
Tissue P Systems with Cell Division

Gheorghe PĂUN1,2, Mario PÉREZ-JIMÉNEZ2,
Agust́ın RISCOS-NÚÑEZ2

1Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
2 Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
Technical Higher School of Computer Science Engineering

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: {gpaun, marper, ariscosn}@us.es

Abstract. In tissue P systems several cells (elementary membranes) commu-
nicate through symport/antiport rules, thus carrying out a computation. We
add to such systems the basic feature of (cell) P systems with active membranes
– the possibility to divide cells. As expected (as it is the case for P systems
with active membranes), in this way we get the possibility to solve computa-
tionally hard problems in polynomial time; we illustrate this possibility with
SAT problem.

1 Introduction

In membrane computing, there are two main classes of P systems: with the membranes
arranged hierarchically, inspired from the structure of the cell, and with the membranes
placed in the nodes of a graph, all of them at the same level, inspired from the cell
inter-communication in tissues. A particularly interesting sub-class of the first class are
the systems with active membranes, where the membrane division can be used in or-
der to solve hard problems, e.g., NP-complete problems, in polynomial or even linear
time, by a space-time trade-off. In the tissue P systems, the communication among
cells is performed by means of symport/antiport rules, well-known in biology. Details
can be found in [2], [3], as well as in the comprehensive page from the web address
http://psystems.disco.unimib.it).

In this paper we combine the two definitions, and consider tissue P systems (with the
communication done through symport/antiport rules) with cell division rules of the same
form as in P systems with active membranes, but without using polarizations. The rules
are used in the non-deterministic maximally parallel way, with the restriction that if a
division rule is used for dividing a cell, then this cell does not participate in any other
rule, for division or communication (when dividing, the interaction of the cell with other
cells or with the environment is blocked); the cells obtained by division have the same
labels as the mother cell, hence the rules to be used for evolving them or their objects are
inherited (the label precisely identifies the available rules).

380

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51399222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This natural extension of tissue P systems provides the possibility of solving SAT prob-
lem in polynomial time, in a confluent way: at precise times, one of the objects yes or no
is sent to the environment, giving the answer to the question whether the input proposi-
tional formula is satisfiable. The construction is uniform: in a polynomial time, a family
of recognizing tissue P systems with cell division is constructed, which, receiving as inputs
encodings of instances of SAT, tells us whether or not these instances are satisfiable.

2 Tissue P Systems with Cell Division

We assume the reader to be familiar with basic elements of membrane computing and we
directly define the class of P systems which is investigated in this paper.

A tissue P system with cell division is a construct

Π = (O,w1, . . . , wm, E, R, io),

where:

1. m ≥ 1 (the initial degree of the system; the system contains m cells, labeled with
1, 2, . . . , m);

2. O is the alphabet of objects;

3. w1, . . . , wm are strings over O, describing the multisets of objects placed in the m
cells of the system;

4. E ⊆ O is the set of objects present in the environment in arbitrarily many copies
each;

5. R is a finite set of developmental rules, of the following forms:

(a) (i, x/y, j), for i, j ∈ {0, 1, 2, . . . , m}, i 6= j, and x, y ∈ O∗;
communication rules; 1, 2, . . . , m identify the cells of the system, 0 is the envi-
ronment; when applying a rule (i, x/y, j), the objects of the multiset represented
by x are sent from region i to region j and simultaneously the objects of the
multiset y are sent from region j to region i;

(b) [a] i → [b] i[c] i, where i ∈ {1, 2, . . . ,m} and a, b, c ∈ O;
division rules; under the influence of object a, the cell with label i is divided in
two cells with the same label; in the first copy the object a is replaced by b, in
the second copy the object a is replaced by c; all other objects are replicated
and copies of them are placed in the two new cells.

Therefore, we use antiport rules for communication (for a rule (i, x/y, j) we say that
the maximum of the lengths of x and y is the weight of the rule), and division rules as in
P systems with active membranes.

The rules of a system as above are used in the non-deterministic maximally parallel
manner as customary in membrane computing. In each step, all objects and all cells which
can evolve must evolve (that is, in each step we apply a set of rules which is maximal, no
further rule can be added), with the following important mentioning: if a cell is divided,
then the division rule is the only one which is applied for that cell in that step, its objects
do not evolve by means of communication rules. This is like saying that a cell which divides
first cuts all its communication channels with the other cells and with the environment;
the dotter cells will participate to the interaction with other cells or with the environment
only in the next step – providing that they are not divided once again.

