacancy annealing rate in germanium by
DBs

Sb-vacancy defect in Ge is a typical deep trap, which has been shown to arise un-
der displacement damage (producing vacancies) and anneal either thermally (above
400 K) or under ICP treatment at ambient temperatures of about 300 K [1]. This
plasma-induced acceleration of annealing at depth extending up to several microns
must be driven by some mechanism capable of transferring the excitation energy of
surface atoms (interacting with plasma) deep into the crystal. Quodons are thought
to be good candidates for providing such a mechanism, and bellow we present a
model of quodon-enhanced defect annealing based on quasi-periodic modulation of
the annealing activation barrier caused by the interaction of defects with a ’quodon
gas’. This mechanism is illustrated in Fig. 7, which shows a moving DB (quodon)
before ’collision’ with a vacancy in 2D close-packed crystal with pairwise Morse
interatomic potentials [26]. The DB velocity can be varied by changing the phase
difference, δ . The distance between the atoms II and III is 2Y and ∆Y = Y −Y0 is
the difference between the excited and ground state due to the interaction with a
quodon, which is shown in Fig. 8 as a function of time for ’slow’ and ’fast’ DBs.
The mean difference ⟨∆Y ⟩ and standard deviation ⟨∆Y ⟩2 over the excitation time
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Fig. 8 (a) Dependence of ∆Y = Y −Y0 on time for ”slow” DBs (b) ”fast” DBs ; (c) Mean differ-
ence ⟨∆Y ⟩ and standard deviation over 80 oscillation periods vs. phase difference ⟨∆Y ⟩2, which is
proportional to the DB velocity. It can be seen that ”slow” DBs disturb the vacancy more strongly
than the ”fast” ones [26]. Reproduced with permission from Kistanov, A., Dmitriev, S., Semenov,
A.S., Dubinko, V., Terentyev, D.: Interaction of propagating discrete breathers with a vacancy in a
two-dimensional crystal. Tech. Phys. Lett. 40, 657661 (2014). Copyright (2014) Springer.

of ∼ 80 oscillation periods have been calculated. It can be seen that ”slow” DBs
disturb the vacancy more strongly than the ”fast” ones, and besides, they practically
do not lose their energy in the course of ’collision’. So these DBs behave similar to
molecules of some gas, which can be ’pumped’ from the surface into material up to
some depth equal to the propagation range of quodons before the decay. Then, the
average rate of quodon generation (per atom), will be proportional to the ratio of
their flux Φq though the surface (where they are created by energetic plasma atoms)
to the propagation range of quodons, lq:

Kq =
Φq

lq
ωGe, Φq = ΦAr

4EArMArMGe

Eq(MAr +MGe)2 , (14)

where ωGe is the Ge atomic volume, MAr, MGe are the Ar and Ge atomic masses,
ΦAr is the flux of Ar ions or atoms with a mean energy EAr, a part of which
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Fig. 9 The density of quodon gas, Cq/ωGe, vs. Ar flux at the irradiation temperature of 300 K
within the layer of thickness Lq = 5.3 microns, at the quodon velocity of vq = 300 m/s. Density
of the phonons at 300 K is shown for comparison with a dotted line. The vertical dotted line
corresponds to Ar flux in the experiment [1].

4MArMGe/(MAr + MGe)
2, is transferred to germanium atoms and could be spent

on the generation of quodons with a mean energy Eq. Then the steady-state con-
centration of quodon gas (see Fig. 9) will be given simply by the product of their
generation rate and the life-time, τq:

Cq = Kqτq, τq =
lq
vq
, then Cq =

ΦqωGe

vq
, (15)

where vq is the quodon propagation speed, which actually determines their concen-
tration within the layer of a thickness lq (Fig. 9).

Consider the periodic modulation of the defect annealing activation energy in
more details. It is driven by quodons that scatter on the defects and excite the sur-
rounding atoms (Fig. 8). The amplitude of the quasi-periodic energy deviation Vex
can be in the eV range with the excitation time, τex, of about 100 oscillation peri-
ods. In the modified Kramers model (12), this energy deviation corresponds to the
modulation of the annealing activation barrier. Then, a macroscopic annealing rate
(per defect per second) may be written as follows:

⟨Ṙ⟩macro = ω0 exp
(
− Ea

kBT

)(
1+

⟨
I0

Vex

kBT

⟩
ωexτex

)
, (16)

where Ea is the annealing activation energy, ωex is the mean number of excitations
per defect per second caused by the flux of quodons, which is proportional to the
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Fig. 10 (a) Characteristic annealing time, Eq. (19) under thermal treatment and ICP. (b) Annealed
defect fraction with time during thermal annealing at 373 K in comparison with ICP-induced an-
nealing at 300 K according to the Eq. (18) and experimental data X. Irradiation and material param-
eters: FAr = 5.6× 1010 cm−2s−1; τex = 10−11s; ω0 = 5.313× 1013s−1; Ea = 1.35 eV; Vex = 1.28
eV.

quodon flux and the cross-section of quodon-defect interaction and is given by

ωex = Φqπb2, (17)

where b is the atomic spacing, the quodon formation energy Vq ≈ Vex. For material
parameters presented in Fig. 10, one has ωex ≈ 10−4s−1.

Sb-vacancy annealing kinetics is described by the following equation for the de-
fect concentration:

dcd

dt
=−cd

τa
, cd(t) = cd(0)exp

(
− t

τa

)
, (18)

where τa is the characteristic annealing time, which inversely proportional to the
annealing reaction rate given by Eq. (16)

τa =
exp

(
Ea

kBT

)
ω0

(
1+ I0

(
Eex
kBT

)
ωexτex

) . (19)

In the absence of driving (ΦAr = 0 => ωex = 0), Eq. (19) describes the thermal
annealing, while at ΦAr > 0, the annealing proceeds at room temperatures at a rate
which is 5 orders of magnitude higher than that at ΦAr = 0, and it is comparable to
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Fig. 11 (a) Annealed defect fraction at after 30 min of ICP vs. excitation energy, Vex, at 300 K ;
(b) after 30 min of ICP or heating vs. temperature at Vex=1.28 eV.

the thermal annealing at the boiling point (373 K), as demonstrated in Fig. 10. In
agreement with experimental data [1], the defect concentration decreases by 30%
after ICP treatment for 30 min at room temperature.

The ICP-annealing rate is very sensitive to the excitation energy (Fig. 11(a)), and
it increases monotonously with temperature (Fig. 11(b)), provided that the quodon
production rate and propagation range are temperature independent.

5 Summary

A new mechanism of the long-range annealing of defects in Ge under low energy
ICP treatment is proposed, which is based on the catalyzing effect of DBs on an-
nealing reactions. The moving DB (quodon) creation is triggered by Ar flux which
provides the input energy transformed into the lattice vibrations.

Simple analytical expressions for the annealing rate under ICP treatment are de-
rived as functions of temperature, ion current and material parameters, which show
a good agreement with experimental data.
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