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Summary. A symbolic-based approach to modelling biochemical processes and cellular
dynamics is likely to turn useful in computational biology, where attempts to represent
the cell as a huge, complex dynamic system must trade with the linguistic nature of the
DNA and the individual behavior of the organelles living within. The early version of
the metabolic algorithm gave a first answer to the problem of representing oscillatory
biological phenomena, so far being treated with traditional (differential) mathematical
tools, in terms of rewriting systems. We are now working on a further version of this
algorithm, in which the rule application is tuned by reaction maps depending on the
specific phenomenon under consideration. Successful simulations of the Brusselator, the
Lotka-Volterra population dynamics and the PKC activation foster potential applications
of the algorithm in systems biology.

1 Introduction

Symbolic rewriting has traditionally been used to study and classify formal lan-
guages [18]. It was some years after Chomsky’s fundamental discoveries that rewrit-
ing systems began to be applied to the study of the growth of some simple organ-
isms and to the analysis of biological structures [9, 15].

These early applications of rewriting to practical case studies taken from the
real world demonstrated the potential ability of a properly defined formal construct
to represent, in principle, the development of at least some biological species. Such
constructs, in fact, move step by step toward the definition of a language/structure
until their computation terminates, hence their application to species in develop-
ment emphasized the possibility for formal systems to figure out not only classes
of languages, but also the paths along which their final structure takes form during
the system evolution.

Recently, a research line has started which focuses on the rewriting system
dynamic activity instead of its expressive power evaluated in terms of language
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types [20, 3, 11]. This line has been stimulated in an attempt to capture, by
means of rewriting systems, the dynamics of a biochemical process. In this attempt
a novel construct known as P system has come useful, provided its capability
to represent several structural aspects of the cell along with many intra- and
extra-cellular communication mechanisms [16, 4]. Such a dynamic perspective on
rewriting employing P systems has already led to alternative representations of
different biological dynamics [1, 19] and to new models of important pathological
processes [3, 14].

In [3, 11] we have started to develop a metabolic algorithm that introduced a
new perspective in the rewriting mechanism of P systems:

1. rules are not applied to objects. Rather, they are applied to populations of
objects;

2. rules are specified along with reactivities. Every reactivity denotes the ability
of the corresponding rule to compete against other rules in capturing part of
a population, on which the reaction is performed.

We have gone further in this perspective, by associating every reactivity to a
map that depends on the state of the system. Moreover we have added a strategy
for partitioning the objects in the system at every transition, depending on the
relative magnitude of every reactivity.

The performance shown by the metabolic algorithm in the simulation of well-
known biochemical models, such as the Lotka-Volterra population dynamics [10,
21], the BZ chemical reaction [5], and the PKC activation process [2], fosters
potential applications in critical open problems dealt with by systems biology
[7]. Simulation in progress are confirming the effectiveness of the algorithm in
modelling even more complex biochemical processes, such as those that evoke
circadian rhythms in living bodies [8].

2 Metabolic Algorithm

As we have told in the introduction, the metabolic algorithm is built on P systems.
For the sake of simplicity here, and in the following, we hypothesize that this
system is made of just one membrane. In Section 5 we will briefly discuss the
formal extensions needed to cope with more membranes.

To provide our algorithm with flexibility we will guarantee the fulfillment of
the two following principles at any transition of a P system Π, working on the
alphabet A = {X,Y, . . . , Z} and provided with rules r, s, . . . , w ∈ R:

• increasing the activity of a rule implies a proportional decrease of the rewriting
activity of other rules sharing the same symbols. This condition reflects the
concurrency among rules over a finite set of objects in the system;

• the applicability of rules is limited by those objects, whose availability in the
system is low. This condition reflects a constraint on resources.
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In the following we will reformulate these two points in quantitative terms.
In the early version of the metabolic algorithm we had postulated that proper

reactivity constants affected the rewriting activity of every rule, respectively, in a
way that a larger reactivity constant defined a higher rewriting activity of the cor-
responding rule. Then, this activity was properly limited by defining a population
on which a rule r : αr → βr, transforming the string αr ∈ A∗ into a new string
βr ∈ A∗, could be applied during a transition depending on the number of objects
available in the system immediately before that transition.