381

The computation starts from the initial configuration and proceeds as defined above;
only halting computations give a result, and the result is the number of objects present
in the halting configuration in cell io; the set of numbers computed in this way by the
various halting computations in Π is denoted by N(Π).

In the present paper we are not interested in the computing power of systems as above
– already systems without membrane division are known to be Turing complete (see [2],
[1], etc.), but in their computing efficiency. That is why we introduce a variant of tissue P
systems with membrane division, namely recognizing systems with input. Such a system
has the form Π = (O, w1, . . . , wm, E, R, iin), with the set O containing two distinguished
objects, yes and no, present in at least one copy in w1w2 . . . wm but not present in E,
and with iin ∈ {1, 2, . . . , m} being the input cell. The computations of the system Π
start from configurations of the form (w1, w2, . . . , winw, . . . , wm; E), where w ∈ O∗ (that
is, after adding the multiset w to the contents of the input cell); all computations halt; in
the last step of a computation either a copy of the object yes or a copy of the object no is
sent into the environment; we say that the multiset w is recognized/accepted by Π if and
only if the object yes was sent out.

If the multiset w codifies an instance Q(n) of a decision problem Q, then we say that Π
answers the question whether or not Q(n) has an affirmative answer (w is accepted if and
only if the codified instance Q(n) has the answer yes). Thus, we say that the problem Q
is solved in a time bounded by a mapping f if and only if a class of recognizing P systems
with input, Π(Q,n), can be constructed in polynomial time by a Turing machine starting
from Q and n, such that Π(Q,n) halts in less than f(n) steps when starting with the
input w(Q, n), which codifies Q(n), and provides the answer yes if and only if Q(n) has
the affirmative answer. (The code w(Q,n) should be obtained in polynomial time by a
Turing machine, starting from the instance Q(n).) The set of all decision problems which
can be solved as above in a number of steps bounded by a mapping f form the complexity
class MCTD(f). Here we are interested in polynomial time solutions, hence we consider
the class PMCTD, obtained as the union of all classes MCTD(f), for all polynomials f .

More precise definitions of complexity classes in terms of membrane computing can be
found in [3]. We close this section with an important remark about the previous way of
solving decision problems. Specifically, we have said nothing about the way the compu-
tations proceed; in particular, they can be non-deterministic, as standard in membrane
computing. It is important however that the systems always stop and always they send out
an object which is the correct answer to the input problem. In other terms, the systems
are confluent, sound, and complete.

3 Solving SAT in Polynomial Time

As expected, the possibility to divide cells means the possibility to create an exponential
space in a linear time, and this space can be used in order to obtain fast solutions to
computationally hard problems.

Theorem 3.1 Tissue P systems with active membranes can solve SAT in polynomial time.
(Otherwise stated, SAT ∈ PMCTD.)

Proof. Let us consider a propositional formula γ = C1 ∧ . . . ∧ Cm, consisting of m
clauses Cj = yj,1 ∨ . . . ∨ yj,kj , 1 ≤ j ≤ m, where yj,i ∈ {xl,¬xl | 1 ≤ l ≤ n}, 1 ≤ i ≤ kj

(there are used n variables). Without loss of generality, we may assume that no clause

382

contains two occurrences of some xi or two occurrences of some ¬xi (the formula is not
redundant at the level of clauses), or both xi and ¬xi (otherwise such a clause is trivially
satisfiable, hence can be removed).

We codify γ, which is an instance of SAT with size parameters n and m, by the multiset

w(γ) = {si,j | yj,r = xi, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ r ≤ kj}
∪ {s′i,j | yj,r = ¬xi, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ r ≤ kj}.

(We replace each variable xi from each clause Cj with si,j and each negated variable ¬xi

from each clause Cj with s′i,j , then we remove all parentheses and connectives. In this way
we pass from γ to w(γ) in a number of steps which is linear with respect to n ·m.)

