
WebPS: A Web-based P System Simulator with
Query Facilities?

Cosmin Bonchiş1, Cornel Izbaşa2, Dana Petcu1,2, Gabriel Ciobanu1,3

1 Research Institute “e-Austria” Timişoara, Romania
Bd. V. Pârvan 4, 300223 Timişoara, Romania
E-mail: cosbonchis@yahoo.com

2 Department of Computer Science, Western University of Timişoara
Bd. V. Pârvan 4, 300223 Timişoara, Romania
E-mail: {petcu, cornel}@info.uvt.ro

3 Romanian Academy, Institute of Computer Science, Iaşi
Bd. Copou 8, 700505 Iaşi, Romania
E-mail: gabriel@iit.tuiasi.ro

Summary. In this paper we present an open-source web-enabled simulator for P sys-
tems. We use CLIPS embedded in C, and make the simulator available as a web appli-
cation, complemented by a query language to specify the results.

1 Introduction

Transition P systems and deterministic P systems with active membranes (see [4])
are simulated in various programming languages, and some of them are used to
solve NP-complete problems as SAT, Subset Sum, Knapsack, and partition prob-
lems. P systems with active membranes, input membrane and external output
are simulated in CLIPS, and used to solve NP-complete problems (see [5]). New
variants of these simulators provide symport-antiport rules, and catalysts. A more
complex simulator written in Visual C++ for P systems with active membranes
and catalytic P systems is presented in [2]. It provides a graphical simulator, inter-
active definition, visualization of a defined membrane system, a scalable graphical
representation of the computation, and step-by-step observations of the membrane
system behavior.

A parallel and cluster implementation for transition P systems in C++ and
MPI is presented in [1]. The rules are implemented as threads. At the initialization
phase, one thread is created for each rule. Since each rule is modelled as a separate
thread, it should have the ability to decide its own applicability in a particular
? This work has been supported by the Institute e-Austria Timişoara, BMWA and

BMB:WK ministries of Austria.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51399282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

64 C. Bonchiş, C. Isbaşa, D. Petcu, G. Ciobanu

round. In order to detect if the P system halts, each membrane must inform the
other membranes about its inactivity. It can do so by sending messages to others,
and by using a termination detection algorithm.

In this paper we present a new simulator based on CLIPS. The previous CLIPS
implementations represent P systems rules by CLIPS facts; we get a significantly
faster execution by using CLIPS rules to implement P systems rules. In [5], the P
system data are inserted directly into code, and so they cannot be easily modified,
as opposed to our implementation where a P system is an input data, providing
a lot of flexibility. P systems as input data are described by XML documents;
this fact provides a standard method to access information, making it easier to
use, modify, transmit and display. XML is readable and understandable, it ex-
presses metadata easily in a portable format, just because many applications can
process XML on many existent platforms. Moreover, by using XML, it becomes
easy to define new features and properties of P systems. XML allows an auto-
mated document validation, restricting wrong input data, and warning the user
before execution with respect to the possible errors in their P systems description.
From a user point of view, all these features facilitate an efficient description and
reconfiguration of the P systems.

An important advantage of our simulator is given by its availability as an Web
application; this aspect is actually emphasized by its name: WebPS. Web applica-
tions do not require an installation. As any Web application, it can be used from
any machine anywhere in the world, without any previous preparation. A simple
and easy to use interface allows the user to supply an XML input both as text
and a file. A friendly way of describing P systems is given by a helpful interac-
tive JavaScript-based P system designer. The interface provides a high degree of
(re)usability during the development and simulation of the P systems. The initial
screen offers an example, and the user may find useful documentation about the
XML schema, the rules, and the query language. The query language helps the
user to select the output of the simulation.

The simulator is open-source, actually free software, as it is being offered at
http://psystems.ieat.ro under the GNU General Public License. This allows
anyone to contribute with enhancements and error corrections to the code, and
possibly develop new interfaces for the C and CLIPS level APIs. These interfaces
can be local (graphical or command-line), or yet other Web-based ones.

Next section presents the WebPS structure, and argue why it is better than
some previous simulators. Several examples implemented in the WebPS system
are described in Section 3. Finally, further development directions are identified.