The new version of the metabolic algorithm requires, firstly, to recognize the
state of the system. This state is used inside so-called reaction maps which gen-
eralize the former reactivity constants into time-varying functions. Once we have
such maps at hand we will let the rules work according to the relative reactivity
expressed by every map, meanwhile limiting this power to avoid over-consumption
of the objects in the system. Finally, a simple stochastic method will be adopted
to decide how to treat individual objects in the system, for which the procedure
described so far does not take a definite decision. More in general, introducing
stochastic properties in an algorithm can turn out to be particularly desirable
when the dynamics is highly influenced by few molecules [6].

2.1 State of the System

In classical dynamic systems the values assumed along time by every variable
usually form the state of the system. In a similar way, here we postulate that at
every discrete time t the number of objects of each type is well defined for every
membrane. Formally, the state of the system at time t is identified by a function

qt : A −→ N, (1)

where A is the alphabet of the P system.
For instance, qt(X) gives the amount of objects X available in the system at

time t. Note that we will usually omit to denote t, except for those cases in which
specifying the time turns out to be convenient.

The state, hence, can be read by applying qt to every symbol of the alphabet.
The set of all states assumed along time by the system is expressed by:

Q = {qt | t ∈ N}. (2)

This set, then, contains the complete information on the evolution of the system.
Further insight on the state is not possible since qt is the only probe we can use
to observe it.

2.2 Reaction Maps

As opposite to the early metabolic algorithm [3] in which the reactivity constants
had a direct (and time invariant) role on rewriting, here we generalize such con-
stants into reaction maps, one for each rule, in a way that every reaction map gives
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the reactivity that the corresponding rule has when the system is in a given state.
It follows that such maps are time varying, i.e., they in general specify different
reactivities in correspondence of different temporal steps.

Formally speaking, for each rule r we define a reaction map Fr that maps states
into real numbers:

Fr : Q −→ R. (3)

Since q is defined at any temporal step, the application of a reaction map Fr

ultimately results in a positive real number that we will take as the reactivity of r
in q.

Such maps allow for a wide choice of possible definitions depending on the
biological phenomenon under analysis: according to the traditional formulation of
dynamic system it is not restrictive to consider real functions that in their struc-
ture include the state of the system plus factors such as the reactivity constants
mentioned at the beginning of this section.

As an example, consider a rewriting system having an alphabet made of five
symbols, A = {A,B, C, D, E}, and two rules, r and s:

r : ABB
kr→ AC

s : AE
ks→ BD

(4)

in which, consistently with notations traditionally adopted in biochemistry, we
have specified constant reactivities (kr and ks) that are peculiar to each rule—
they could be, for example, kinetic parameters related to the chemical reactions
respectively associated to these rules.

Possible structures of the reaction maps might be the following ones:

• simple reactivity constants

Fr = kr

Fs = ks

• reactivities driven by the law of mass action

Fr = kr q(A)q(B)
Fs = ks q(A)q(E)

• reactivities depending on only the largest number of objects in the system that
are visible to the rule

Fr = max{q(A), q(B)}
Fs = max{q(A), q(E)}

• reactivities depending on an external promoter, like an enzyme capable of ac-
tivating the reaction

Fr = q(D)
Fs = {q(D)}2
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In the following we will pick up this example as long as we need to illustrate
the principles of the algorithm.

2.3 Reaction Weights

Reaction maps are not used directly, as reactivities. Rather, their activity is pro-
portionally distributed among the rules by means of so-called reaction weights.
Every reaction weight then gives, for each symbol, a population amount a rule ap-
plies to in order to proportionally consume the corresponding object. By denoting
with α(i) the ith symbol in a string α, with |α| the length of the same string, and
with |α|X the number of occurrences of X in α, then we define the reaction weight
Wr

(
αr(i)

)
for r : αr → βr with respect to the symbol αr(i).

Normalization can be straightforwardly expressed in quantitative terms if we
think that all rules co-operate, each one with its own reactivity, to consume all
available objects. Thus, it must be:

∑

ρ∈R |X∈αρ

Wρ

(
X

)
= 1 ∀X ∈ A (5)

that is, for each symbol the sum of the reaction weights made over the rules
containing that symbol in their left part equals unity.

Holding this constraint, we can define the reaction weights for each r ∈ R as

Wr

(
αr(i)

)
=

Fr∑

ρ∈R |αr(i)∈αρ

Fρ

, i = 1, . . . , |αr| (6)

Note that, similarly to what happens in (5), we sum at the denominator over the
rules containing the symbol αr(i) in their left part.