We construct the recognizing tissue P system (of degree 2) with input

Π = (O,w1, w2, E,R, 2),

with the following components:

O = {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri | 1 ≤ i ≤ m}
∪ {Ti, Fi | 1 ≤ i ≤ n} ∪ {Ti,j , Fi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m + 1}
∪ {bi | 1 ≤ i ≤ 3n + m + 1} ∪ {ci | 1 ≤ i ≤ n + 1}
∪ {di | 1 ≤ i ≤ 3n + nm + m + 2} ∪ {ei | 1 ≤ i ≤ 3n + nm + m + 4}
∪ {f, g, yes, no},

w1 = yes no b1c1d1e1,

w2 = fga1a2 . . . an,

E = O − {yes, no},
and the following rules.

1. Division rules:

[ai]2 → [Ti]2[Fi]2, for all i = 1, 2, . . . , n.

(Membrane 2 is repeatedly divided, each time expanding one object ai, corresponding
to a variable xi, into Ti and Fi, corresponding to the values true and false which this
variable may assume. In this way, in n steps, we get 2n cells with label 2, each one
containing one of the 2n truth-assignments possible for the n variables. The objects
f, g are duplicated, hence a copy of each of them will appear in each cell.)

2. Communication rules:

(1, bi/b2
i+1, 0), for all i = 1, 2, . . . , n + 1,

(1, ci/c2
i+1, 0), for all i = 1, 2, . . . , n + 1,

(1, di/d2
i+1, 0), for all i = 1, 2, . . . , n + 1,

(1, ei/ei+1, 0), for all i = 1, 2, . . . , 3n + nm + m + 3.

(In parallel with the operation of dividing cell 2, the counters bi, ci, di, ei from cell
1 grow their subscripts. In each step, the number of copies of objects of the first
three types is doubled, hence after n steps we get 2n copies of bn+1, cn+1, and dn+1.
Objects bi will check which clauses are satisfied by a given truth-assignment, objects
ci are used in order to multiply the number of copies of ti, fi as we will see imme-
diately, di are used to check whether there is at least one truth-assignment which

383

satisfies all clauses, and ei will be used in order to produce the object no, if this will
be the case, in the end of the computation.)

(1, bn+1cn+1/f, 2),
(1, dn+1/g, 2).

(In step n + 1, the counters bn+1, cn+1, dn+1 are brought in cells with label 2, in
exchange of f and g. Because we have 2n copies of each object of these types and 2n

cells 2, each one containing exactly one copy of f and one of g, due to the maximality
of the parallelism of using the rules, each cell 2 gets precisely one copy of each of
bn+1, cn+1, dn+1. Note that cells 2 cannot divide any more, because the objects ai

were exhausted.)

(2, cn+1Ti/cn+1Ti, 0),
(2, cn+1Fi/cn+1Fi,1, 0), for each i = 1, 2, . . . , n,
(2, Ti,j/tiTi,j+1, 0),
(2, Fi,j/fiFi,j+1, 0), for each i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

(In the presence of cn+1, the objects Ti, Fi introduce the objects Ti,1 and Fi,1, re-
spectively, which initiates the possibility of introducing m copies of each ti and fi

in each cell 2. The idea is that because we have m clauses, in order to check their
values for a given truth-assignment of variables, it is possible to need one value for
each valiable for each clause. Note that this phase needs 2n steps for introducing
the double-subscripted objects Ti,1, Fi,1 – for each one we need one step, because we
have only one copy of cn+1 available – then further m steps are necessary for each
Ti,1, Fi,1 to grow its second subscript; all these steps are done in parallel, but for
the last introduced Ti,1, Fi,1 we have to continue m steps after the 2n necessary for
priming. In total, we perform 2n + m steps.)

(2, bi/bi+1, 0),
(2, di/di+1, 0), for all i = n + 1, . . . , (n + 1) + (2n + m)− 1.

(In parallel with the previous operations, the counters bi and di increase their sub-
scripts, until reaching the value 3n + m + 1. This is done in all cells 2 at the same
time. Simultaneously, ei increases its subscript in cell 1.)

(2, b3n+m+1tisi,j/b3n+m+1rj , 0),
(2, b3n+m+1fis

′
i,j/b3n+m+1rj , 0), for all 1 ≤ i ≤ n and 1 ≤ j ≤ m,

(2, di/di+1, 0), for all i = 3n + m + 1, . . . , (3n + m + 1) + nm− 1.