2 WebPS Software Architecture

The software structure of the simulator has three distinct levels. The inner level is
the CLIPS level. This level integrates part of the knowledge about the theoretical
description of P systems, the result being a library of CLIPS functions, meta-rules

WebPS: A Web-based P System Simulator 65

and templates. Since CLIPS is easily embeddable in C (as its name ”C Language
Integrated Production System” suggests), we can control the CLIPS level from
a C program, and we include some example to illustrate how this is done. The
C level is strengthened by introducing a C library for modelling and simulating
P systems based on the CLIPS library. The Web application level offers a user-
friendly interface to the simulator, and can become, after the addition of debugging
and visualization features a powerful P system development tool.

2.1 CLIPS level

This is the core level of the simulator. We address here some crucial issues, namely
how we implement in a sequential context the maximally parallel and nondeter-
ministic execution of P systems.

Maximally parallel execution

The maximally parallel execution requirement relies on constraining our simulation
cycle to the following distinct steps:

1. React step: where the activated reaction rules are sequentially executed.
2. Spawn step: where the new objects created by rules inside their membranes

are asserted as object facts; they become visible for a future React step.
3. Communication step: where the objects injected or ejected by communica-

tion rules in different membranes are asserted as objects facts.
4. Divide step: it handles possible divisions processes of membranes.
5. Dissolve step: it handles dissolving processes of membranes.

By constantly recording the state of the P system after each React, Spawn and
Communication steps, we can get a trace of an execution.

Nondeterministic execution

CLIPS uses RETE algorithm to process rules; RETE is a very efficient mechanism
for solving many-to-many matching problem [3]. The nondeterministic execution
requirement is fulfilled by the CLIPS random mechanism. We have looked closely
at the random strategy, and we found it makes the same choice for the same
configurations in different executions. By calling the random function of CLIPS,
the random mechanism uses the random number generator. The failure is related
to the improper seeding of the random number generator. We have corrected this
error, and properly seed the random number generator by using /dev/urandom,
the entropy gathering device on GNU/Linux systems. This aspect can be also
useful for other CLIPS implementations possibly affected by the same failure.

66 C. Bonchiş, C. Isbaşa, D. Petcu, G. Ciobanu

Data representation

An important choice regarding an implementation is given by data representation.
We decide to represent P system objects and membrane structure as CLIPS facts
(with set-fact-duplication option of CLIPS set to on), and the P systems reaction
rules as CLIPS rules. This contrasts the previous implementations which have
represented reaction rules as CLIPS facts; while their choice might allow general
meta-rules for execution, we get a flexible and efficient framework by representing
reaction rules as CLIPS rules. The efficiency is gained by making direct use of the
CLIPS pattern-matching mechanism, and rule activation capabilities. This choice
is also confirmed by the efficiency of the dissolve and divide operations which imply
a lot of moving and copying. Initially we think to represent membranes as modules,
but later we see that this representation decreases the efficiency and flexibility of
the whole system.

We present the Backus-Naur form of reaction rules, as well as their conversions
into CLIPS knowledge-base components:

<rule> ::= <object_list> -> [<output_list>]
["|" <promoters_inhibitors_list>]

<object_list> ::= <object_name> { "+" <object_name> }
<output_list> ::= <output> \{ "+" <output> }
<output> ::= <output_object> |

<division_marker> |
<dissolve_marker>

<output_object> ::= <object_name>
["(" <target_membrane> ")"]

<division_marker> ::= "%"
<dissolve_marker> ::= "#"
<promoters_inhibitors> ::= [<promoter_inhibitor>

{ "+" <promoter_inhibitor> }]
<promoter_inhibitor> ::= <promoter> | <inhibitor>
<promoter> ::= <object_name>
<inhibitor> ::= !<object_name>
<symport_rule> ::= "(<object_list>, out | in)"
<antiport_rule> ::= "(<object_list>, out;

<object_list>, in)"

It is useful to note that the simulator supports divide, promoters/inhibitors, and
symport/antiport rules for membranes. For example, the P system transition rule
a+b-¿c+d(2)+e(0) with priority 11 from membrane 1 is converted into the follow-
ing CLIPS rule:

(defrule MAIN::1_a+b->c+d[2]+e[0]
(declare (salience 11))
(do (what react))
(or (parent-child (parent 1) (child 2))

WebPS: A Web-based P System Simulator 67

(parent-child (parent 2) (child 1)))
(or (parent-child (parent 1) (child 0))

(parent-child (parent 0) (child 1)))
?a-0 <- (obj (name a) (membrane 1))
?b-1 <- (obj (name b) (membrane 1))
=>
(assert (newobj (name c) (membrane 1)))
(assert (inject (name d) (membrane 2)))
(assert (inject (name e) (membrane 0)))
(retract ?a-0) (retract ?b-1))

The membrane structure is reflected by the parent-child facts. An object a of
membrane 1 is represented as a CLIPS fact on line 8: (obj (name a) (membrane
1)). While the reactants a and b are consumed, the new objects c, d , and e are
created during the Spawn and Communication steps, respectively. The rule
priorities are mapped directly to CLIPS rules salience values, and therefore are
restricted to integer values in the interval [-10000, 10000].