Returning to our example, we have to compute Wr(A), Wr(B), Ws(A), Ws(E):

Wr(A) = Fr
Fr + Fs

Wr(B) = Fr
Fr

= 1

Ws(A) = Fs
Fr + Fs

Ws(E) = Fs
Fs

= 1
(7)

2.4 Limitation, Rounding and State Transition

For what we have said in the above, the available objects are consumed propor-
tionally to the reaction weights. Then, in our example we have to choose whether
to consume

Wr(A)q(A) or Wr(B)q(B) (8)

objects using r, and
Ws(A)q(A) or Ws(E)q(E) (9)
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using s—provided for simplicity that all values in (8) and (9) are integer.
The right choice is figured out by considering that every rule cannot consume

more than the amount of the (reactant) object, taken with its own multiplicity in
the reaction, whose availability in the system is lowest. Limitation, then, comes
out for every rule by minimizing among all reactants participating to it:

Λr = min
i=1,...,|αr|

{
Wr

(
αr(i)

)q
(
αr(i)

)
∣∣αr

∣∣
αr(i)

}
(10)

Still, Λr is a real number. As opposite to this, a genuine object-based rewriting
system must restrict the rule application domain to integer values. Instead of,
for instance, rounding the minima obtained by (10), we prefer the following policy
(later we will understand why): for every rule, compare the fractional part frac(Λr)
of Λr to a random variable vr defined between 0 and 1, and choose the floor of Λr

if this fraction is smaller, the ceiling otherwise. In this way, new rounded minima
result to be equal to:

Λr =
{

floor(Λr) , frac(Λr) ≤ vr

ceil(Λr) , frac(Λr) > vr
. (11)

As a result of this step we obtain the set {Λr, r ∈ R}, containing the number
of objects each rule will be applied to.

In conclusion, for every symbol X ∈ A the change in the number of objects
due to r is equal to the stoichiometric factor of r, equal to |βr|X − |αr|X , times
the value Λr:

∆r(X) = Λr (|βr|X − |αr|X) (12)

It descends that for every symbol X ∈ A the state evolves according to the
following formula:

qt+1(X) = qt(X) +
∑

r∈R

∆r(X) (13)

Again in our example, let us suppose that at time t it is q(A) = q(B) = q(C) =
q(D) = q(E) = q̃, furthermore Fr = 3/4 Fs. Then,

Λr = min
{ 3/4Fs

3/4Fs + Fs
q̃,

1
2

q̃
}

=
3
7

q̃

Λs = min
{ Fs

3/4Fs + Fs
q̃, q̃

}
=

4
7

q̃

After rounding Λr and Λs (here, for simplicity, we suppose to have found integers
already at the limitation step) we have

∆r(A) =
3
7

q̃ (1− 1) = 0

∆r(B) =
3
7

q̃ (0− 2) = −6
7

q̃
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∆r(C) =
3
7

q̃ (1− 0) =
3
7

q̃

∆s(A) =
4
7

q̃ (0− 1) = −4
7

q̃

∆s(B) =
4
7

q̃ (1− 0) =
4
7

q̃

∆s(D) =
4
7

q̃ (1− 0) =
4
7

q̃

∆s(E) =
4
7

q̃ (0− 1) = −4
7

q̃

in a way that

qt+1(A) = q̃ − 4
7

q̃ =
3
7

q̃

qt+1(B) = q̃ +
(
−6

7
+

4
7

)
q̃ =

5
7

q̃

qt+1(C) = q̃ +
3
7

q̃ =
10
7

q̃

qt+1(D) = q̃ +
4
7

q̃ =
11
7

q̃

qt+1(E) = q̃ − 4
7

q̃ =
3
7

q̃

From the last equations it follows that
∑

X∈A
qt+1(X) = 32/7 q̃ <

∑

X∈A
qt(X) = 5q̃

Interesting to see, in this system the total number of objects cannot increase along
time. In other words in our example the following relation holds:

∑

X∈A
qt+1(X) ≤

∑

X∈A
qt(X)

3 Flexibility of the Algorithm

The proposed algorithm has two basic access points where parameters can be put
into: the reaction maps, and the stochastic properties of vr.