(In the presence of b3n+m+1 – and not before – we check the values assumed by clauses
for the truth-assignments from each cell 2. We have only one copy of b3n+m+1 in
each cell, hence we need at most nm steps for this: each clause contains at most n
literals, and we have m clauses. In parallel, d increases the subscript, until reaching
the value 3n + nm + m + 1.)

(2, d3n+nm+m+iri/d3n+nm+m+i+1, 0), for all i = 1, 2, . . . , m.

(In each cell with label 2 we check whether or not all clauses are satisfied by the
corresponding truth-assignment. For each clause which is satisfied, we increase by
one the subscript of d, hence the subscript reaches the value 3n + nm + 2m + 1 if
and only if all clauses are satisfied.)

(2, d3n+nm+2m+1/f yes, 1).

384

(If one of the truth-assignments from a cell 2 has satisfied all clauses, then we reach
d3n+nm+2m+1, which is sent to cell 1 in exchange of the objects yes and f .)

(2, yes/λ, 0).

(In the next step, the object yes leaves the system, signaling the fact that the for-
mula is satisfiable. In cell 1, the counter e will increase one more step its subscript,
but after that it will remain unchanged – it can leave cell 1 only in the presence of
f , but this object was already moved to cell 2.)

(1, e3n+nm+2m+2f no/λ, 2),
(2,no/λ, 0).

(If the counter e reaches the subscript 3n + nm + 2m + 2 and the object f is still in
cell 1, then the object no can be moved to a cell 2, randomly chosen, and from here
it exits the system, signaling that the formula is not satisfiable.)

From the previous explanations, one can see that, starting with the multiset w(γ)
added to cell 2, which is the input cell, the system correctly answers the question whether
or not γ is satisfiable. The duration of the computation is polynomial in terms of n and
m: the answer yes is sent out in step 3n + nm + 2m + 2, while the answer no is sent out
in step 3n + nm + 2m + 4. This concludes the proof. 2

The antiport rules from the previous construction are of weight at most 3, but
the weight can be reduced to two, at the expense of some slowdown of the system.
For instance, instead of the rule (1, e3n+nm+2m+2f no/λ, 2) we can consider the rules
(1, e3n+nm+2m+2f/h, 0), (1, h no/λ, 2), where h is a new object. We can proceed in the
same way with the rules (2, b3n+m+1tisi,j/b3n+m+1rj , 0), (2, b3n+m+1fis

′
i,j/b3n+m+1rj , 0),

for 1 ≤ i ≤ n and 1 ≤ j ≤ m, but in this way instead of at most nm steps for finding the
satisfied clauses we will need at most 2nm steps. The details are left to the reader.

4 Final Remarks

We have proven that by adding the membrane division feature to tissue P systems (with
the communication done by antiport rules of a small weight) we can solve NP-complete
problems in polynomial time. We exemplify this possibility with SAT problem.

It remains as a research topic to consider the same extension for other types of systems,
for instance, for cell P systems with symport/antiport rules, or for neural P systems (with
states associated with cells and multiset rewriting rules for processing the objects. The
difficulty in the case of cell P systems with symport/antiport comes from the fact that
only the skin membrane can communicate with the environment; on the other hand,
the skin membrane cannot be divided, hence we need exponentially many objects for
communication with inner membranes, and such objects should be brought in from the
environment. In turn, neural P systems with the maximal use of rules and replicated
communication are already known to be able to solve NP-complete problems in polynomial
time; the challenge now is not to use replication). In spite of these difficulties, we expect
results similar to the above one also these cases.

Another problem which remains open is to consider tissue P systems with the commu-
nication using only symport rules.

385

Acknowledgements. The support of this research through the project TIC2002-
04220-C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER
funds, is gratefully acknowledged.

References

[1] P. Frisco, H.J. Hoogeboom, Simulating counter automata by P systems with sym-
port/antiport. In Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds., Membrane
Computing. International Workshop WMC 2002, Curtea de Argeş, Romania, Revised
Papers. Lecture Notes in Computer Science 2597, Springer-Verlag, Berlin, 2003, 288–
301.

[2] Gh. Păun, Computing with Membranes: An Introduction. Springer-Verlag, Berlin,
2002.

[3] M. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Teoŕıa de la Complejidad
en Modelos de Computatión Celular con Membranas. Editorial Kronos, Sevilla, 2002.

386