2.2 C level

In the C level we use CLIPS API, although we plan to develop a complete library
that encapsulates the C-CLIPS interface, namely a C library which wrap nicely
around the CLIPS one (Figure 1). We represent a P system using XML, and we

C

CLIPS

Fig. 1. Relation between the C and CLIPS levels.

define an XML Schema for this kind of document. A special library is developed
to handle XML parsing of the input for the CLIPS part of the simulator. In the
following example is described a P system conforming to the XML schema. This
example system presents a P system for multiplication of the number of a objects
in membrane 1 with the number of b objects in membrane 0 , the result being the
number of d objects in membrane 0 .

<?xml version="1.0"?>
<psystem>
<membrane name="0">

<object name="b" count="3" />

68 C. Bonchiş, C. Isbaşa, D. Petcu, G. Ciobanu

<rule body="b+v->e+v+d" priority="1" />
<rule body="e+u->b+u+d" priority="1" />
<rule body="v->u(1)" />
<rule body="u->v(1)" />

<membrane name="1">
<object name="a" count="4" />
<object name="v" count="1" />
<rule body="a+v->v(0)" />
<rule body="a+u->u(0)" />

</membrane>
</membrane>
<query text="count of (objects from 0 where (objects d))" />

</psystem>

2.3 Web level

The Web level of the simulator allows to choose between a user-friendly P system
designer written in JavaScript and a traditional HTML input form transmitting
an XML description by uploading a file or by editing. Aside from the XML P
system description editing, the user can specify a number of executions of the P
system. Our JavaScript P system Designer aims to facilitate the description of the
P system without requiring the user to write XML, but generating it based on
the user’s interaction with a dynamic interface. After the user introduces a XML

PHP script

CGI program(C)

CLIPS library LibCGI PS−XML C library

JavaScript

P system Designer

HTML input form

for XML

Fig. 2. Structure of the Web level.

description, it is transmitted to a PHP script which does some further processing,
and sent then to a CGI program written in C (Figure 2). The C program uses
a specific P system XML library called PS-XML, as well as LibCGI and CLIPS

WebPS: A Web-based P System Simulator 69

library in order to simulate the evolution of the P system. Finally it returns the
results to the user. It is possible to select various information provided as results,
and in oprder to help the user to select the desired information we define a query
language called PsQL.

PsQL (P systems Query Language)

We define PsQL as an SQL-like language for querying the state of a P system. We
developed a CLIPS library for parsing and interpreting this language. At the Web
level, the queries can be included in the XML input; these queries are activated
after the execution of the specified P system. If it does not exist any query, the P
system is simulated, but no output is generated. At the CLIPS level it is possible to
specify queries for the P system in a dynamic manner, not just before starting the
simulation. At the syntactic level, PsQL is a Lisp-like language, and it is supported
by a small CLIPS library of list-handling functions.

The Backus-Naur (partial) description of PsQL is presented in the following
lines:

<query> ::= <expression> |
<count-query> |
<membranes-query> |
<objects-query>

<count-query> ::= "(" count-of <objects-query> |
<membranes-query> ")"

<objects-query> ::= "(" objects-from <membranes-spec>
[where <where-spec>] ")"

<membranes-query> ::= "(" membranes-from <membranes-spec>
[where <where-spec>] ")"

The full description is available at http://twiki.ieat.ro/twiki/bin/view/
Institut/PSystemsQueryLanguage. We plan to extend PsQL with trace facili-
ties; having queries on the possible traces during an execution represents a step
towards an automated verification of the P systems.

3 Examples

Multiplication

The first example is a P system that computes the multiplication of two natural
numbers. Figure 3 describes graphically the P system. As inputs we consider the
number of a objects in membrane 1 , and the number of b objects in membrane
0 . The result is given by the number of d objects in membrane 0 .