• Reaction maps can be defined with relative freedom, and even changed during
the process according to the specific phenomenon under study. Their activity,
in fact, is in any case normalized by the reaction weights. Occasionally some
maps may result in null values: in this case reaction weights might arise in the
form 0/0, and proper strategies must be put into action to handle them prop-
erly. Reaction maps, in conclusion, enable the fine control of the macroscopic,
i.e., deterministic part of the process.
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• Conversely, the statistics of vr has consequences on the system behavior that
become as more important, as fewer objects are present in the system. In other
words it influences the stochastic part of the process, i.e., its unpredictability in
front of individual drifts from the average behavior. Although further research
must be carried out to shift the metabolic algorithm closer to stochastic meth-
ods used in biochemistry [17], nevertheless the control of vr already allows to
handle, at least to some extent, an interesting property of most discrete popula-
tion dynamics, according to which the decision taken by an individual becomes
as more crucial, as less populated the system is [6]. This feature is evident in
the simulation of the Lotka-Volterra dynamics proposed in the following.
The rounding policy expressed by (11) does not prevent that the resulting
application of rules exceeds the available resources in the system. As an example
suppose that, during a transition, it happens that Λr ≥ Λr for each r ∈ R: in
this case it is likely that the consequent application of the rules over-consumes
at least some objects available in the system. To prevent this we must check
that ∑

r∈R

Λr|αr|X ≤ q(X) ∀X ∈ A (14)

otherwise the set of minima must be computed again.
In first approximation vr can be chosen to have a uniform distribution. We
will present here an example in which a different choice of the random variable
leads to more accurate simulation results.

3.1 Transparent Rules

The metabolic algorithm allows to tune the activity of rules. Tuning is achieved by
adding in the system so-called transparent rules, i.e., rules in the form αr → αr.
Proper reaction maps can be selected to put such transparent rules in concurrence
with the other, effective rules sharing common reactants. In this way, during a
transition of the system every rule is applied as less intensively, as larger the
reactivity value expressed by a concurrent transparent rule is.

For instance, let us add a rule t : A
kt→ A in the system expressed by (4). This

leads to the following reaction weights:

Wr(A) = Fr
Fr + Fs + Ft

Wr(B) = Fr
Fr

= 1

Ws(A) = Fs
Fr + Fs + Ft

Ws(E) = Fs
Fs

= 1
(15)

Note that we can omit to compute Wt(A) due to the transparency of the corre-
sponding rule.

Clearly, Ft tunes the action of r and s over the symbol A. In the limit case
Ft = ∞ the rule t inhibits the action of r and s over A, since in this case we have
Wr(A) = Ws(A) = 0. Finally, a rule t : ABE → ABE would inhibit both r and s
in the same limit case.
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Transparent rules add further flexibility to the algorithm. In particular, they
allow to observe the system evolution with the desired degree of resolution re-
gardless of any consideration about the granularity of the temporal step. Changes
in resolution are instead obtained by “hiding” objects to the system evolution by
means of transparent rules. The way transparent rules work reflects an inherent
attitude of the metabolic algorithm to scale its own resolution not along the time
dimension, i.e., by means of a temporal scaling factor as it happens in most nu-
merical methods. Rather, resolution is scaled by adapting the size of populations
to the degree of precision expected for the experiment.

4 Results

We show results coming from the predator-prey population dynamics, the Brusse-
lator, and the PKC activation process.

4.1 Predator-Prey Population Dynamics

The classic Lotka-Volterra population dynamics [10, 21] can be described by a
simple set of rewriting rules in which X are preys and Y predators:

r : X
kr−→ XX prey reproduction

s : XY
ks−→ Y Y predator reproduction

t : Y
kt−→ λ predator death

(16)

Here, we can tune the activity of every rule by selecting proper reactivity constants
kr, ks and kt proportional to the rate of reproduction and death of both predators
and preys. We postulate Fs to be constantly proportional to ks times the maximum
number between preys and predators, max{q(X), q(Y )}, that are present in the
population at any system transition. Conversely, the remaining reaction maps are
set to be constantly equal to the corresponding reactivity constants:

Fr = kr

Fs = ks max{q(X), q(Y )} (17)
Ft = kt

Moreover we add transparent rules accounting for preys that are not reproduc-
ing or being consumed and for predators that are not eating or dyeing:

u : X
ku−→ X prey standing by

v : Y
kv−→ Y predator standing by

(18)

The set of reaction weights is then equal to
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Wr(X) = Fr
Fr + Fs + Fu

Ws(X) = Fs
Fr + Fs + Fu

Ws(Y ) = Fs
Fs + Ft + Fv

Wt(Y ) = Ft
Fs + Ft + Fv

(19)

Noticing that |αs|X = |αs|Y = 1, then the minimum between weighted preys
and weighted predators must be calculated at each system transition as

Λs = min
{ ks max{q(X), q(Y )}

kr + ku + ks max{q(X), q(Y )} q(X),

ks max{q(X), q(Y )}
kt + kv + ks max{q(X), q(Y )} q(Y )

}
(20)

If we in particular choose kr = kt and ku = kv this minimum becomes equal to

Λs =
ks max{q(X), q(Y )}

kr + ku + ks max{q(X), q(Y )} min{q(X), q(Y )}

=
ks q(X)q(Y )

kr + ku + ks max{q(X), q(Y )} (21)

In this case we have

Λr =
kr

kr + ku + ks max{q(X), q(Y )} q(X)

Λs =
ks

kr + ku + ks max{q(X), q(Y )} q(X)q(Y ) (22)

Λt =
kr

kr + ku + ks max{q(X), q(Y )} q(Y )

Interesting to notice, these values resemble the terms proposed by Lotka-Volterra
in its model of population dynamics. The choice made (not by chance) in (17), then,
adds insight on the meaning of the population dynamics equations in the context
of a rewriting system whose objects play the role of either preys or predators.

Finally we check that the rounding procedure, making use of uniform random
variables, does not produce over-consuming applications of the rules:

Λr + Λs ≤ q(X) (23)
Λs + Λt ≤ q(Y )

(though, the existence of u and v makes this possibility remote).
A plot of the initial dynamic behavior of the predator-prey model is depicted

in Figure 1 and, after 136000 observation slots, in Figure 2. These plots come
out when we set kr = kt = 3 · 10−2, ks = 4 · 10−5, and ku = kv = 5. Using
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Fig. 1. Predator-prey initial dynamics.

these parameters, along with initial conditions q(X) = q(Y ) = 900, the system
exhibits an interesting oscillating behavior. The oscillation can evolve to the death
of both species, as in Figure 2, or to the death of the predators solely. The long-
term evolution in fact depends on single events taking place when few individuals,
either preys or predators, are present in the system. Such a long-term behavior
emphasizes the importance of a careful description of not only the reactivities, but
also the relationships existing between individuals: the nature of these relationships
can completely change the overall system evolution.

4.2 Brusselator

The Belousov-Zhabotinskii (BZ) reaction has represented a milestone in the his-
tory of physical chemistry, as it disclosed the previously unrecognized existence of
oscillatory chemical phenomena [5]. A simple model of the BZ reaction is realized
by the Brusselator [20]:
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Fig. 2. Predator-prey dynamics after 136000 observation slots.

r : λ
kr−→ X reactant in

s : XXY
ks−→ XXX compound into reactant

t : X
kt−→ Y reactant into product

u : X
ku−→ λ reactant dissolving

(24)

This set of rules accounts for the fact that the reactant X either turns into
a product Y or participates in transforming the product back to the reactant
itself. As opposite to the predator-prey model, the Brusselator includes a constant
incoming and dissolving of reactant in the system.

The literature on the Brusselator suggests that the reaction activity depends
on the concentrations of chemical elements according to the law of mass action.
We then define the following reaction maps:

Fr = kr

Fs = ks {q(X)}2q(Y ) (25)
Ft = kt q(X)
Fu = ku q(X)
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It must be noticed that rules containing λ in their left part do not compete
for a limited availability of reactant or for a bounded population, by definition.
For this reason they act unconstrained, i.e., no reaction weight holds for any of
them. Hence, we come up with the following reaction weights in which r is not
considered:

Ws(X) = Fs
Fs + Ft + Fu

Ws(Y ) = Fs
Fs

= 1

Wt(X) = Ft
Fs + Ft + Fu

Wu(X) = Fu
Fs + Ft + Fu

(26)

Again we have to minimize only over s at any system transition:

Λs = min
{ 1
|αs|X

Fs(X)
Fs(X) + Ft(X) + Fu(X)

q(X), q(Y )
}

(27)

so that in the end we have

Λr = kr

Λs = q(Y )min
{1

2
ks

kt + ku + ks q(X)q(Y )
{q(X)}2, 1

}

Λt =
kt

kt + ku + ks q(X)q(Y )
q(X) (28)

Λu =
ku

kt + ku + ks q(X)q(Y )
q(X)

Finally we check out that the rounding procedure does not produce over-
consuming applications of rules. By (14) it turns out that checking over X is
sufficient:

2Λs + Λt + Λu ≤ q(X) (29)

A plot of the dynamic behavior of our rewriting system modelling the Brussela-
tor, in which we have set kr = 10, ks = 9, kt = 200, ku = 5, and initially q(X) = 1
and q(Y ) = 10, is depicted in Figure 3. The overall behavior is satisfactory if
compared to real experiments conducted over the BZ reaction [5].