This P system differs from other similar ones by that it does not have expo-
nential space complexity, and does not require active membranes. As a particular

70 C. Bonchiş, C. Isbaşa, D. Petcu, G. Ciobanu

b
m

b+v e+v+d > v u(1)
e+u b+u+d > u v(1)

an

a+v v(0)
a+u u(0)

 v

0

1

Fig. 3. P system for multiplication.

case, it would be quite easy to compute n2 by just placing the same number n of
a and b objects in its membranes.

Another interesting feature is that it may continue computing the multiplica-
tion after reaching a certain result. Thus if initially there are m b objects and n a
objects, the system evolves and reaches a state with n ·m d objects in membrane
0 . If the user wish to continue in order to compute (n + k) · m, it is enough to
inject k a objects in membrane 1 at the current state, and the computation can
go on. Therefore this example emphasizes a certain degree of re-usability.

Recursive sum

The P system described in Figure 4 computes the recursive sum
∑n

i=1 ki. The

a a(0) a a(0) a a(0)

k
2

k
1

k
n

1 2

aa
...

0

n

a

Fig. 4. P system for recursive sum.

numbers of a objects in the membranes 1...n are the summands, and the result of
the computation is the number of a objects in membrane 0. The PsQL query to
determine this result is:

(count of (objects from 0))

WebPS: A Web-based P System Simulator 71

While this example is rather trivial, it illustrates the expressiveness of the query
language (PsQL). Using PsQL queries, it is not necessary to apply the rules and
execute the specified P system. Given the initial multiset, the same recursive sum
is obtained by using the following query:

(count of (objects from (membranes from 0)))

Dot product of two vectors

Combining the previous two examples, we can compute the dot (scalar) product
x · y of two vectors x, y ∈ Nm, where m ∈ N. Let us denote the components of the
vectors by xi and yi, respectively; these components are given by the number of b
and a in the membranes labelled by 2i and 2i +1, respectively. Then x · y is given
by the number of d objects obtained in membrane 0 after the P system halts.
This P system is described in Figure 5: where k = 0,m− 1. The PsQL query for

> u u(2k+2)e+u b+u+d(0)

y
k+1

a+v v(2k+1)
a+u u(2k+1)

2k+2

a v

b+v e+v+d(0) > v v(2k+2)

x
k+1b

2k+1

b+v e+v+d(0)

y
1

a+v v(1)
a+u u(1)

a v

2

x
1b

e+u

1

> v
> u b+u+d(0)

v(2)
u(2)

0

... ...

Fig. 5. P system for dot product.

retrieving the result is:

(count of (objects from 0))

4 Conclusion and Further Work

We present a new simulator of the P systems. It is efficient, flexible, and does not
require any previous knowledge in P systems, or expertise in computers. Since the
simulator has some novel and interesting features related to efficiency, ease of use
and generality, it can become a useful tool for the community, both theoretically
and practically. Being GPL licensed, we expect it is eligible to become a simulator
benchmark reference. The simulator is available at http://psystems.ieat.ro.

72 C. Bonchiş, C. Isbaşa, D. Petcu, G. Ciobanu

We intend to make the simulator available as a web service. Moreover, continu-
ing the commitment to standards compliance, we will strive for SBML compatibil-
ity for our specification language. Further improvements are related to better de-
bugging and visualization capabilities (including a flexible fine and coarse-grained
tracer), developing a library of macros and methodologies using the principles of
modularity, extensibility and structured design from software engineering, intro-
ducing flexible rules for the development of macros for P systems.

References

1. G. Ciobanu, W. Guo: P systems running on a cluster of computers. Proceedings
4th Workshop on Membrane Computing, LNCS 2933, Springer-Verlag, Berlin, 2004,
123–139.

2. G. Ciobanu, D. Paraschiv: P system software simulator. Fundamenta Informaticae,
49, 1-3 (2002), 61–66.

3. C.L. Forgy: RETE. A fast algorithm for the many pattern/ many object pattern
match problem. Artificial Intelligence, 19 (1982), 17–37.

4. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
5. M.J. Pérez-Jiménez, F.J. Romero-Campero: A CLIPS simulator for recognizer P

systems with active membranes, Proceedings 2nd Brainstorming Week on Membrane
Computing, University of Sevilla Tech. Rep 01/2004, 387–413.