An artifact, visible in the center part of the plot, arises after around 1350 steps
consisting in a constant climb of the concentration of the reactant. This fact reveals
the existence of periods in which the reaction goes in a stand-by situation, and
then restarts with the oscillatory dynamic behavior. Interesting to say, a major
reduction of this artifact has been achieved by changing the properties of the
random variables devoted to round the number of times every rule is applied:
by altering their uniform probability so to privilege truncation and discourage
rounding toward one, then constant rise-ups of the reactant are almost completely
removed.
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Fig. 3. Brusselator dynamics.

As in the predator-prey model we notice that individual differences in the rule
application, occurring when there are few reactant and/or product objects, turn
into differences in the system behavior. Though, the BZ reaction is more robust
against perturbations and exhibits an asymptotic long-term behavior, that is, indi-
vidual events affect only the short-term evolution: as opposite to a Lotka-Volterra’s
population dynamics, in which the evolution of the system entirely depends on its
internal state, the Brusselator is, in fact, driven by a constant incoming and dis-
solving of the reactant, accounted for respectively by r and u. This streaming
activity adds inherent robustness to the model of a BZ reaction.

4.3 PKC activation

As another case study, we consider here a simple signal transduction network
describing the activation of the protein kinase C (PKC) [12, 13]. The importance
of this process is due to the fact that PKC mediates many cellular responses to
extracellular stimuli and is involved in several regulatory phosphorylations dealing
with proliferation, apoptosis and differentiation. PKC activation is elicited by the
allosteric effect of calcium ions (Ca), whose affinity is increased by other agents
such as arachidonic acid (AA) and diacylglycerol (DAG).
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We refer to the PKC activation model discussed in [2], to which we send the
reader for further details. We have translated this model into the following set of
rules:

r1 : PKC − i → PKC − a
r2 : PKC − a → PKC − i
r3 : PKC − i AA → PKC − aA
r4 : PKC − aA → PKC − i AA
r5 : Ca.PKC → PKC − aC
r6 : PKC − aC → Ca.PKC
r7 : Ca.PKC AA → PKC − aCA
r8 : PKC − aCA → Ca.PKC AA
r9 : DAG.Ca.PKC → PKC − aD
r10 : PKC − aD → DAG.Ca.PKC
r11 : AA.DAG.PKC → PKC − aAD
r12 : PKC − aAD → AA.DAG.PKC
r13 : PKC − i Ca → Ca.PKC
r14 : Ca.PKC → PKC − i Ca
r15 : Ca.PKC DAG → DAG.Ca.PKC
r16 : DAG.Ca.PKC → Ca.PKC DAG
r17 : DAG.PKC AA → AA.DAG.PKC
r18 : AA.DAG.PKC → DAG.PKC AA
r19 : PKC − i DAG → DAG.PKC
r20 : DAG.PKC → PKC − i DAG

(30)

in which AA, Ca, and DAG have the meaning introduced previously and we use the
symbols PKC−i and PKC−a to denote respectively the inactivated and activated
form of protein kinase C. All remaining symbols represent intermediate complexes.
Moreover, for every object X of the system we have introduced a transparent rule
of the form X → X (not represented in the set of equations above). Note that
the rules just expressed represent biochemical reactions mediated by enzymes. For
this reason each rule ri is coupled with a rate constant ki. The rate constants used
in our simulations are taken directly from [2] and are summarized below:

k1 = 50 k2 = 1 k3 = 0.1
k4 = 2 · 10−10 k5 = 3.5026 k6 = 1.2705

k7 = 0.1 k8 = 2 · 10−9 k9 = 0.1
k10 = 1 k11 = 0.2 k12 = 2

k13 = 0.5 k14 = 1 · 10−6 k15 = 8.6348
k16 = 1.3333 · 10−8 k17 = 2 k18 = 3 · 10−8

k19 = 0.1 k20 = 1 · 10−9

(31)

For every rule ri we define a reactivity map to be simply the corresponding
rate ki:

Fri = ki , i = 1, . . . , 20 (32)



58 L. Bianco, F. Fontana, V. Manca

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

step

co
nc

en
tr

at
io

n
Ca
PKC−a
DAG
PKC−i

Fig. 4. PKC activation dynamics. The order of the elements in the legend is the same
as the order of their final concentrations within the plot.

meanwhile we associate a constant reactivity map to each transparent rule, in our
case F = 50. These reactivity maps are quite simple but in the future we intend
to investigate the effectiveness of more complex reactivity maps in the case of the
PKC model.

The description of the whole set of weights Wri , that can be calculated ob-
ject by object in the way introduced in previous sections, is omitted. Rather, we
present some simulation results obtained using our algorithm. In Figure 4 we see
that, in accordance with results obtained in [2], PKC − i decreases to zero while
PKC − a grows up until reaching a stationary maximum. Figure 5 represents the
characteristic dynamics of the diacylglycerol-protein kinase C (DAG.PKC) com-
plex.

5 Discussion

All rules discussed so far do not present any target specification. This aspect needs
further discussion due to its importance.

Let’s consider the following rule r, present in a membrane wi:
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Fig. 5. DAG.PKC complex dynamics.

AB → BINj C , Fr

where Fr is the reactivity map associated to r. Its meaning is the following: when-
ever A joins B inside wi, they combine and produce an object C inside the same
membrane, meanwhile an object B leaves wi and reaches the membrane wj . In
such a way r affects objects that are present in two different membranes. In par-
ticular, from a structural viewpoint, the elements B that are present in wi have
to be distinguished from the elements B that are present in wj (and, in fact, this
is the effect of compartmentalization). For this reason r originates four metabolic
equations describing the behavior of its four distinct elements:

∆r(Awi) = −Λr,wi

∆r(Bwi) = −Λr,wi

∆r(Bwj ) = +Λr,wi

∆r(Cwi) = +Λr,wi

where we have introduced the label of the membrane containing every element as
subscript.

In this way we can see that the variation due to r on the objects B placed
inside wj , i.e., ∆r(Bwj ), depends on the concentrations of A and B located in wi
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as stated by the subscript notation (note that this dependence is hidden behind the
Λr factor). This simple evolution rule is powerful enough to show that movements
of objects between membranes can be handled easily by considering, as distinct
elements, two objects of the same type located in different regions. This additional
information introduces a notational overhead of targeting every object with the
label of the membrane containing the respective object. On the other hand it does
not introduce any conceptual complication.

The case in which elements appearing in the antecedent of the rule are placed
inside different membranes can be handled similarly. The only difference that must
be taken into account is that the set of weights has to be calculated by considering,
in principle, the whole set of rules of the P system rather than the set of rules of
a single membrane.

6 Conclusion and Ongoing Research

Systems biology demands for novel procedures capable of representing biological
processes with both accuracy and flexibility. In front of a huge and well-rooted
family of numerical schemes, traditionally devoted to figure out the dynamics
of systems described by differential equations, alternative algorithms based on a
symbolic representation of the phenomena promise to deal more naturally with
the structural characteristics of the biomolecules and with the biochemical reac-
tions such molecules give rise to. By using the same kind of representation, our
algorithm moreover seems to handle in a straightforward and efficient way those
conditions in which few molecules have an important impact on the system dy-
namics, where most traditional numerical strategies are no longer effective and
must be substituted by stochastic algorithms.

Successful simulations conducted on two paradigmatic nonlinear processes in
biochemistry, namely the Lotka-Volterra population dynamics and the BZ reac-
tion, plus the experiment conducted with the PKC activation process, ask for
further test the potential of the metabolic algorithm. Our present research aims to
simulate some fundamental signal transduction networks, in particular the PER
and TIM cycle in the circadian oscillation in Drosophila.
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M.J. Pérez–Jiménez, G. Rozenberg, A. Salomaa, eds.), LNCS 3365, Springer-Verlag,
Berlin, 2005, 210–223.

2. U.S. Bhalla, R. Iyengar: Emergent properties of networks of biological signaling path-
ways. Science, 283 (January 1999), 381–387.

3. L. Bianco, F. Fontana, G. Franco, V. Manca: P systems for biological dynamics. In
[4].



Metabolic Algorithm with Time-varying Reaction Maps 61
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